kern_resource.c revision 1.182.4.1 1 /* $NetBSD: kern_resource.c,v 1.182.4.1 2019/12/12 20:43:08 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.182.4.1 2019/12/12 20:43:08 martin Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Maximum process data and stack limits.
63 * They are variables so they are patchable.
64 */
65 rlim_t maxdmap = MAXDSIZ;
66 rlim_t maxsmap = MAXSSIZ;
67
68 static pool_cache_t plimit_cache __read_mostly;
69 static pool_cache_t pstats_cache __read_mostly;
70
71 static kauth_listener_t resource_listener;
72 static struct sysctllog *proc_sysctllog;
73
74 static int donice(struct lwp *, struct proc *, int);
75 static void sysctl_proc_setup(void);
76
77 static int
78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79 void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 struct proc *p;
82 int result;
83
84 result = KAUTH_RESULT_DEFER;
85 p = arg0;
86
87 switch (action) {
88 case KAUTH_PROCESS_NICE:
89 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 break;
92 }
93
94 if ((u_long)arg1 >= p->p_nice)
95 result = KAUTH_RESULT_ALLOW;
96
97 break;
98
99 case KAUTH_PROCESS_RLIMIT: {
100 enum kauth_process_req req;
101
102 req = (enum kauth_process_req)(unsigned long)arg1;
103
104 switch (req) {
105 case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 result = KAUTH_RESULT_ALLOW;
107 break;
108
109 case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 struct rlimit *new_rlimit;
111 u_long which;
112
113 if ((p != curlwp->l_proc) &&
114 (proc_uidmatch(cred, p->p_cred) != 0))
115 break;
116
117 new_rlimit = arg2;
118 which = (u_long)arg3;
119
120 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 result = KAUTH_RESULT_ALLOW;
122
123 break;
124 }
125
126 default:
127 break;
128 }
129
130 break;
131 }
132
133 default:
134 break;
135 }
136
137 return result;
138 }
139
140 void
141 resource_init(void)
142 {
143
144 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148
149 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 resource_listener_cb, NULL);
151
152 sysctl_proc_setup();
153 }
154
155 /*
156 * Resource controls and accounting.
157 */
158
159 int
160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161 register_t *retval)
162 {
163 /* {
164 syscallarg(int) which;
165 syscallarg(id_t) who;
166 } */
167 struct proc *curp = l->l_proc, *p;
168 id_t who = SCARG(uap, who);
169 int low = NZERO + PRIO_MAX + 1;
170
171 mutex_enter(proc_lock);
172 switch (SCARG(uap, which)) {
173 case PRIO_PROCESS:
174 p = who ? proc_find(who) : curp;
175 if (p != NULL)
176 low = p->p_nice;
177 break;
178
179 case PRIO_PGRP: {
180 struct pgrp *pg;
181
182 if (who == 0)
183 pg = curp->p_pgrp;
184 else if ((pg = pgrp_find(who)) == NULL)
185 break;
186 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 if (p->p_nice < low)
188 low = p->p_nice;
189 }
190 break;
191 }
192
193 case PRIO_USER:
194 if (who == 0)
195 who = (int)kauth_cred_geteuid(l->l_cred);
196 PROCLIST_FOREACH(p, &allproc) {
197 mutex_enter(p->p_lock);
198 if (kauth_cred_geteuid(p->p_cred) ==
199 (uid_t)who && p->p_nice < low)
200 low = p->p_nice;
201 mutex_exit(p->p_lock);
202 }
203 break;
204
205 default:
206 mutex_exit(proc_lock);
207 return EINVAL;
208 }
209 mutex_exit(proc_lock);
210
211 if (low == NZERO + PRIO_MAX + 1) {
212 return ESRCH;
213 }
214 *retval = low - NZERO;
215 return 0;
216 }
217
218 int
219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220 register_t *retval)
221 {
222 /* {
223 syscallarg(int) which;
224 syscallarg(id_t) who;
225 syscallarg(int) prio;
226 } */
227 struct proc *curp = l->l_proc, *p;
228 id_t who = SCARG(uap, who);
229 int found = 0, error = 0;
230
231 mutex_enter(proc_lock);
232 switch (SCARG(uap, which)) {
233 case PRIO_PROCESS:
234 p = who ? proc_find(who) : curp;
235 if (p != NULL) {
236 mutex_enter(p->p_lock);
237 found++;
238 error = donice(l, p, SCARG(uap, prio));
239 mutex_exit(p->p_lock);
240 }
241 break;
242
243 case PRIO_PGRP: {
244 struct pgrp *pg;
245
246 if (who == 0)
247 pg = curp->p_pgrp;
248 else if ((pg = pgrp_find(who)) == NULL)
249 break;
250 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 mutex_enter(p->p_lock);
252 found++;
253 error = donice(l, p, SCARG(uap, prio));
254 mutex_exit(p->p_lock);
255 if (error)
256 break;
257 }
258 break;
259 }
260
261 case PRIO_USER:
262 if (who == 0)
263 who = (int)kauth_cred_geteuid(l->l_cred);
264 PROCLIST_FOREACH(p, &allproc) {
265 mutex_enter(p->p_lock);
266 if (kauth_cred_geteuid(p->p_cred) ==
267 (uid_t)SCARG(uap, who)) {
268 found++;
269 error = donice(l, p, SCARG(uap, prio));
270 }
271 mutex_exit(p->p_lock);
272 if (error)
273 break;
274 }
275 break;
276
277 default:
278 mutex_exit(proc_lock);
279 return EINVAL;
280 }
281 mutex_exit(proc_lock);
282
283 return (found == 0) ? ESRCH : error;
284 }
285
286 /*
287 * Renice a process.
288 *
289 * Call with the target process' credentials locked.
290 */
291 static int
292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 kauth_cred_t cred = l->l_cred;
295
296 KASSERT(mutex_owned(chgp->p_lock));
297
298 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 return EPERM;
302
303 if (n > PRIO_MAX) {
304 n = PRIO_MAX;
305 }
306 if (n < PRIO_MIN) {
307 n = PRIO_MIN;
308 }
309 n += NZERO;
310
311 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 KAUTH_ARG(n), NULL, NULL)) {
313 return EACCES;
314 }
315
316 sched_nice(chgp, n);
317 return 0;
318 }
319
320 int
321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322 register_t *retval)
323 {
324 /* {
325 syscallarg(int) which;
326 syscallarg(const struct rlimit *) rlp;
327 } */
328 int error, which = SCARG(uap, which);
329 struct rlimit alim;
330
331 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 if (error) {
333 return error;
334 }
335 return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337
338 int
339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 struct rlimit *alimp;
342 int error;
343
344 if ((u_int)which >= RLIM_NLIMITS)
345 return EINVAL;
346
347 if (limp->rlim_cur > limp->rlim_max) {
348 /*
349 * This is programming error. According to SUSv2, we should
350 * return error in this case.
351 */
352 return EINVAL;
353 }
354
355 alimp = &p->p_rlimit[which];
356 /* if we don't change the value, no need to limcopy() */
357 if (limp->rlim_cur == alimp->rlim_cur &&
358 limp->rlim_max == alimp->rlim_max)
359 return 0;
360
361 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 if (error)
364 return error;
365
366 lim_privatise(p);
367 /* p->p_limit is now unchangeable */
368 alimp = &p->p_rlimit[which];
369
370 switch (which) {
371
372 case RLIMIT_DATA:
373 if (limp->rlim_cur > maxdmap)
374 limp->rlim_cur = maxdmap;
375 if (limp->rlim_max > maxdmap)
376 limp->rlim_max = maxdmap;
377 break;
378
379 case RLIMIT_STACK:
380 if (limp->rlim_cur > maxsmap)
381 limp->rlim_cur = maxsmap;
382 if (limp->rlim_max > maxsmap)
383 limp->rlim_max = maxsmap;
384
385 /*
386 * Return EINVAL if the new stack size limit is lower than
387 * current usage. Otherwise, the process would get SIGSEGV the
388 * moment it would try to access anything on its current stack.
389 * This conforms to SUSv2.
390 */
391 if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
392 btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
393 return EINVAL;
394 }
395
396 /*
397 * Stack is allocated to the max at exec time with
398 * only "rlim_cur" bytes accessible (In other words,
399 * allocates stack dividing two contiguous regions at
400 * "rlim_cur" bytes boundary).
401 *
402 * Since allocation is done in terms of page, roundup
403 * "rlim_cur" (otherwise, contiguous regions
404 * overlap). If stack limit is going up make more
405 * accessible, if going down make inaccessible.
406 */
407 limp->rlim_max = round_page(limp->rlim_max);
408 limp->rlim_cur = round_page(limp->rlim_cur);
409 if (limp->rlim_cur != alimp->rlim_cur) {
410 vaddr_t addr;
411 vsize_t size;
412 vm_prot_t prot;
413 char *base, *tmp;
414
415 base = p->p_vmspace->vm_minsaddr;
416 if (limp->rlim_cur > alimp->rlim_cur) {
417 prot = VM_PROT_READ | VM_PROT_WRITE;
418 size = limp->rlim_cur - alimp->rlim_cur;
419 tmp = STACK_GROW(base, alimp->rlim_cur);
420 } else {
421 prot = VM_PROT_NONE;
422 size = alimp->rlim_cur - limp->rlim_cur;
423 tmp = STACK_GROW(base, limp->rlim_cur);
424 }
425 addr = (vaddr_t)STACK_ALLOC(tmp, size);
426 (void) uvm_map_protect(&p->p_vmspace->vm_map,
427 addr, addr + size, prot, false);
428 }
429 break;
430
431 case RLIMIT_NOFILE:
432 if (limp->rlim_cur > maxfiles)
433 limp->rlim_cur = maxfiles;
434 if (limp->rlim_max > maxfiles)
435 limp->rlim_max = maxfiles;
436 break;
437
438 case RLIMIT_NPROC:
439 if (limp->rlim_cur > maxproc)
440 limp->rlim_cur = maxproc;
441 if (limp->rlim_max > maxproc)
442 limp->rlim_max = maxproc;
443 break;
444
445 case RLIMIT_NTHR:
446 if (limp->rlim_cur > maxlwp)
447 limp->rlim_cur = maxlwp;
448 if (limp->rlim_max > maxlwp)
449 limp->rlim_max = maxlwp;
450 break;
451 }
452
453 mutex_enter(&p->p_limit->pl_lock);
454 *alimp = *limp;
455 mutex_exit(&p->p_limit->pl_lock);
456 return 0;
457 }
458
459 int
460 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
461 register_t *retval)
462 {
463 /* {
464 syscallarg(int) which;
465 syscallarg(struct rlimit *) rlp;
466 } */
467 struct proc *p = l->l_proc;
468 int which = SCARG(uap, which);
469 struct rlimit rl;
470
471 if ((u_int)which >= RLIM_NLIMITS)
472 return EINVAL;
473
474 mutex_enter(p->p_lock);
475 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
476 mutex_exit(p->p_lock);
477
478 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
479 }
480
481 /*
482 * Transform the running time and tick information in proc p into user,
483 * system, and interrupt time usage.
484 *
485 * Should be called with p->p_lock held unless called from exit1().
486 */
487 void
488 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
489 struct timeval *ip, struct timeval *rp)
490 {
491 uint64_t u, st, ut, it, tot, dt;
492 struct lwp *l;
493 struct bintime tm;
494 struct timeval tv;
495
496 KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
497
498 mutex_spin_enter(&p->p_stmutex);
499 st = p->p_sticks;
500 ut = p->p_uticks;
501 it = p->p_iticks;
502 mutex_spin_exit(&p->p_stmutex);
503
504 tm = p->p_rtime;
505
506 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
507 lwp_lock(l);
508 bintime_add(&tm, &l->l_rtime);
509 if ((l->l_pflag & LP_RUNNING) != 0 &&
510 (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) {
511 struct bintime diff;
512 /*
513 * Adjust for the current time slice. This is
514 * actually fairly important since the error
515 * here is on the order of a time quantum,
516 * which is much greater than the sampling
517 * error.
518 */
519 binuptime(&diff);
520 membar_consumer(); /* for softint_dispatch() */
521 bintime_sub(&diff, &l->l_stime);
522 bintime_add(&tm, &diff);
523 }
524 lwp_unlock(l);
525 }
526
527 tot = st + ut + it;
528 bintime2timeval(&tm, &tv);
529 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
530
531 if (tot == 0) {
532 /* No ticks, so can't use to share time out, split 50-50 */
533 st = ut = u / 2;
534 } else {
535 st = (u * st) / tot;
536 ut = (u * ut) / tot;
537 }
538
539 /*
540 * Try to avoid lying to the users (too much)
541 *
542 * Of course, user/sys time are based on sampling (ie: statistics)
543 * so that would be impossible, but convincing the mark
544 * that we have used less ?time this call than we had
545 * last time, is beyond reasonable... (the con fails!)
546 *
547 * Note that since actual used time cannot decrease, either
548 * utime or stime (or both) must be greater now than last time
549 * (or both the same) - if one seems to have decreased, hold
550 * it constant and steal the necessary bump from the other
551 * which must have increased.
552 */
553 if (p->p_xutime > ut) {
554 dt = p->p_xutime - ut;
555 st -= uimin(dt, st);
556 ut = p->p_xutime;
557 } else if (p->p_xstime > st) {
558 dt = p->p_xstime - st;
559 ut -= uimin(dt, ut);
560 st = p->p_xstime;
561 }
562
563 if (sp != NULL) {
564 p->p_xstime = st;
565 sp->tv_sec = st / 1000000;
566 sp->tv_usec = st % 1000000;
567 }
568 if (up != NULL) {
569 p->p_xutime = ut;
570 up->tv_sec = ut / 1000000;
571 up->tv_usec = ut % 1000000;
572 }
573 if (ip != NULL) {
574 if (it != 0) /* it != 0 --> tot != 0 */
575 it = (u * it) / tot;
576 ip->tv_sec = it / 1000000;
577 ip->tv_usec = it % 1000000;
578 }
579 if (rp != NULL) {
580 *rp = tv;
581 }
582 }
583
584 int
585 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
586 register_t *retval)
587 {
588 /* {
589 syscallarg(int) who;
590 syscallarg(struct rusage *) rusage;
591 } */
592 int error;
593 struct rusage ru;
594 struct proc *p = l->l_proc;
595
596 error = getrusage1(p, SCARG(uap, who), &ru);
597 if (error != 0)
598 return error;
599
600 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
601 }
602
603 int
604 getrusage1(struct proc *p, int who, struct rusage *ru) {
605
606 switch (who) {
607 case RUSAGE_SELF:
608 mutex_enter(p->p_lock);
609 ruspace(p);
610 memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
611 calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
612 rulwps(p, ru);
613 mutex_exit(p->p_lock);
614 break;
615 case RUSAGE_CHILDREN:
616 mutex_enter(p->p_lock);
617 memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
618 mutex_exit(p->p_lock);
619 break;
620 default:
621 return EINVAL;
622 }
623
624 return 0;
625 }
626
627 void
628 ruspace(struct proc *p)
629 {
630 struct vmspace *vm = p->p_vmspace;
631 struct rusage *ru = &p->p_stats->p_ru;
632
633 ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
634 ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
635 ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
636 #ifdef __HAVE_NO_PMAP_STATS
637 /* We don't keep track of the max so we get the current */
638 ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
639 #else
640 ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
641 #endif
642 }
643
644 void
645 ruadd(struct rusage *ru, struct rusage *ru2)
646 {
647 long *ip, *ip2;
648 int i;
649
650 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
651 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
652 if (ru->ru_maxrss < ru2->ru_maxrss)
653 ru->ru_maxrss = ru2->ru_maxrss;
654 ip = &ru->ru_first; ip2 = &ru2->ru_first;
655 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
656 *ip++ += *ip2++;
657 }
658
659 void
660 rulwps(proc_t *p, struct rusage *ru)
661 {
662 lwp_t *l;
663
664 KASSERT(mutex_owned(p->p_lock));
665
666 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
667 ruadd(ru, &l->l_ru);
668 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
669 ru->ru_nivcsw += l->l_nivcsw;
670 }
671 }
672
673 /*
674 * lim_copy: make a copy of the plimit structure.
675 *
676 * We use copy-on-write after fork, and copy when a limit is changed.
677 */
678 struct plimit *
679 lim_copy(struct plimit *lim)
680 {
681 struct plimit *newlim;
682 char *corename;
683 size_t alen, len;
684
685 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
686 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
687 newlim->pl_writeable = false;
688 newlim->pl_refcnt = 1;
689 newlim->pl_sv_limit = NULL;
690
691 mutex_enter(&lim->pl_lock);
692 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
693 sizeof(struct rlimit) * RLIM_NLIMITS);
694
695 /*
696 * Note: the common case is a use of default core name.
697 */
698 alen = 0;
699 corename = NULL;
700 for (;;) {
701 if (lim->pl_corename == defcorename) {
702 newlim->pl_corename = defcorename;
703 newlim->pl_cnlen = 0;
704 break;
705 }
706 len = lim->pl_cnlen;
707 if (len == alen) {
708 newlim->pl_corename = corename;
709 newlim->pl_cnlen = len;
710 memcpy(corename, lim->pl_corename, len);
711 corename = NULL;
712 break;
713 }
714 mutex_exit(&lim->pl_lock);
715 if (corename) {
716 kmem_free(corename, alen);
717 }
718 alen = len;
719 corename = kmem_alloc(alen, KM_SLEEP);
720 mutex_enter(&lim->pl_lock);
721 }
722 mutex_exit(&lim->pl_lock);
723
724 if (corename) {
725 kmem_free(corename, alen);
726 }
727 return newlim;
728 }
729
730 void
731 lim_addref(struct plimit *lim)
732 {
733 atomic_inc_uint(&lim->pl_refcnt);
734 }
735
736 /*
737 * lim_privatise: give a process its own private plimit structure.
738 */
739 void
740 lim_privatise(proc_t *p)
741 {
742 struct plimit *lim = p->p_limit, *newlim;
743
744 if (lim->pl_writeable) {
745 return;
746 }
747
748 newlim = lim_copy(lim);
749
750 mutex_enter(p->p_lock);
751 if (p->p_limit->pl_writeable) {
752 /* Other thread won the race. */
753 mutex_exit(p->p_lock);
754 lim_free(newlim);
755 return;
756 }
757
758 /*
759 * Since p->p_limit can be accessed without locked held,
760 * old limit structure must not be deleted yet.
761 */
762 newlim->pl_sv_limit = p->p_limit;
763 newlim->pl_writeable = true;
764 p->p_limit = newlim;
765 mutex_exit(p->p_lock);
766 }
767
768 void
769 lim_setcorename(proc_t *p, char *name, size_t len)
770 {
771 struct plimit *lim;
772 char *oname;
773 size_t olen;
774
775 lim_privatise(p);
776 lim = p->p_limit;
777
778 mutex_enter(&lim->pl_lock);
779 oname = lim->pl_corename;
780 olen = lim->pl_cnlen;
781 lim->pl_corename = name;
782 lim->pl_cnlen = len;
783 mutex_exit(&lim->pl_lock);
784
785 if (oname != defcorename) {
786 kmem_free(oname, olen);
787 }
788 }
789
790 void
791 lim_free(struct plimit *lim)
792 {
793 struct plimit *sv_lim;
794
795 do {
796 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
797 return;
798 }
799 if (lim->pl_corename != defcorename) {
800 kmem_free(lim->pl_corename, lim->pl_cnlen);
801 }
802 sv_lim = lim->pl_sv_limit;
803 mutex_destroy(&lim->pl_lock);
804 pool_cache_put(plimit_cache, lim);
805 } while ((lim = sv_lim) != NULL);
806 }
807
808 struct pstats *
809 pstatscopy(struct pstats *ps)
810 {
811 struct pstats *nps;
812 size_t len;
813
814 nps = pool_cache_get(pstats_cache, PR_WAITOK);
815
816 len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
817 memset(&nps->pstat_startzero, 0, len);
818
819 len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
820 memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
821
822 return nps;
823 }
824
825 void
826 pstatsfree(struct pstats *ps)
827 {
828
829 pool_cache_put(pstats_cache, ps);
830 }
831
832 /*
833 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
834 * need to pick a valid process by PID.
835 *
836 * => Hold a reference on the process, on success.
837 */
838 static int
839 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
840 {
841 proc_t *p;
842 int error;
843
844 if (pid == PROC_CURPROC) {
845 p = l->l_proc;
846 } else {
847 mutex_enter(proc_lock);
848 p = proc_find(pid);
849 if (p == NULL) {
850 mutex_exit(proc_lock);
851 return ESRCH;
852 }
853 }
854 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
855 if (pid != PROC_CURPROC) {
856 mutex_exit(proc_lock);
857 }
858 *p2 = p;
859 return error;
860 }
861
862 /*
863 * sysctl_proc_paxflags: helper routine to get process's paxctl flags
864 */
865 static int
866 sysctl_proc_paxflags(SYSCTLFN_ARGS)
867 {
868 struct proc *p;
869 struct sysctlnode node;
870 int paxflags;
871 int error;
872
873 /* First, validate the request. */
874 if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
875 return EINVAL;
876
877 /* Find the process. Hold a reference (p_reflock), if found. */
878 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
879 if (error)
880 return error;
881
882 /* XXX-elad */
883 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
884 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
885 if (error) {
886 rw_exit(&p->p_reflock);
887 return error;
888 }
889
890 /* Retrieve the limits. */
891 node = *rnode;
892 paxflags = p->p_pax;
893 node.sysctl_data = &paxflags;
894
895 error = sysctl_lookup(SYSCTLFN_CALL(&node));
896
897 /* If attempting to write new value, it's an error */
898 if (error == 0 && newp != NULL)
899 error = EACCES;
900
901 rw_exit(&p->p_reflock);
902 return error;
903 }
904
905 /*
906 * sysctl_proc_corename: helper routine to get or set the core file name
907 * for a process specified by PID.
908 */
909 static int
910 sysctl_proc_corename(SYSCTLFN_ARGS)
911 {
912 struct proc *p;
913 struct plimit *lim;
914 char *cnbuf, *cname;
915 struct sysctlnode node;
916 size_t len;
917 int error;
918
919 /* First, validate the request. */
920 if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
921 return EINVAL;
922
923 /* Find the process. Hold a reference (p_reflock), if found. */
924 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
925 if (error)
926 return error;
927
928 /* XXX-elad */
929 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
930 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
931 if (error) {
932 rw_exit(&p->p_reflock);
933 return error;
934 }
935
936 cnbuf = PNBUF_GET();
937
938 if (oldp) {
939 /* Get case: copy the core name into the buffer. */
940 error = kauth_authorize_process(l->l_cred,
941 KAUTH_PROCESS_CORENAME, p,
942 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
943 if (error) {
944 goto done;
945 }
946 lim = p->p_limit;
947 mutex_enter(&lim->pl_lock);
948 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
949 mutex_exit(&lim->pl_lock);
950 }
951
952 node = *rnode;
953 node.sysctl_data = cnbuf;
954 error = sysctl_lookup(SYSCTLFN_CALL(&node));
955
956 /* Return if error, or if caller is only getting the core name. */
957 if (error || newp == NULL) {
958 goto done;
959 }
960
961 /*
962 * Set case. Check permission and then validate new core name.
963 * It must be either "core", "/core", or end in ".core".
964 */
965 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
966 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
967 if (error) {
968 goto done;
969 }
970 len = strlen(cnbuf);
971 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
972 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
973 error = EINVAL;
974 goto done;
975 }
976
977 /* Allocate, copy and set the new core name for plimit structure. */
978 cname = kmem_alloc(++len, KM_NOSLEEP);
979 if (cname == NULL) {
980 error = ENOMEM;
981 goto done;
982 }
983 memcpy(cname, cnbuf, len);
984 lim_setcorename(p, cname, len);
985 done:
986 rw_exit(&p->p_reflock);
987 PNBUF_PUT(cnbuf);
988 return error;
989 }
990
991 /*
992 * sysctl_proc_stop: helper routine for checking/setting the stop flags.
993 */
994 static int
995 sysctl_proc_stop(SYSCTLFN_ARGS)
996 {
997 struct proc *p;
998 int isset, flag, error = 0;
999 struct sysctlnode node;
1000
1001 if (namelen != 0)
1002 return EINVAL;
1003
1004 /* Find the process. Hold a reference (p_reflock), if found. */
1005 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
1006 if (error)
1007 return error;
1008
1009 /* XXX-elad */
1010 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1011 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1012 if (error) {
1013 goto out;
1014 }
1015
1016 /* Determine the flag. */
1017 switch (rnode->sysctl_num) {
1018 case PROC_PID_STOPFORK:
1019 flag = PS_STOPFORK;
1020 break;
1021 case PROC_PID_STOPEXEC:
1022 flag = PS_STOPEXEC;
1023 break;
1024 case PROC_PID_STOPEXIT:
1025 flag = PS_STOPEXIT;
1026 break;
1027 default:
1028 error = EINVAL;
1029 goto out;
1030 }
1031 isset = (p->p_flag & flag) ? 1 : 0;
1032 node = *rnode;
1033 node.sysctl_data = &isset;
1034 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1035
1036 /* Return if error, or if callers is only getting the flag. */
1037 if (error || newp == NULL) {
1038 goto out;
1039 }
1040
1041 /* Check if caller can set the flags. */
1042 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
1043 p, KAUTH_ARG(flag), NULL, NULL);
1044 if (error) {
1045 goto out;
1046 }
1047 mutex_enter(p->p_lock);
1048 if (isset) {
1049 p->p_sflag |= flag;
1050 } else {
1051 p->p_sflag &= ~flag;
1052 }
1053 mutex_exit(p->p_lock);
1054 out:
1055 rw_exit(&p->p_reflock);
1056 return error;
1057 }
1058
1059 /*
1060 * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
1061 */
1062 static int
1063 sysctl_proc_plimit(SYSCTLFN_ARGS)
1064 {
1065 struct proc *p;
1066 u_int limitno;
1067 int which, error = 0;
1068 struct rlimit alim;
1069 struct sysctlnode node;
1070
1071 if (namelen != 0)
1072 return EINVAL;
1073
1074 which = name[-1];
1075 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
1076 which != PROC_PID_LIMIT_TYPE_HARD)
1077 return EINVAL;
1078
1079 limitno = name[-2] - 1;
1080 if (limitno >= RLIM_NLIMITS)
1081 return EINVAL;
1082
1083 if (name[-3] != PROC_PID_LIMIT)
1084 return EINVAL;
1085
1086 /* Find the process. Hold a reference (p_reflock), if found. */
1087 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
1088 if (error)
1089 return error;
1090
1091 /* XXX-elad */
1092 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1093 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1094 if (error)
1095 goto out;
1096
1097 /* Check if caller can retrieve the limits. */
1098 if (newp == NULL) {
1099 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1100 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1101 KAUTH_ARG(which));
1102 if (error)
1103 goto out;
1104 }
1105
1106 /* Retrieve the limits. */
1107 node = *rnode;
1108 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1109 if (which == PROC_PID_LIMIT_TYPE_HARD) {
1110 node.sysctl_data = &alim.rlim_max;
1111 } else {
1112 node.sysctl_data = &alim.rlim_cur;
1113 }
1114 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1115
1116 /* Return if error, or if we are only retrieving the limits. */
1117 if (error || newp == NULL) {
1118 goto out;
1119 }
1120 error = dosetrlimit(l, p, limitno, &alim);
1121 out:
1122 rw_exit(&p->p_reflock);
1123 return error;
1124 }
1125
1126 /*
1127 * Setup sysctl nodes.
1128 */
1129 static void
1130 sysctl_proc_setup(void)
1131 {
1132
1133 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1134 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1135 CTLTYPE_NODE, "curproc",
1136 SYSCTL_DESCR("Per-process settings"),
1137 NULL, 0, NULL, 0,
1138 CTL_PROC, PROC_CURPROC, CTL_EOL);
1139
1140 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1141 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1142 CTLTYPE_INT, "paxflags",
1143 SYSCTL_DESCR("Process PAX control flags"),
1144 sysctl_proc_paxflags, 0, NULL, 0,
1145 CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
1146
1147 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1148 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1149 CTLTYPE_STRING, "corename",
1150 SYSCTL_DESCR("Core file name"),
1151 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1152 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1153 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1154 CTLFLAG_PERMANENT,
1155 CTLTYPE_NODE, "rlimit",
1156 SYSCTL_DESCR("Process limits"),
1157 NULL, 0, NULL, 0,
1158 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1159
1160 #define create_proc_plimit(s, n) do { \
1161 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1162 CTLFLAG_PERMANENT, \
1163 CTLTYPE_NODE, s, \
1164 SYSCTL_DESCR("Process " s " limits"), \
1165 NULL, 0, NULL, 0, \
1166 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1167 CTL_EOL); \
1168 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1169 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1170 CTLTYPE_QUAD, "soft", \
1171 SYSCTL_DESCR("Process soft " s " limit"), \
1172 sysctl_proc_plimit, 0, NULL, 0, \
1173 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1174 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1175 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1176 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1177 CTLTYPE_QUAD, "hard", \
1178 SYSCTL_DESCR("Process hard " s " limit"), \
1179 sysctl_proc_plimit, 0, NULL, 0, \
1180 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1181 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1182 } while (0/*CONSTCOND*/)
1183
1184 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1185 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1186 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1187 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1188 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1189 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1190 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1191 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1192 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1193 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1194 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1195 create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR);
1196
1197 #undef create_proc_plimit
1198
1199 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1201 CTLTYPE_INT, "stopfork",
1202 SYSCTL_DESCR("Stop process at fork(2)"),
1203 sysctl_proc_stop, 0, NULL, 0,
1204 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1205 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1206 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1207 CTLTYPE_INT, "stopexec",
1208 SYSCTL_DESCR("Stop process at execve(2)"),
1209 sysctl_proc_stop, 0, NULL, 0,
1210 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1211 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1212 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1213 CTLTYPE_INT, "stopexit",
1214 SYSCTL_DESCR("Stop process before completing exit"),
1215 sysctl_proc_stop, 0, NULL, 0,
1216 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1217 }
1218