kern_resource.c revision 1.180 1 /* $NetBSD: kern_resource.c,v 1.180 2018/05/09 19:55:35 kre Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.180 2018/05/09 19:55:35 kre Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Maximum process data and stack limits.
63 * They are variables so they are patchable.
64 */
65 rlim_t maxdmap = MAXDSIZ;
66 rlim_t maxsmap = MAXSSIZ;
67
68 static pool_cache_t plimit_cache __read_mostly;
69 static pool_cache_t pstats_cache __read_mostly;
70
71 static kauth_listener_t resource_listener;
72 static struct sysctllog *proc_sysctllog;
73
74 static int donice(struct lwp *, struct proc *, int);
75 static void sysctl_proc_setup(void);
76
77 static int
78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79 void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 struct proc *p;
82 int result;
83
84 result = KAUTH_RESULT_DEFER;
85 p = arg0;
86
87 switch (action) {
88 case KAUTH_PROCESS_NICE:
89 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 break;
92 }
93
94 if ((u_long)arg1 >= p->p_nice)
95 result = KAUTH_RESULT_ALLOW;
96
97 break;
98
99 case KAUTH_PROCESS_RLIMIT: {
100 enum kauth_process_req req;
101
102 req = (enum kauth_process_req)(unsigned long)arg1;
103
104 switch (req) {
105 case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 result = KAUTH_RESULT_ALLOW;
107 break;
108
109 case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 struct rlimit *new_rlimit;
111 u_long which;
112
113 if ((p != curlwp->l_proc) &&
114 (proc_uidmatch(cred, p->p_cred) != 0))
115 break;
116
117 new_rlimit = arg2;
118 which = (u_long)arg3;
119
120 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 result = KAUTH_RESULT_ALLOW;
122
123 break;
124 }
125
126 default:
127 break;
128 }
129
130 break;
131 }
132
133 default:
134 break;
135 }
136
137 return result;
138 }
139
140 void
141 resource_init(void)
142 {
143
144 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148
149 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 resource_listener_cb, NULL);
151
152 sysctl_proc_setup();
153 }
154
155 /*
156 * Resource controls and accounting.
157 */
158
159 int
160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161 register_t *retval)
162 {
163 /* {
164 syscallarg(int) which;
165 syscallarg(id_t) who;
166 } */
167 struct proc *curp = l->l_proc, *p;
168 id_t who = SCARG(uap, who);
169 int low = NZERO + PRIO_MAX + 1;
170
171 mutex_enter(proc_lock);
172 switch (SCARG(uap, which)) {
173 case PRIO_PROCESS:
174 p = who ? proc_find(who) : curp;
175 if (p != NULL)
176 low = p->p_nice;
177 break;
178
179 case PRIO_PGRP: {
180 struct pgrp *pg;
181
182 if (who == 0)
183 pg = curp->p_pgrp;
184 else if ((pg = pgrp_find(who)) == NULL)
185 break;
186 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 if (p->p_nice < low)
188 low = p->p_nice;
189 }
190 break;
191 }
192
193 case PRIO_USER:
194 if (who == 0)
195 who = (int)kauth_cred_geteuid(l->l_cred);
196 PROCLIST_FOREACH(p, &allproc) {
197 mutex_enter(p->p_lock);
198 if (kauth_cred_geteuid(p->p_cred) ==
199 (uid_t)who && p->p_nice < low)
200 low = p->p_nice;
201 mutex_exit(p->p_lock);
202 }
203 break;
204
205 default:
206 mutex_exit(proc_lock);
207 return EINVAL;
208 }
209 mutex_exit(proc_lock);
210
211 if (low == NZERO + PRIO_MAX + 1) {
212 return ESRCH;
213 }
214 *retval = low - NZERO;
215 return 0;
216 }
217
218 int
219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220 register_t *retval)
221 {
222 /* {
223 syscallarg(int) which;
224 syscallarg(id_t) who;
225 syscallarg(int) prio;
226 } */
227 struct proc *curp = l->l_proc, *p;
228 id_t who = SCARG(uap, who);
229 int found = 0, error = 0;
230
231 mutex_enter(proc_lock);
232 switch (SCARG(uap, which)) {
233 case PRIO_PROCESS:
234 p = who ? proc_find(who) : curp;
235 if (p != NULL) {
236 mutex_enter(p->p_lock);
237 found++;
238 error = donice(l, p, SCARG(uap, prio));
239 mutex_exit(p->p_lock);
240 }
241 break;
242
243 case PRIO_PGRP: {
244 struct pgrp *pg;
245
246 if (who == 0)
247 pg = curp->p_pgrp;
248 else if ((pg = pgrp_find(who)) == NULL)
249 break;
250 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 mutex_enter(p->p_lock);
252 found++;
253 error = donice(l, p, SCARG(uap, prio));
254 mutex_exit(p->p_lock);
255 if (error)
256 break;
257 }
258 break;
259 }
260
261 case PRIO_USER:
262 if (who == 0)
263 who = (int)kauth_cred_geteuid(l->l_cred);
264 PROCLIST_FOREACH(p, &allproc) {
265 mutex_enter(p->p_lock);
266 if (kauth_cred_geteuid(p->p_cred) ==
267 (uid_t)SCARG(uap, who)) {
268 found++;
269 error = donice(l, p, SCARG(uap, prio));
270 }
271 mutex_exit(p->p_lock);
272 if (error)
273 break;
274 }
275 break;
276
277 default:
278 mutex_exit(proc_lock);
279 return EINVAL;
280 }
281 mutex_exit(proc_lock);
282
283 return (found == 0) ? ESRCH : error;
284 }
285
286 /*
287 * Renice a process.
288 *
289 * Call with the target process' credentials locked.
290 */
291 static int
292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 kauth_cred_t cred = l->l_cred;
295
296 KASSERT(mutex_owned(chgp->p_lock));
297
298 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 return EPERM;
302
303 if (n > PRIO_MAX) {
304 n = PRIO_MAX;
305 }
306 if (n < PRIO_MIN) {
307 n = PRIO_MIN;
308 }
309 n += NZERO;
310
311 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 KAUTH_ARG(n), NULL, NULL)) {
313 return EACCES;
314 }
315
316 sched_nice(chgp, n);
317 return 0;
318 }
319
320 int
321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322 register_t *retval)
323 {
324 /* {
325 syscallarg(int) which;
326 syscallarg(const struct rlimit *) rlp;
327 } */
328 int error, which = SCARG(uap, which);
329 struct rlimit alim;
330
331 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 if (error) {
333 return error;
334 }
335 return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337
338 int
339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 struct rlimit *alimp;
342 int error;
343
344 if ((u_int)which >= RLIM_NLIMITS)
345 return EINVAL;
346
347 if (limp->rlim_cur > limp->rlim_max) {
348 /*
349 * This is programming error. According to SUSv2, we should
350 * return error in this case.
351 */
352 return EINVAL;
353 }
354
355 alimp = &p->p_rlimit[which];
356 /* if we don't change the value, no need to limcopy() */
357 if (limp->rlim_cur == alimp->rlim_cur &&
358 limp->rlim_max == alimp->rlim_max)
359 return 0;
360
361 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 if (error)
364 return error;
365
366 lim_privatise(p);
367 /* p->p_limit is now unchangeable */
368 alimp = &p->p_rlimit[which];
369
370 switch (which) {
371
372 case RLIMIT_DATA:
373 if (limp->rlim_cur > maxdmap)
374 limp->rlim_cur = maxdmap;
375 if (limp->rlim_max > maxdmap)
376 limp->rlim_max = maxdmap;
377 break;
378
379 case RLIMIT_STACK:
380 if (limp->rlim_cur > maxsmap)
381 limp->rlim_cur = maxsmap;
382 if (limp->rlim_max > maxsmap)
383 limp->rlim_max = maxsmap;
384
385 /*
386 * Return EINVAL if the new stack size limit is lower than
387 * current usage. Otherwise, the process would get SIGSEGV the
388 * moment it would try to access anything on its current stack.
389 * This conforms to SUSv2.
390 */
391 if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
392 btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
393 return EINVAL;
394 }
395
396 /*
397 * Stack is allocated to the max at exec time with
398 * only "rlim_cur" bytes accessible (In other words,
399 * allocates stack dividing two contiguous regions at
400 * "rlim_cur" bytes boundary).
401 *
402 * Since allocation is done in terms of page, roundup
403 * "rlim_cur" (otherwise, contiguous regions
404 * overlap). If stack limit is going up make more
405 * accessible, if going down make inaccessible.
406 */
407 limp->rlim_max = round_page(limp->rlim_max);
408 limp->rlim_cur = round_page(limp->rlim_cur);
409 if (limp->rlim_cur != alimp->rlim_cur) {
410 vaddr_t addr;
411 vsize_t size;
412 vm_prot_t prot;
413 char *base, *tmp;
414
415 base = p->p_vmspace->vm_minsaddr;
416 if (limp->rlim_cur > alimp->rlim_cur) {
417 prot = VM_PROT_READ | VM_PROT_WRITE;
418 size = limp->rlim_cur - alimp->rlim_cur;
419 tmp = STACK_GROW(base, alimp->rlim_cur);
420 } else {
421 prot = VM_PROT_NONE;
422 size = alimp->rlim_cur - limp->rlim_cur;
423 tmp = STACK_GROW(base, limp->rlim_cur);
424 }
425 addr = (vaddr_t)STACK_ALLOC(tmp, size);
426 (void) uvm_map_protect(&p->p_vmspace->vm_map,
427 addr, addr + size, prot, false);
428 }
429 break;
430
431 case RLIMIT_NOFILE:
432 if (limp->rlim_cur > maxfiles)
433 limp->rlim_cur = maxfiles;
434 if (limp->rlim_max > maxfiles)
435 limp->rlim_max = maxfiles;
436 break;
437
438 case RLIMIT_NPROC:
439 if (limp->rlim_cur > maxproc)
440 limp->rlim_cur = maxproc;
441 if (limp->rlim_max > maxproc)
442 limp->rlim_max = maxproc;
443 break;
444
445 case RLIMIT_NTHR:
446 if (limp->rlim_cur > maxlwp)
447 limp->rlim_cur = maxlwp;
448 if (limp->rlim_max > maxlwp)
449 limp->rlim_max = maxlwp;
450 break;
451 }
452
453 mutex_enter(&p->p_limit->pl_lock);
454 *alimp = *limp;
455 mutex_exit(&p->p_limit->pl_lock);
456 return 0;
457 }
458
459 int
460 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
461 register_t *retval)
462 {
463 /* {
464 syscallarg(int) which;
465 syscallarg(struct rlimit *) rlp;
466 } */
467 struct proc *p = l->l_proc;
468 int which = SCARG(uap, which);
469 struct rlimit rl;
470
471 if ((u_int)which >= RLIM_NLIMITS)
472 return EINVAL;
473
474 mutex_enter(p->p_lock);
475 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
476 mutex_exit(p->p_lock);
477
478 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
479 }
480
481 /*
482 * Transform the running time and tick information in proc p into user,
483 * system, and interrupt time usage.
484 *
485 * Should be called with p->p_lock held unless called from exit1().
486 */
487 void
488 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
489 struct timeval *ip, struct timeval *rp)
490 {
491 uint64_t u, st, ut, it, tot;
492 struct lwp *l;
493 struct bintime tm;
494 struct timeval tv;
495
496 KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
497
498 mutex_spin_enter(&p->p_stmutex);
499 st = p->p_sticks;
500 ut = p->p_uticks;
501 it = p->p_iticks;
502 mutex_spin_exit(&p->p_stmutex);
503
504 tm = p->p_rtime;
505
506 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
507 lwp_lock(l);
508 bintime_add(&tm, &l->l_rtime);
509 if ((l->l_pflag & LP_RUNNING) != 0) {
510 struct bintime diff;
511 /*
512 * Adjust for the current time slice. This is
513 * actually fairly important since the error
514 * here is on the order of a time quantum,
515 * which is much greater than the sampling
516 * error.
517 */
518 binuptime(&diff);
519 bintime_sub(&diff, &l->l_stime);
520 bintime_add(&tm, &diff);
521 }
522 lwp_unlock(l);
523 }
524
525 tot = st + ut + it;
526 bintime2timeval(&tm, &tv);
527 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
528
529 if (tot == 0) {
530 /* No ticks, so can't use to share time out, split 50-50 */
531 st = ut = u / 2;
532 } else {
533 st = (u * st) / tot;
534 ut = (u * ut) / tot;
535 }
536
537 /*
538 * Try to avoid lying to the users (too much)
539 *
540 * Of course, user/sys time are based on sampling (ie: statistics)
541 * so that would be impossible, but convincing the mark
542 * that we have used less ?time this call than we had
543 * last time, is beyond reasonable... (the con fails!)
544 *
545 * Note that since actual used time cannot decrease, either
546 * utime or stime (or both) must be greater now than last time
547 * (or both the same) - if one seems to have decreased, hold
548 * it constant and steal the necessary bump from the other
549 * which must have increased.
550 */
551 if (p->p_xutime > ut) {
552 st -= p->p_xutime - ut;
553 ut = p->p_xutime;
554 } else if (p->p_xstime > st) {
555 ut -= p->p_xstime - st;
556 st = p->p_xstime;
557 }
558
559 if (sp != NULL) {
560 p->p_xstime = st;
561 sp->tv_sec = st / 1000000;
562 sp->tv_usec = st % 1000000;
563 }
564 if (up != NULL) {
565 p->p_xutime = ut;
566 up->tv_sec = ut / 1000000;
567 up->tv_usec = ut % 1000000;
568 }
569 if (ip != NULL) {
570 if (it != 0) /* it != 0 --> tot != 0 */
571 it = (u * it) / tot;
572 ip->tv_sec = it / 1000000;
573 ip->tv_usec = it % 1000000;
574 }
575 if (rp != NULL) {
576 *rp = tv;
577 }
578 }
579
580 int
581 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
582 register_t *retval)
583 {
584 /* {
585 syscallarg(int) who;
586 syscallarg(struct rusage *) rusage;
587 } */
588 int error;
589 struct rusage ru;
590 struct proc *p = l->l_proc;
591
592 error = getrusage1(p, SCARG(uap, who), &ru);
593 if (error != 0)
594 return error;
595
596 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
597 }
598
599 int
600 getrusage1(struct proc *p, int who, struct rusage *ru) {
601
602 switch (who) {
603 case RUSAGE_SELF:
604 mutex_enter(p->p_lock);
605 ruspace(p);
606 memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
607 calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
608 rulwps(p, ru);
609 mutex_exit(p->p_lock);
610 break;
611 case RUSAGE_CHILDREN:
612 mutex_enter(p->p_lock);
613 memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
614 mutex_exit(p->p_lock);
615 break;
616 default:
617 return EINVAL;
618 }
619
620 return 0;
621 }
622
623 void
624 ruspace(struct proc *p)
625 {
626 struct vmspace *vm = p->p_vmspace;
627 struct rusage *ru = &p->p_stats->p_ru;
628
629 ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
630 ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
631 ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
632 #ifdef __HAVE_NO_PMAP_STATS
633 /* We don't keep track of the max so we get the current */
634 ru->ru_maxrss = vm_resident_space(vm) << (PAGE_SHIFT - 10);
635 #else
636 ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
637 #endif
638 }
639
640 void
641 ruadd(struct rusage *ru, struct rusage *ru2)
642 {
643 long *ip, *ip2;
644 int i;
645
646 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
647 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
648 if (ru->ru_maxrss < ru2->ru_maxrss)
649 ru->ru_maxrss = ru2->ru_maxrss;
650 ip = &ru->ru_first; ip2 = &ru2->ru_first;
651 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
652 *ip++ += *ip2++;
653 }
654
655 void
656 rulwps(proc_t *p, struct rusage *ru)
657 {
658 lwp_t *l;
659
660 KASSERT(mutex_owned(p->p_lock));
661
662 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
663 ruadd(ru, &l->l_ru);
664 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
665 ru->ru_nivcsw += l->l_nivcsw;
666 }
667 }
668
669 /*
670 * lim_copy: make a copy of the plimit structure.
671 *
672 * We use copy-on-write after fork, and copy when a limit is changed.
673 */
674 struct plimit *
675 lim_copy(struct plimit *lim)
676 {
677 struct plimit *newlim;
678 char *corename;
679 size_t alen, len;
680
681 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
682 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
683 newlim->pl_writeable = false;
684 newlim->pl_refcnt = 1;
685 newlim->pl_sv_limit = NULL;
686
687 mutex_enter(&lim->pl_lock);
688 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
689 sizeof(struct rlimit) * RLIM_NLIMITS);
690
691 /*
692 * Note: the common case is a use of default core name.
693 */
694 alen = 0;
695 corename = NULL;
696 for (;;) {
697 if (lim->pl_corename == defcorename) {
698 newlim->pl_corename = defcorename;
699 newlim->pl_cnlen = 0;
700 break;
701 }
702 len = lim->pl_cnlen;
703 if (len == alen) {
704 newlim->pl_corename = corename;
705 newlim->pl_cnlen = len;
706 memcpy(corename, lim->pl_corename, len);
707 corename = NULL;
708 break;
709 }
710 mutex_exit(&lim->pl_lock);
711 if (corename) {
712 kmem_free(corename, alen);
713 }
714 alen = len;
715 corename = kmem_alloc(alen, KM_SLEEP);
716 mutex_enter(&lim->pl_lock);
717 }
718 mutex_exit(&lim->pl_lock);
719
720 if (corename) {
721 kmem_free(corename, alen);
722 }
723 return newlim;
724 }
725
726 void
727 lim_addref(struct plimit *lim)
728 {
729 atomic_inc_uint(&lim->pl_refcnt);
730 }
731
732 /*
733 * lim_privatise: give a process its own private plimit structure.
734 */
735 void
736 lim_privatise(proc_t *p)
737 {
738 struct plimit *lim = p->p_limit, *newlim;
739
740 if (lim->pl_writeable) {
741 return;
742 }
743
744 newlim = lim_copy(lim);
745
746 mutex_enter(p->p_lock);
747 if (p->p_limit->pl_writeable) {
748 /* Other thread won the race. */
749 mutex_exit(p->p_lock);
750 lim_free(newlim);
751 return;
752 }
753
754 /*
755 * Since p->p_limit can be accessed without locked held,
756 * old limit structure must not be deleted yet.
757 */
758 newlim->pl_sv_limit = p->p_limit;
759 newlim->pl_writeable = true;
760 p->p_limit = newlim;
761 mutex_exit(p->p_lock);
762 }
763
764 void
765 lim_setcorename(proc_t *p, char *name, size_t len)
766 {
767 struct plimit *lim;
768 char *oname;
769 size_t olen;
770
771 lim_privatise(p);
772 lim = p->p_limit;
773
774 mutex_enter(&lim->pl_lock);
775 oname = lim->pl_corename;
776 olen = lim->pl_cnlen;
777 lim->pl_corename = name;
778 lim->pl_cnlen = len;
779 mutex_exit(&lim->pl_lock);
780
781 if (oname != defcorename) {
782 kmem_free(oname, olen);
783 }
784 }
785
786 void
787 lim_free(struct plimit *lim)
788 {
789 struct plimit *sv_lim;
790
791 do {
792 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
793 return;
794 }
795 if (lim->pl_corename != defcorename) {
796 kmem_free(lim->pl_corename, lim->pl_cnlen);
797 }
798 sv_lim = lim->pl_sv_limit;
799 mutex_destroy(&lim->pl_lock);
800 pool_cache_put(plimit_cache, lim);
801 } while ((lim = sv_lim) != NULL);
802 }
803
804 struct pstats *
805 pstatscopy(struct pstats *ps)
806 {
807 struct pstats *nps;
808 size_t len;
809
810 nps = pool_cache_get(pstats_cache, PR_WAITOK);
811
812 len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
813 memset(&nps->pstat_startzero, 0, len);
814
815 len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
816 memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
817
818 return nps;
819 }
820
821 void
822 pstatsfree(struct pstats *ps)
823 {
824
825 pool_cache_put(pstats_cache, ps);
826 }
827
828 /*
829 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
830 * need to pick a valid process by PID.
831 *
832 * => Hold a reference on the process, on success.
833 */
834 static int
835 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
836 {
837 proc_t *p;
838 int error;
839
840 if (pid == PROC_CURPROC) {
841 p = l->l_proc;
842 } else {
843 mutex_enter(proc_lock);
844 p = proc_find(pid);
845 if (p == NULL) {
846 mutex_exit(proc_lock);
847 return ESRCH;
848 }
849 }
850 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
851 if (pid != PROC_CURPROC) {
852 mutex_exit(proc_lock);
853 }
854 *p2 = p;
855 return error;
856 }
857
858 /*
859 * sysctl_proc_paxflags: helper routine to get process's paxctl flags
860 */
861 static int
862 sysctl_proc_paxflags(SYSCTLFN_ARGS)
863 {
864 struct proc *p;
865 struct sysctlnode node;
866 int paxflags;
867 int error;
868
869 /* First, validate the request. */
870 if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
871 return EINVAL;
872
873 /* Find the process. Hold a reference (p_reflock), if found. */
874 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
875 if (error)
876 return error;
877
878 /* XXX-elad */
879 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
880 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
881 if (error) {
882 rw_exit(&p->p_reflock);
883 return error;
884 }
885
886 /* Retrieve the limits. */
887 node = *rnode;
888 paxflags = p->p_pax;
889 node.sysctl_data = &paxflags;
890
891 error = sysctl_lookup(SYSCTLFN_CALL(&node));
892
893 /* If attempting to write new value, it's an error */
894 if (error == 0 && newp != NULL)
895 error = EACCES;
896
897 rw_exit(&p->p_reflock);
898 return error;
899 }
900
901 /*
902 * sysctl_proc_corename: helper routine to get or set the core file name
903 * for a process specified by PID.
904 */
905 static int
906 sysctl_proc_corename(SYSCTLFN_ARGS)
907 {
908 struct proc *p;
909 struct plimit *lim;
910 char *cnbuf, *cname;
911 struct sysctlnode node;
912 size_t len;
913 int error;
914
915 /* First, validate the request. */
916 if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
917 return EINVAL;
918
919 /* Find the process. Hold a reference (p_reflock), if found. */
920 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
921 if (error)
922 return error;
923
924 /* XXX-elad */
925 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
926 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
927 if (error) {
928 rw_exit(&p->p_reflock);
929 return error;
930 }
931
932 cnbuf = PNBUF_GET();
933
934 if (oldp) {
935 /* Get case: copy the core name into the buffer. */
936 error = kauth_authorize_process(l->l_cred,
937 KAUTH_PROCESS_CORENAME, p,
938 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
939 if (error) {
940 goto done;
941 }
942 lim = p->p_limit;
943 mutex_enter(&lim->pl_lock);
944 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
945 mutex_exit(&lim->pl_lock);
946 }
947
948 node = *rnode;
949 node.sysctl_data = cnbuf;
950 error = sysctl_lookup(SYSCTLFN_CALL(&node));
951
952 /* Return if error, or if caller is only getting the core name. */
953 if (error || newp == NULL) {
954 goto done;
955 }
956
957 /*
958 * Set case. Check permission and then validate new core name.
959 * It must be either "core", "/core", or end in ".core".
960 */
961 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
962 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
963 if (error) {
964 goto done;
965 }
966 len = strlen(cnbuf);
967 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
968 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
969 error = EINVAL;
970 goto done;
971 }
972
973 /* Allocate, copy and set the new core name for plimit structure. */
974 cname = kmem_alloc(++len, KM_NOSLEEP);
975 if (cname == NULL) {
976 error = ENOMEM;
977 goto done;
978 }
979 memcpy(cname, cnbuf, len);
980 lim_setcorename(p, cname, len);
981 done:
982 rw_exit(&p->p_reflock);
983 PNBUF_PUT(cnbuf);
984 return error;
985 }
986
987 /*
988 * sysctl_proc_stop: helper routine for checking/setting the stop flags.
989 */
990 static int
991 sysctl_proc_stop(SYSCTLFN_ARGS)
992 {
993 struct proc *p;
994 int isset, flag, error = 0;
995 struct sysctlnode node;
996
997 if (namelen != 0)
998 return EINVAL;
999
1000 /* Find the process. Hold a reference (p_reflock), if found. */
1001 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
1002 if (error)
1003 return error;
1004
1005 /* XXX-elad */
1006 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1007 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1008 if (error) {
1009 goto out;
1010 }
1011
1012 /* Determine the flag. */
1013 switch (rnode->sysctl_num) {
1014 case PROC_PID_STOPFORK:
1015 flag = PS_STOPFORK;
1016 break;
1017 case PROC_PID_STOPEXEC:
1018 flag = PS_STOPEXEC;
1019 break;
1020 case PROC_PID_STOPEXIT:
1021 flag = PS_STOPEXIT;
1022 break;
1023 default:
1024 error = EINVAL;
1025 goto out;
1026 }
1027 isset = (p->p_flag & flag) ? 1 : 0;
1028 node = *rnode;
1029 node.sysctl_data = &isset;
1030 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1031
1032 /* Return if error, or if callers is only getting the flag. */
1033 if (error || newp == NULL) {
1034 goto out;
1035 }
1036
1037 /* Check if caller can set the flags. */
1038 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
1039 p, KAUTH_ARG(flag), NULL, NULL);
1040 if (error) {
1041 goto out;
1042 }
1043 mutex_enter(p->p_lock);
1044 if (isset) {
1045 p->p_sflag |= flag;
1046 } else {
1047 p->p_sflag &= ~flag;
1048 }
1049 mutex_exit(p->p_lock);
1050 out:
1051 rw_exit(&p->p_reflock);
1052 return error;
1053 }
1054
1055 /*
1056 * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
1057 */
1058 static int
1059 sysctl_proc_plimit(SYSCTLFN_ARGS)
1060 {
1061 struct proc *p;
1062 u_int limitno;
1063 int which, error = 0;
1064 struct rlimit alim;
1065 struct sysctlnode node;
1066
1067 if (namelen != 0)
1068 return EINVAL;
1069
1070 which = name[-1];
1071 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
1072 which != PROC_PID_LIMIT_TYPE_HARD)
1073 return EINVAL;
1074
1075 limitno = name[-2] - 1;
1076 if (limitno >= RLIM_NLIMITS)
1077 return EINVAL;
1078
1079 if (name[-3] != PROC_PID_LIMIT)
1080 return EINVAL;
1081
1082 /* Find the process. Hold a reference (p_reflock), if found. */
1083 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
1084 if (error)
1085 return error;
1086
1087 /* XXX-elad */
1088 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1089 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1090 if (error)
1091 goto out;
1092
1093 /* Check if caller can retrieve the limits. */
1094 if (newp == NULL) {
1095 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1096 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1097 KAUTH_ARG(which));
1098 if (error)
1099 goto out;
1100 }
1101
1102 /* Retrieve the limits. */
1103 node = *rnode;
1104 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1105 if (which == PROC_PID_LIMIT_TYPE_HARD) {
1106 node.sysctl_data = &alim.rlim_max;
1107 } else {
1108 node.sysctl_data = &alim.rlim_cur;
1109 }
1110 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1111
1112 /* Return if error, or if we are only retrieving the limits. */
1113 if (error || newp == NULL) {
1114 goto out;
1115 }
1116 error = dosetrlimit(l, p, limitno, &alim);
1117 out:
1118 rw_exit(&p->p_reflock);
1119 return error;
1120 }
1121
1122 /*
1123 * Setup sysctl nodes.
1124 */
1125 static void
1126 sysctl_proc_setup(void)
1127 {
1128
1129 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1130 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1131 CTLTYPE_NODE, "curproc",
1132 SYSCTL_DESCR("Per-process settings"),
1133 NULL, 0, NULL, 0,
1134 CTL_PROC, PROC_CURPROC, CTL_EOL);
1135
1136 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1137 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1138 CTLTYPE_INT, "paxflags",
1139 SYSCTL_DESCR("Process PAX control flags"),
1140 sysctl_proc_paxflags, 0, NULL, 0,
1141 CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
1142
1143 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1144 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1145 CTLTYPE_STRING, "corename",
1146 SYSCTL_DESCR("Core file name"),
1147 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1148 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1149 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1150 CTLFLAG_PERMANENT,
1151 CTLTYPE_NODE, "rlimit",
1152 SYSCTL_DESCR("Process limits"),
1153 NULL, 0, NULL, 0,
1154 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1155
1156 #define create_proc_plimit(s, n) do { \
1157 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1158 CTLFLAG_PERMANENT, \
1159 CTLTYPE_NODE, s, \
1160 SYSCTL_DESCR("Process " s " limits"), \
1161 NULL, 0, NULL, 0, \
1162 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1163 CTL_EOL); \
1164 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1165 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1166 CTLTYPE_QUAD, "soft", \
1167 SYSCTL_DESCR("Process soft " s " limit"), \
1168 sysctl_proc_plimit, 0, NULL, 0, \
1169 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1170 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1171 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1172 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1173 CTLTYPE_QUAD, "hard", \
1174 SYSCTL_DESCR("Process hard " s " limit"), \
1175 sysctl_proc_plimit, 0, NULL, 0, \
1176 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1177 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1178 } while (0/*CONSTCOND*/)
1179
1180 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1181 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1182 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1183 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1184 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1185 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1186 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1187 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1188 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1189 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1190 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1191 create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR);
1192
1193 #undef create_proc_plimit
1194
1195 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1196 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1197 CTLTYPE_INT, "stopfork",
1198 SYSCTL_DESCR("Stop process at fork(2)"),
1199 sysctl_proc_stop, 0, NULL, 0,
1200 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1201 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1202 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1203 CTLTYPE_INT, "stopexec",
1204 SYSCTL_DESCR("Stop process at execve(2)"),
1205 sysctl_proc_stop, 0, NULL, 0,
1206 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1207 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1208 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1209 CTLTYPE_INT, "stopexit",
1210 SYSCTL_DESCR("Stop process before completing exit"),
1211 sysctl_proc_stop, 0, NULL, 0,
1212 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1213 }
1214