Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.182
      1 /*	$NetBSD: kern_resource.c,v 1.182 2019/04/05 00:33:21 mlelstv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.182 2019/04/05 00:33:21 mlelstv Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/kmem.h>
     48 #include <sys/namei.h>
     49 #include <sys/pool.h>
     50 #include <sys/proc.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/timevar.h>
     53 #include <sys/kauth.h>
     54 #include <sys/atomic.h>
     55 #include <sys/mount.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Maximum process data and stack limits.
     63  * They are variables so they are patchable.
     64  */
     65 rlim_t			maxdmap = MAXDSIZ;
     66 rlim_t			maxsmap = MAXSSIZ;
     67 
     68 static pool_cache_t	plimit_cache	__read_mostly;
     69 static pool_cache_t	pstats_cache	__read_mostly;
     70 
     71 static kauth_listener_t	resource_listener;
     72 static struct sysctllog	*proc_sysctllog;
     73 
     74 static int	donice(struct lwp *, struct proc *, int);
     75 static void	sysctl_proc_setup(void);
     76 
     77 static int
     78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     79     void *arg0, void *arg1, void *arg2, void *arg3)
     80 {
     81 	struct proc *p;
     82 	int result;
     83 
     84 	result = KAUTH_RESULT_DEFER;
     85 	p = arg0;
     86 
     87 	switch (action) {
     88 	case KAUTH_PROCESS_NICE:
     89 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     90 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     91 			break;
     92 		}
     93 
     94 		if ((u_long)arg1 >= p->p_nice)
     95 			result = KAUTH_RESULT_ALLOW;
     96 
     97 		break;
     98 
     99 	case KAUTH_PROCESS_RLIMIT: {
    100 		enum kauth_process_req req;
    101 
    102 		req = (enum kauth_process_req)(unsigned long)arg1;
    103 
    104 		switch (req) {
    105 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    106 			result = KAUTH_RESULT_ALLOW;
    107 			break;
    108 
    109 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    110 			struct rlimit *new_rlimit;
    111 			u_long which;
    112 
    113 			if ((p != curlwp->l_proc) &&
    114 			    (proc_uidmatch(cred, p->p_cred) != 0))
    115 				break;
    116 
    117 			new_rlimit = arg2;
    118 			which = (u_long)arg3;
    119 
    120 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    121 				result = KAUTH_RESULT_ALLOW;
    122 
    123 			break;
    124 			}
    125 
    126 		default:
    127 			break;
    128 		}
    129 
    130 		break;
    131 	}
    132 
    133 	default:
    134 		break;
    135 	}
    136 
    137 	return result;
    138 }
    139 
    140 void
    141 resource_init(void)
    142 {
    143 
    144 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    145 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    146 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    147 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    148 
    149 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    150 	    resource_listener_cb, NULL);
    151 
    152 	sysctl_proc_setup();
    153 }
    154 
    155 /*
    156  * Resource controls and accounting.
    157  */
    158 
    159 int
    160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    161     register_t *retval)
    162 {
    163 	/* {
    164 		syscallarg(int) which;
    165 		syscallarg(id_t) who;
    166 	} */
    167 	struct proc *curp = l->l_proc, *p;
    168 	id_t who = SCARG(uap, who);
    169 	int low = NZERO + PRIO_MAX + 1;
    170 
    171 	mutex_enter(proc_lock);
    172 	switch (SCARG(uap, which)) {
    173 	case PRIO_PROCESS:
    174 		p = who ? proc_find(who) : curp;
    175 		if (p != NULL)
    176 			low = p->p_nice;
    177 		break;
    178 
    179 	case PRIO_PGRP: {
    180 		struct pgrp *pg;
    181 
    182 		if (who == 0)
    183 			pg = curp->p_pgrp;
    184 		else if ((pg = pgrp_find(who)) == NULL)
    185 			break;
    186 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    187 			if (p->p_nice < low)
    188 				low = p->p_nice;
    189 		}
    190 		break;
    191 	}
    192 
    193 	case PRIO_USER:
    194 		if (who == 0)
    195 			who = (int)kauth_cred_geteuid(l->l_cred);
    196 		PROCLIST_FOREACH(p, &allproc) {
    197 			mutex_enter(p->p_lock);
    198 			if (kauth_cred_geteuid(p->p_cred) ==
    199 			    (uid_t)who && p->p_nice < low)
    200 				low = p->p_nice;
    201 			mutex_exit(p->p_lock);
    202 		}
    203 		break;
    204 
    205 	default:
    206 		mutex_exit(proc_lock);
    207 		return EINVAL;
    208 	}
    209 	mutex_exit(proc_lock);
    210 
    211 	if (low == NZERO + PRIO_MAX + 1) {
    212 		return ESRCH;
    213 	}
    214 	*retval = low - NZERO;
    215 	return 0;
    216 }
    217 
    218 int
    219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    220     register_t *retval)
    221 {
    222 	/* {
    223 		syscallarg(int) which;
    224 		syscallarg(id_t) who;
    225 		syscallarg(int) prio;
    226 	} */
    227 	struct proc *curp = l->l_proc, *p;
    228 	id_t who = SCARG(uap, who);
    229 	int found = 0, error = 0;
    230 
    231 	mutex_enter(proc_lock);
    232 	switch (SCARG(uap, which)) {
    233 	case PRIO_PROCESS:
    234 		p = who ? proc_find(who) : curp;
    235 		if (p != NULL) {
    236 			mutex_enter(p->p_lock);
    237 			found++;
    238 			error = donice(l, p, SCARG(uap, prio));
    239 			mutex_exit(p->p_lock);
    240 		}
    241 		break;
    242 
    243 	case PRIO_PGRP: {
    244 		struct pgrp *pg;
    245 
    246 		if (who == 0)
    247 			pg = curp->p_pgrp;
    248 		else if ((pg = pgrp_find(who)) == NULL)
    249 			break;
    250 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    251 			mutex_enter(p->p_lock);
    252 			found++;
    253 			error = donice(l, p, SCARG(uap, prio));
    254 			mutex_exit(p->p_lock);
    255 			if (error)
    256 				break;
    257 		}
    258 		break;
    259 	}
    260 
    261 	case PRIO_USER:
    262 		if (who == 0)
    263 			who = (int)kauth_cred_geteuid(l->l_cred);
    264 		PROCLIST_FOREACH(p, &allproc) {
    265 			mutex_enter(p->p_lock);
    266 			if (kauth_cred_geteuid(p->p_cred) ==
    267 			    (uid_t)SCARG(uap, who)) {
    268 				found++;
    269 				error = donice(l, p, SCARG(uap, prio));
    270 			}
    271 			mutex_exit(p->p_lock);
    272 			if (error)
    273 				break;
    274 		}
    275 		break;
    276 
    277 	default:
    278 		mutex_exit(proc_lock);
    279 		return EINVAL;
    280 	}
    281 	mutex_exit(proc_lock);
    282 
    283 	return (found == 0) ? ESRCH : error;
    284 }
    285 
    286 /*
    287  * Renice a process.
    288  *
    289  * Call with the target process' credentials locked.
    290  */
    291 static int
    292 donice(struct lwp *l, struct proc *chgp, int n)
    293 {
    294 	kauth_cred_t cred = l->l_cred;
    295 
    296 	KASSERT(mutex_owned(chgp->p_lock));
    297 
    298 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    299 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    300 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    301 		return EPERM;
    302 
    303 	if (n > PRIO_MAX) {
    304 		n = PRIO_MAX;
    305 	}
    306 	if (n < PRIO_MIN) {
    307 		n = PRIO_MIN;
    308 	}
    309 	n += NZERO;
    310 
    311 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    312 	    KAUTH_ARG(n), NULL, NULL)) {
    313 		return EACCES;
    314 	}
    315 
    316 	sched_nice(chgp, n);
    317 	return 0;
    318 }
    319 
    320 int
    321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    322     register_t *retval)
    323 {
    324 	/* {
    325 		syscallarg(int) which;
    326 		syscallarg(const struct rlimit *) rlp;
    327 	} */
    328 	int error, which = SCARG(uap, which);
    329 	struct rlimit alim;
    330 
    331 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    332 	if (error) {
    333 		return error;
    334 	}
    335 	return dosetrlimit(l, l->l_proc, which, &alim);
    336 }
    337 
    338 int
    339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    340 {
    341 	struct rlimit *alimp;
    342 	int error;
    343 
    344 	if ((u_int)which >= RLIM_NLIMITS)
    345 		return EINVAL;
    346 
    347 	if (limp->rlim_cur > limp->rlim_max) {
    348 		/*
    349 		 * This is programming error. According to SUSv2, we should
    350 		 * return error in this case.
    351 		 */
    352 		return EINVAL;
    353 	}
    354 
    355 	alimp = &p->p_rlimit[which];
    356 	/* if we don't change the value, no need to limcopy() */
    357 	if (limp->rlim_cur == alimp->rlim_cur &&
    358 	    limp->rlim_max == alimp->rlim_max)
    359 		return 0;
    360 
    361 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    362 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    363 	if (error)
    364 		return error;
    365 
    366 	lim_privatise(p);
    367 	/* p->p_limit is now unchangeable */
    368 	alimp = &p->p_rlimit[which];
    369 
    370 	switch (which) {
    371 
    372 	case RLIMIT_DATA:
    373 		if (limp->rlim_cur > maxdmap)
    374 			limp->rlim_cur = maxdmap;
    375 		if (limp->rlim_max > maxdmap)
    376 			limp->rlim_max = maxdmap;
    377 		break;
    378 
    379 	case RLIMIT_STACK:
    380 		if (limp->rlim_cur > maxsmap)
    381 			limp->rlim_cur = maxsmap;
    382 		if (limp->rlim_max > maxsmap)
    383 			limp->rlim_max = maxsmap;
    384 
    385 		/*
    386 		 * Return EINVAL if the new stack size limit is lower than
    387 		 * current usage. Otherwise, the process would get SIGSEGV the
    388 		 * moment it would try to access anything on its current stack.
    389 		 * This conforms to SUSv2.
    390 		 */
    391 		if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
    392 		    btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
    393 			return EINVAL;
    394 		}
    395 
    396 		/*
    397 		 * Stack is allocated to the max at exec time with
    398 		 * only "rlim_cur" bytes accessible (In other words,
    399 		 * allocates stack dividing two contiguous regions at
    400 		 * "rlim_cur" bytes boundary).
    401 		 *
    402 		 * Since allocation is done in terms of page, roundup
    403 		 * "rlim_cur" (otherwise, contiguous regions
    404 		 * overlap).  If stack limit is going up make more
    405 		 * accessible, if going down make inaccessible.
    406 		 */
    407 		limp->rlim_max = round_page(limp->rlim_max);
    408 		limp->rlim_cur = round_page(limp->rlim_cur);
    409 		if (limp->rlim_cur != alimp->rlim_cur) {
    410 			vaddr_t addr;
    411 			vsize_t size;
    412 			vm_prot_t prot;
    413 			char *base, *tmp;
    414 
    415 			base = p->p_vmspace->vm_minsaddr;
    416 			if (limp->rlim_cur > alimp->rlim_cur) {
    417 				prot = VM_PROT_READ | VM_PROT_WRITE;
    418 				size = limp->rlim_cur - alimp->rlim_cur;
    419 				tmp = STACK_GROW(base, alimp->rlim_cur);
    420 			} else {
    421 				prot = VM_PROT_NONE;
    422 				size = alimp->rlim_cur - limp->rlim_cur;
    423 				tmp = STACK_GROW(base, limp->rlim_cur);
    424 			}
    425 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
    426 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    427 			    addr, addr + size, prot, false);
    428 		}
    429 		break;
    430 
    431 	case RLIMIT_NOFILE:
    432 		if (limp->rlim_cur > maxfiles)
    433 			limp->rlim_cur = maxfiles;
    434 		if (limp->rlim_max > maxfiles)
    435 			limp->rlim_max = maxfiles;
    436 		break;
    437 
    438 	case RLIMIT_NPROC:
    439 		if (limp->rlim_cur > maxproc)
    440 			limp->rlim_cur = maxproc;
    441 		if (limp->rlim_max > maxproc)
    442 			limp->rlim_max = maxproc;
    443 		break;
    444 
    445 	case RLIMIT_NTHR:
    446 		if (limp->rlim_cur > maxlwp)
    447 			limp->rlim_cur = maxlwp;
    448 		if (limp->rlim_max > maxlwp)
    449 			limp->rlim_max = maxlwp;
    450 		break;
    451 	}
    452 
    453 	mutex_enter(&p->p_limit->pl_lock);
    454 	*alimp = *limp;
    455 	mutex_exit(&p->p_limit->pl_lock);
    456 	return 0;
    457 }
    458 
    459 int
    460 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    461     register_t *retval)
    462 {
    463 	/* {
    464 		syscallarg(int) which;
    465 		syscallarg(struct rlimit *) rlp;
    466 	} */
    467 	struct proc *p = l->l_proc;
    468 	int which = SCARG(uap, which);
    469 	struct rlimit rl;
    470 
    471 	if ((u_int)which >= RLIM_NLIMITS)
    472 		return EINVAL;
    473 
    474 	mutex_enter(p->p_lock);
    475 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    476 	mutex_exit(p->p_lock);
    477 
    478 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    479 }
    480 
    481 /*
    482  * Transform the running time and tick information in proc p into user,
    483  * system, and interrupt time usage.
    484  *
    485  * Should be called with p->p_lock held unless called from exit1().
    486  */
    487 void
    488 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    489     struct timeval *ip, struct timeval *rp)
    490 {
    491 	uint64_t u, st, ut, it, tot, dt;
    492 	struct lwp *l;
    493 	struct bintime tm;
    494 	struct timeval tv;
    495 
    496 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
    497 
    498 	mutex_spin_enter(&p->p_stmutex);
    499 	st = p->p_sticks;
    500 	ut = p->p_uticks;
    501 	it = p->p_iticks;
    502 	mutex_spin_exit(&p->p_stmutex);
    503 
    504 	tm = p->p_rtime;
    505 
    506 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    507 		lwp_lock(l);
    508 		bintime_add(&tm, &l->l_rtime);
    509 		if ((l->l_pflag & LP_RUNNING) != 0) {
    510 			struct bintime diff;
    511 			/*
    512 			 * Adjust for the current time slice.  This is
    513 			 * actually fairly important since the error
    514 			 * here is on the order of a time quantum,
    515 			 * which is much greater than the sampling
    516 			 * error.
    517 			 */
    518 			binuptime(&diff);
    519 			bintime_sub(&diff, &l->l_stime);
    520 			bintime_add(&tm, &diff);
    521 		}
    522 		lwp_unlock(l);
    523 	}
    524 
    525 	tot = st + ut + it;
    526 	bintime2timeval(&tm, &tv);
    527 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    528 
    529 	if (tot == 0) {
    530 		/* No ticks, so can't use to share time out, split 50-50 */
    531 		st = ut = u / 2;
    532 	} else {
    533 		st = (u * st) / tot;
    534 		ut = (u * ut) / tot;
    535 	}
    536 
    537 	/*
    538 	 * Try to avoid lying to the users (too much)
    539 	 *
    540 	 * Of course, user/sys time are based on sampling (ie: statistics)
    541 	 * so that would be impossible, but convincing the mark
    542 	 * that we have used less ?time this call than we had
    543 	 * last time, is beyond reasonable...  (the con fails!)
    544 	 *
    545 	 * Note that since actual used time cannot decrease, either
    546 	 * utime or stime (or both) must be greater now than last time
    547 	 * (or both the same) - if one seems to have decreased, hold
    548 	 * it constant and steal the necessary bump from the other
    549 	 * which must have increased.
    550 	 */
    551 	if (p->p_xutime > ut) {
    552 		dt = p->p_xutime - ut;
    553 		st -= uimin(dt, st);
    554 		ut = p->p_xutime;
    555 	} else if (p->p_xstime > st) {
    556 		dt = p->p_xstime - st;
    557 		ut -= uimin(dt, ut);
    558 		st = p->p_xstime;
    559 	}
    560 
    561 	if (sp != NULL) {
    562 		p->p_xstime = st;
    563 		sp->tv_sec = st / 1000000;
    564 		sp->tv_usec = st % 1000000;
    565 	}
    566 	if (up != NULL) {
    567 		p->p_xutime = ut;
    568 		up->tv_sec = ut / 1000000;
    569 		up->tv_usec = ut % 1000000;
    570 	}
    571 	if (ip != NULL) {
    572 		if (it != 0)		/* it != 0 --> tot != 0 */
    573 			it = (u * it) / tot;
    574 		ip->tv_sec = it / 1000000;
    575 		ip->tv_usec = it % 1000000;
    576 	}
    577 	if (rp != NULL) {
    578 		*rp = tv;
    579 	}
    580 }
    581 
    582 int
    583 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    584     register_t *retval)
    585 {
    586 	/* {
    587 		syscallarg(int) who;
    588 		syscallarg(struct rusage *) rusage;
    589 	} */
    590 	int error;
    591 	struct rusage ru;
    592 	struct proc *p = l->l_proc;
    593 
    594 	error = getrusage1(p, SCARG(uap, who), &ru);
    595 	if (error != 0)
    596 		return error;
    597 
    598 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    599 }
    600 
    601 int
    602 getrusage1(struct proc *p, int who, struct rusage *ru) {
    603 
    604 	switch (who) {
    605 	case RUSAGE_SELF:
    606 		mutex_enter(p->p_lock);
    607 		ruspace(p);
    608 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
    609 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
    610 		rulwps(p, ru);
    611 		mutex_exit(p->p_lock);
    612 		break;
    613 	case RUSAGE_CHILDREN:
    614 		mutex_enter(p->p_lock);
    615 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
    616 		mutex_exit(p->p_lock);
    617 		break;
    618 	default:
    619 		return EINVAL;
    620 	}
    621 
    622 	return 0;
    623 }
    624 
    625 void
    626 ruspace(struct proc *p)
    627 {
    628 	struct vmspace *vm = p->p_vmspace;
    629 	struct rusage *ru = &p->p_stats->p_ru;
    630 
    631 	ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
    632 	ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
    633 	ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
    634 #ifdef __HAVE_NO_PMAP_STATS
    635 	/* We don't keep track of the max so we get the current */
    636 	ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
    637 #else
    638 	ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
    639 #endif
    640 }
    641 
    642 void
    643 ruadd(struct rusage *ru, struct rusage *ru2)
    644 {
    645 	long *ip, *ip2;
    646 	int i;
    647 
    648 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    649 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    650 	if (ru->ru_maxrss < ru2->ru_maxrss)
    651 		ru->ru_maxrss = ru2->ru_maxrss;
    652 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    653 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    654 		*ip++ += *ip2++;
    655 }
    656 
    657 void
    658 rulwps(proc_t *p, struct rusage *ru)
    659 {
    660 	lwp_t *l;
    661 
    662 	KASSERT(mutex_owned(p->p_lock));
    663 
    664 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    665 		ruadd(ru, &l->l_ru);
    666 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    667 		ru->ru_nivcsw += l->l_nivcsw;
    668 	}
    669 }
    670 
    671 /*
    672  * lim_copy: make a copy of the plimit structure.
    673  *
    674  * We use copy-on-write after fork, and copy when a limit is changed.
    675  */
    676 struct plimit *
    677 lim_copy(struct plimit *lim)
    678 {
    679 	struct plimit *newlim;
    680 	char *corename;
    681 	size_t alen, len;
    682 
    683 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    684 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    685 	newlim->pl_writeable = false;
    686 	newlim->pl_refcnt = 1;
    687 	newlim->pl_sv_limit = NULL;
    688 
    689 	mutex_enter(&lim->pl_lock);
    690 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    691 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    692 
    693 	/*
    694 	 * Note: the common case is a use of default core name.
    695 	 */
    696 	alen = 0;
    697 	corename = NULL;
    698 	for (;;) {
    699 		if (lim->pl_corename == defcorename) {
    700 			newlim->pl_corename = defcorename;
    701 			newlim->pl_cnlen = 0;
    702 			break;
    703 		}
    704 		len = lim->pl_cnlen;
    705 		if (len == alen) {
    706 			newlim->pl_corename = corename;
    707 			newlim->pl_cnlen = len;
    708 			memcpy(corename, lim->pl_corename, len);
    709 			corename = NULL;
    710 			break;
    711 		}
    712 		mutex_exit(&lim->pl_lock);
    713 		if (corename) {
    714 			kmem_free(corename, alen);
    715 		}
    716 		alen = len;
    717 		corename = kmem_alloc(alen, KM_SLEEP);
    718 		mutex_enter(&lim->pl_lock);
    719 	}
    720 	mutex_exit(&lim->pl_lock);
    721 
    722 	if (corename) {
    723 		kmem_free(corename, alen);
    724 	}
    725 	return newlim;
    726 }
    727 
    728 void
    729 lim_addref(struct plimit *lim)
    730 {
    731 	atomic_inc_uint(&lim->pl_refcnt);
    732 }
    733 
    734 /*
    735  * lim_privatise: give a process its own private plimit structure.
    736  */
    737 void
    738 lim_privatise(proc_t *p)
    739 {
    740 	struct plimit *lim = p->p_limit, *newlim;
    741 
    742 	if (lim->pl_writeable) {
    743 		return;
    744 	}
    745 
    746 	newlim = lim_copy(lim);
    747 
    748 	mutex_enter(p->p_lock);
    749 	if (p->p_limit->pl_writeable) {
    750 		/* Other thread won the race. */
    751 		mutex_exit(p->p_lock);
    752 		lim_free(newlim);
    753 		return;
    754 	}
    755 
    756 	/*
    757 	 * Since p->p_limit can be accessed without locked held,
    758 	 * old limit structure must not be deleted yet.
    759 	 */
    760 	newlim->pl_sv_limit = p->p_limit;
    761 	newlim->pl_writeable = true;
    762 	p->p_limit = newlim;
    763 	mutex_exit(p->p_lock);
    764 }
    765 
    766 void
    767 lim_setcorename(proc_t *p, char *name, size_t len)
    768 {
    769 	struct plimit *lim;
    770 	char *oname;
    771 	size_t olen;
    772 
    773 	lim_privatise(p);
    774 	lim = p->p_limit;
    775 
    776 	mutex_enter(&lim->pl_lock);
    777 	oname = lim->pl_corename;
    778 	olen = lim->pl_cnlen;
    779 	lim->pl_corename = name;
    780 	lim->pl_cnlen = len;
    781 	mutex_exit(&lim->pl_lock);
    782 
    783 	if (oname != defcorename) {
    784 		kmem_free(oname, olen);
    785 	}
    786 }
    787 
    788 void
    789 lim_free(struct plimit *lim)
    790 {
    791 	struct plimit *sv_lim;
    792 
    793 	do {
    794 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    795 			return;
    796 		}
    797 		if (lim->pl_corename != defcorename) {
    798 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    799 		}
    800 		sv_lim = lim->pl_sv_limit;
    801 		mutex_destroy(&lim->pl_lock);
    802 		pool_cache_put(plimit_cache, lim);
    803 	} while ((lim = sv_lim) != NULL);
    804 }
    805 
    806 struct pstats *
    807 pstatscopy(struct pstats *ps)
    808 {
    809 	struct pstats *nps;
    810 	size_t len;
    811 
    812 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
    813 
    814 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
    815 	memset(&nps->pstat_startzero, 0, len);
    816 
    817 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
    818 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
    819 
    820 	return nps;
    821 }
    822 
    823 void
    824 pstatsfree(struct pstats *ps)
    825 {
    826 
    827 	pool_cache_put(pstats_cache, ps);
    828 }
    829 
    830 /*
    831  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    832  * need to pick a valid process by PID.
    833  *
    834  * => Hold a reference on the process, on success.
    835  */
    836 static int
    837 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    838 {
    839 	proc_t *p;
    840 	int error;
    841 
    842 	if (pid == PROC_CURPROC) {
    843 		p = l->l_proc;
    844 	} else {
    845 		mutex_enter(proc_lock);
    846 		p = proc_find(pid);
    847 		if (p == NULL) {
    848 			mutex_exit(proc_lock);
    849 			return ESRCH;
    850 		}
    851 	}
    852 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    853 	if (pid != PROC_CURPROC) {
    854 		mutex_exit(proc_lock);
    855 	}
    856 	*p2 = p;
    857 	return error;
    858 }
    859 
    860 /*
    861  * sysctl_proc_paxflags: helper routine to get process's paxctl flags
    862  */
    863 static int
    864 sysctl_proc_paxflags(SYSCTLFN_ARGS)
    865 {
    866 	struct proc *p;
    867 	struct sysctlnode node;
    868 	int paxflags;
    869 	int error;
    870 
    871 	/* First, validate the request. */
    872 	if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
    873 		return EINVAL;
    874 
    875 	/* Find the process.  Hold a reference (p_reflock), if found. */
    876 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    877 	if (error)
    878 		return error;
    879 
    880 	/* XXX-elad */
    881 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    882 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    883 	if (error) {
    884 		rw_exit(&p->p_reflock);
    885 		return error;
    886 	}
    887 
    888 	/* Retrieve the limits. */
    889 	node = *rnode;
    890 	paxflags = p->p_pax;
    891 	node.sysctl_data = &paxflags;
    892 
    893 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    894 
    895 	/* If attempting to write new value, it's an error */
    896 	if (error == 0 && newp != NULL)
    897 		error = EACCES;
    898 
    899 	rw_exit(&p->p_reflock);
    900 	return error;
    901 }
    902 
    903 /*
    904  * sysctl_proc_corename: helper routine to get or set the core file name
    905  * for a process specified by PID.
    906  */
    907 static int
    908 sysctl_proc_corename(SYSCTLFN_ARGS)
    909 {
    910 	struct proc *p;
    911 	struct plimit *lim;
    912 	char *cnbuf, *cname;
    913 	struct sysctlnode node;
    914 	size_t len;
    915 	int error;
    916 
    917 	/* First, validate the request. */
    918 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    919 		return EINVAL;
    920 
    921 	/* Find the process.  Hold a reference (p_reflock), if found. */
    922 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    923 	if (error)
    924 		return error;
    925 
    926 	/* XXX-elad */
    927 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    928 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    929 	if (error) {
    930 		rw_exit(&p->p_reflock);
    931 		return error;
    932 	}
    933 
    934 	cnbuf = PNBUF_GET();
    935 
    936 	if (oldp) {
    937 		/* Get case: copy the core name into the buffer. */
    938 		error = kauth_authorize_process(l->l_cred,
    939 		    KAUTH_PROCESS_CORENAME, p,
    940 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    941 		if (error) {
    942 			goto done;
    943 		}
    944 		lim = p->p_limit;
    945 		mutex_enter(&lim->pl_lock);
    946 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    947 		mutex_exit(&lim->pl_lock);
    948 	}
    949 
    950 	node = *rnode;
    951 	node.sysctl_data = cnbuf;
    952 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    953 
    954 	/* Return if error, or if caller is only getting the core name. */
    955 	if (error || newp == NULL) {
    956 		goto done;
    957 	}
    958 
    959 	/*
    960 	 * Set case.  Check permission and then validate new core name.
    961 	 * It must be either "core", "/core", or end in ".core".
    962 	 */
    963 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    964 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    965 	if (error) {
    966 		goto done;
    967 	}
    968 	len = strlen(cnbuf);
    969 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    970 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    971 		error = EINVAL;
    972 		goto done;
    973 	}
    974 
    975 	/* Allocate, copy and set the new core name for plimit structure. */
    976 	cname = kmem_alloc(++len, KM_NOSLEEP);
    977 	if (cname == NULL) {
    978 		error = ENOMEM;
    979 		goto done;
    980 	}
    981 	memcpy(cname, cnbuf, len);
    982 	lim_setcorename(p, cname, len);
    983 done:
    984 	rw_exit(&p->p_reflock);
    985 	PNBUF_PUT(cnbuf);
    986 	return error;
    987 }
    988 
    989 /*
    990  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
    991  */
    992 static int
    993 sysctl_proc_stop(SYSCTLFN_ARGS)
    994 {
    995 	struct proc *p;
    996 	int isset, flag, error = 0;
    997 	struct sysctlnode node;
    998 
    999 	if (namelen != 0)
   1000 		return EINVAL;
   1001 
   1002 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1003 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
   1004 	if (error)
   1005 		return error;
   1006 
   1007 	/* XXX-elad */
   1008 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1009 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1010 	if (error) {
   1011 		goto out;
   1012 	}
   1013 
   1014 	/* Determine the flag. */
   1015 	switch (rnode->sysctl_num) {
   1016 	case PROC_PID_STOPFORK:
   1017 		flag = PS_STOPFORK;
   1018 		break;
   1019 	case PROC_PID_STOPEXEC:
   1020 		flag = PS_STOPEXEC;
   1021 		break;
   1022 	case PROC_PID_STOPEXIT:
   1023 		flag = PS_STOPEXIT;
   1024 		break;
   1025 	default:
   1026 		error = EINVAL;
   1027 		goto out;
   1028 	}
   1029 	isset = (p->p_flag & flag) ? 1 : 0;
   1030 	node = *rnode;
   1031 	node.sysctl_data = &isset;
   1032 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1033 
   1034 	/* Return if error, or if callers is only getting the flag. */
   1035 	if (error || newp == NULL) {
   1036 		goto out;
   1037 	}
   1038 
   1039 	/* Check if caller can set the flags. */
   1040 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
   1041 	    p, KAUTH_ARG(flag), NULL, NULL);
   1042 	if (error) {
   1043 		goto out;
   1044 	}
   1045 	mutex_enter(p->p_lock);
   1046 	if (isset) {
   1047 		p->p_sflag |= flag;
   1048 	} else {
   1049 		p->p_sflag &= ~flag;
   1050 	}
   1051 	mutex_exit(p->p_lock);
   1052 out:
   1053 	rw_exit(&p->p_reflock);
   1054 	return error;
   1055 }
   1056 
   1057 /*
   1058  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
   1059  */
   1060 static int
   1061 sysctl_proc_plimit(SYSCTLFN_ARGS)
   1062 {
   1063 	struct proc *p;
   1064 	u_int limitno;
   1065 	int which, error = 0;
   1066         struct rlimit alim;
   1067 	struct sysctlnode node;
   1068 
   1069 	if (namelen != 0)
   1070 		return EINVAL;
   1071 
   1072 	which = name[-1];
   1073 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
   1074 	    which != PROC_PID_LIMIT_TYPE_HARD)
   1075 		return EINVAL;
   1076 
   1077 	limitno = name[-2] - 1;
   1078 	if (limitno >= RLIM_NLIMITS)
   1079 		return EINVAL;
   1080 
   1081 	if (name[-3] != PROC_PID_LIMIT)
   1082 		return EINVAL;
   1083 
   1084 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1085 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
   1086 	if (error)
   1087 		return error;
   1088 
   1089 	/* XXX-elad */
   1090 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1091 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1092 	if (error)
   1093 		goto out;
   1094 
   1095 	/* Check if caller can retrieve the limits. */
   1096 	if (newp == NULL) {
   1097 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
   1098 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
   1099 		    KAUTH_ARG(which));
   1100 		if (error)
   1101 			goto out;
   1102 	}
   1103 
   1104 	/* Retrieve the limits. */
   1105 	node = *rnode;
   1106 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
   1107 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
   1108 		node.sysctl_data = &alim.rlim_max;
   1109 	} else {
   1110 		node.sysctl_data = &alim.rlim_cur;
   1111 	}
   1112 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1113 
   1114 	/* Return if error, or if we are only retrieving the limits. */
   1115 	if (error || newp == NULL) {
   1116 		goto out;
   1117 	}
   1118 	error = dosetrlimit(l, p, limitno, &alim);
   1119 out:
   1120 	rw_exit(&p->p_reflock);
   1121 	return error;
   1122 }
   1123 
   1124 /*
   1125  * Setup sysctl nodes.
   1126  */
   1127 static void
   1128 sysctl_proc_setup(void)
   1129 {
   1130 
   1131 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1132 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1133 		       CTLTYPE_NODE, "curproc",
   1134 		       SYSCTL_DESCR("Per-process settings"),
   1135 		       NULL, 0, NULL, 0,
   1136 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1137 
   1138 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1139 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1140 		       CTLTYPE_INT, "paxflags",
   1141 		       SYSCTL_DESCR("Process PAX control flags"),
   1142 		       sysctl_proc_paxflags, 0, NULL, 0,
   1143 		       CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
   1144 
   1145 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1146 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1147 		       CTLTYPE_STRING, "corename",
   1148 		       SYSCTL_DESCR("Core file name"),
   1149 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1150 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1151 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1152 		       CTLFLAG_PERMANENT,
   1153 		       CTLTYPE_NODE, "rlimit",
   1154 		       SYSCTL_DESCR("Process limits"),
   1155 		       NULL, 0, NULL, 0,
   1156 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1157 
   1158 #define create_proc_plimit(s, n) do {					\
   1159 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1160 		       CTLFLAG_PERMANENT,				\
   1161 		       CTLTYPE_NODE, s,					\
   1162 		       SYSCTL_DESCR("Process " s " limits"),		\
   1163 		       NULL, 0, NULL, 0,				\
   1164 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1165 		       CTL_EOL);					\
   1166 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1167 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1168 		       CTLTYPE_QUAD, "soft",				\
   1169 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1170 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1171 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1172 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1173 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1174 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1175 		       CTLTYPE_QUAD, "hard",				\
   1176 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1177 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1178 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1179 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1180 	} while (0/*CONSTCOND*/)
   1181 
   1182 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1183 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1184 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1185 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1186 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1187 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1188 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1189 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1190 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1191 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1192 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1193 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
   1194 
   1195 #undef create_proc_plimit
   1196 
   1197 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1198 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1199 		       CTLTYPE_INT, "stopfork",
   1200 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1201 		       sysctl_proc_stop, 0, NULL, 0,
   1202 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1203 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1204 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1205 		       CTLTYPE_INT, "stopexec",
   1206 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1207 		       sysctl_proc_stop, 0, NULL, 0,
   1208 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1209 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1210 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1211 		       CTLTYPE_INT, "stopexit",
   1212 		       SYSCTL_DESCR("Stop process before completing exit"),
   1213 		       sysctl_proc_stop, 0, NULL, 0,
   1214 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1215 }
   1216