Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.193
      1 /*	$NetBSD: kern_resource.c,v 1.193 2023/09/12 16:17:21 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.193 2023/09/12 16:17:21 ad Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/kmem.h>
     48 #include <sys/namei.h>
     49 #include <sys/pool.h>
     50 #include <sys/proc.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/timevar.h>
     53 #include <sys/kauth.h>
     54 #include <sys/atomic.h>
     55 #include <sys/mount.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Maximum process data and stack limits.
     63  * They are variables so they are patchable.
     64  */
     65 rlim_t			maxdmap = MAXDSIZ;
     66 rlim_t			maxsmap = MAXSSIZ;
     67 
     68 static pool_cache_t	plimit_cache	__read_mostly;
     69 static pool_cache_t	pstats_cache	__read_mostly;
     70 
     71 static kauth_listener_t	resource_listener;
     72 static struct sysctllog	*proc_sysctllog;
     73 
     74 static int	donice(struct lwp *, struct proc *, int);
     75 static void	sysctl_proc_setup(void);
     76 
     77 static int
     78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     79     void *arg0, void *arg1, void *arg2, void *arg3)
     80 {
     81 	struct proc *p;
     82 	int result;
     83 
     84 	result = KAUTH_RESULT_DEFER;
     85 	p = arg0;
     86 
     87 	switch (action) {
     88 	case KAUTH_PROCESS_NICE:
     89 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     90 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     91 			break;
     92 		}
     93 
     94 		if ((u_long)arg1 >= p->p_nice)
     95 			result = KAUTH_RESULT_ALLOW;
     96 
     97 		break;
     98 
     99 	case KAUTH_PROCESS_RLIMIT: {
    100 		enum kauth_process_req req;
    101 
    102 		req = (enum kauth_process_req)(uintptr_t)arg1;
    103 
    104 		switch (req) {
    105 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    106 			result = KAUTH_RESULT_ALLOW;
    107 			break;
    108 
    109 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    110 			struct rlimit *new_rlimit;
    111 			u_long which;
    112 
    113 			if ((p != curlwp->l_proc) &&
    114 			    (proc_uidmatch(cred, p->p_cred) != 0))
    115 				break;
    116 
    117 			new_rlimit = arg2;
    118 			which = (u_long)arg3;
    119 
    120 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    121 				result = KAUTH_RESULT_ALLOW;
    122 
    123 			break;
    124 			}
    125 
    126 		default:
    127 			break;
    128 		}
    129 
    130 		break;
    131 	}
    132 
    133 	default:
    134 		break;
    135 	}
    136 
    137 	return result;
    138 }
    139 
    140 void
    141 resource_init(void)
    142 {
    143 
    144 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    145 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    146 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    147 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    148 
    149 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    150 	    resource_listener_cb, NULL);
    151 
    152 	sysctl_proc_setup();
    153 }
    154 
    155 /*
    156  * Resource controls and accounting.
    157  */
    158 
    159 int
    160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    161     register_t *retval)
    162 {
    163 	/* {
    164 		syscallarg(int) which;
    165 		syscallarg(id_t) who;
    166 	} */
    167 	struct proc *curp = l->l_proc, *p;
    168 	id_t who = SCARG(uap, who);
    169 	int low = NZERO + PRIO_MAX + 1;
    170 
    171 	mutex_enter(&proc_lock);
    172 	switch (SCARG(uap, which)) {
    173 	case PRIO_PROCESS:
    174 		p = who ? proc_find(who) : curp;
    175 		if (p != NULL)
    176 			low = p->p_nice;
    177 		break;
    178 
    179 	case PRIO_PGRP: {
    180 		struct pgrp *pg;
    181 
    182 		if (who == 0)
    183 			pg = curp->p_pgrp;
    184 		else if ((pg = pgrp_find(who)) == NULL)
    185 			break;
    186 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    187 			if (p->p_nice < low)
    188 				low = p->p_nice;
    189 		}
    190 		break;
    191 	}
    192 
    193 	case PRIO_USER:
    194 		if (who == 0)
    195 			who = (int)kauth_cred_geteuid(l->l_cred);
    196 		PROCLIST_FOREACH(p, &allproc) {
    197 			mutex_enter(p->p_lock);
    198 			if (kauth_cred_geteuid(p->p_cred) ==
    199 			    (uid_t)who && p->p_nice < low)
    200 				low = p->p_nice;
    201 			mutex_exit(p->p_lock);
    202 		}
    203 		break;
    204 
    205 	default:
    206 		mutex_exit(&proc_lock);
    207 		return EINVAL;
    208 	}
    209 	mutex_exit(&proc_lock);
    210 
    211 	if (low == NZERO + PRIO_MAX + 1) {
    212 		return ESRCH;
    213 	}
    214 	*retval = low - NZERO;
    215 	return 0;
    216 }
    217 
    218 int
    219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    220     register_t *retval)
    221 {
    222 	/* {
    223 		syscallarg(int) which;
    224 		syscallarg(id_t) who;
    225 		syscallarg(int) prio;
    226 	} */
    227 	struct proc *curp = l->l_proc, *p;
    228 	id_t who = SCARG(uap, who);
    229 	int found = 0, error = 0;
    230 
    231 	mutex_enter(&proc_lock);
    232 	switch (SCARG(uap, which)) {
    233 	case PRIO_PROCESS:
    234 		p = who ? proc_find(who) : curp;
    235 		if (p != NULL) {
    236 			mutex_enter(p->p_lock);
    237 			found++;
    238 			error = donice(l, p, SCARG(uap, prio));
    239 			mutex_exit(p->p_lock);
    240 		}
    241 		break;
    242 
    243 	case PRIO_PGRP: {
    244 		struct pgrp *pg;
    245 
    246 		if (who == 0)
    247 			pg = curp->p_pgrp;
    248 		else if ((pg = pgrp_find(who)) == NULL)
    249 			break;
    250 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    251 			mutex_enter(p->p_lock);
    252 			found++;
    253 			error = donice(l, p, SCARG(uap, prio));
    254 			mutex_exit(p->p_lock);
    255 			if (error)
    256 				break;
    257 		}
    258 		break;
    259 	}
    260 
    261 	case PRIO_USER:
    262 		if (who == 0)
    263 			who = (int)kauth_cred_geteuid(l->l_cred);
    264 		PROCLIST_FOREACH(p, &allproc) {
    265 			mutex_enter(p->p_lock);
    266 			if (kauth_cred_geteuid(p->p_cred) ==
    267 			    (uid_t)SCARG(uap, who)) {
    268 				found++;
    269 				error = donice(l, p, SCARG(uap, prio));
    270 			}
    271 			mutex_exit(p->p_lock);
    272 			if (error)
    273 				break;
    274 		}
    275 		break;
    276 
    277 	default:
    278 		mutex_exit(&proc_lock);
    279 		return EINVAL;
    280 	}
    281 	mutex_exit(&proc_lock);
    282 
    283 	return (found == 0) ? ESRCH : error;
    284 }
    285 
    286 /*
    287  * Renice a process.
    288  *
    289  * Call with the target process' credentials locked.
    290  */
    291 static int
    292 donice(struct lwp *l, struct proc *chgp, int n)
    293 {
    294 	kauth_cred_t cred = l->l_cred;
    295 
    296 	KASSERT(mutex_owned(chgp->p_lock));
    297 
    298 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    299 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    300 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    301 		return EPERM;
    302 
    303 	if (n > PRIO_MAX) {
    304 		n = PRIO_MAX;
    305 	}
    306 	if (n < PRIO_MIN) {
    307 		n = PRIO_MIN;
    308 	}
    309 	n += NZERO;
    310 
    311 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    312 	    KAUTH_ARG(n), NULL, NULL)) {
    313 		return EACCES;
    314 	}
    315 
    316 	sched_nice(chgp, n);
    317 	return 0;
    318 }
    319 
    320 int
    321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    322     register_t *retval)
    323 {
    324 	/* {
    325 		syscallarg(int) which;
    326 		syscallarg(const struct rlimit *) rlp;
    327 	} */
    328 	int error, which = SCARG(uap, which);
    329 	struct rlimit alim;
    330 
    331 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    332 	if (error) {
    333 		return error;
    334 	}
    335 	return dosetrlimit(l, l->l_proc, which, &alim);
    336 }
    337 
    338 int
    339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    340 {
    341 	struct rlimit *alimp;
    342 	int error;
    343 
    344 	if ((u_int)which >= RLIM_NLIMITS)
    345 		return EINVAL;
    346 
    347 	if (limp->rlim_cur > limp->rlim_max) {
    348 		/*
    349 		 * This is programming error. According to SUSv2, we should
    350 		 * return error in this case.
    351 		 */
    352 		return EINVAL;
    353 	}
    354 
    355 	alimp = &p->p_rlimit[which];
    356 	/* if we don't change the value, no need to limcopy() */
    357 	if (limp->rlim_cur == alimp->rlim_cur &&
    358 	    limp->rlim_max == alimp->rlim_max)
    359 		return 0;
    360 
    361 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    362 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    363 	if (error)
    364 		return error;
    365 
    366 	lim_privatise(p);
    367 	/* p->p_limit is now unchangeable */
    368 	alimp = &p->p_rlimit[which];
    369 
    370 	switch (which) {
    371 
    372 	case RLIMIT_DATA:
    373 		if (limp->rlim_cur > maxdmap)
    374 			limp->rlim_cur = maxdmap;
    375 		if (limp->rlim_max > maxdmap)
    376 			limp->rlim_max = maxdmap;
    377 		break;
    378 
    379 	case RLIMIT_STACK:
    380 		if (limp->rlim_cur > maxsmap)
    381 			limp->rlim_cur = maxsmap;
    382 		if (limp->rlim_max > maxsmap)
    383 			limp->rlim_max = maxsmap;
    384 
    385 		/*
    386 		 * Return EINVAL if the new stack size limit is lower than
    387 		 * current usage. Otherwise, the process would get SIGSEGV the
    388 		 * moment it would try to access anything on its current stack.
    389 		 * This conforms to SUSv2.
    390 		 */
    391 		if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
    392 		    btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
    393 			return EINVAL;
    394 		}
    395 
    396 		/*
    397 		 * Stack is allocated to the max at exec time with
    398 		 * only "rlim_cur" bytes accessible (In other words,
    399 		 * allocates stack dividing two contiguous regions at
    400 		 * "rlim_cur" bytes boundary).
    401 		 *
    402 		 * Since allocation is done in terms of page, roundup
    403 		 * "rlim_cur" (otherwise, contiguous regions
    404 		 * overlap).  If stack limit is going up make more
    405 		 * accessible, if going down make inaccessible.
    406 		 */
    407 		limp->rlim_max = round_page(limp->rlim_max);
    408 		limp->rlim_cur = round_page(limp->rlim_cur);
    409 		if (limp->rlim_cur != alimp->rlim_cur) {
    410 			vaddr_t addr;
    411 			vsize_t size;
    412 			vm_prot_t prot;
    413 			char *base, *tmp;
    414 
    415 			base = p->p_vmspace->vm_minsaddr;
    416 			if (limp->rlim_cur > alimp->rlim_cur) {
    417 				prot = VM_PROT_READ | VM_PROT_WRITE;
    418 				size = limp->rlim_cur - alimp->rlim_cur;
    419 				tmp = STACK_GROW(base, alimp->rlim_cur);
    420 			} else {
    421 				prot = VM_PROT_NONE;
    422 				size = alimp->rlim_cur - limp->rlim_cur;
    423 				tmp = STACK_GROW(base, limp->rlim_cur);
    424 			}
    425 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
    426 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    427 			    addr, addr + size, prot, false);
    428 		}
    429 		break;
    430 
    431 	case RLIMIT_NOFILE:
    432 		if (limp->rlim_cur > maxfiles)
    433 			limp->rlim_cur = maxfiles;
    434 		if (limp->rlim_max > maxfiles)
    435 			limp->rlim_max = maxfiles;
    436 		break;
    437 
    438 	case RLIMIT_NPROC:
    439 		if (limp->rlim_cur > maxproc)
    440 			limp->rlim_cur = maxproc;
    441 		if (limp->rlim_max > maxproc)
    442 			limp->rlim_max = maxproc;
    443 		break;
    444 
    445 	case RLIMIT_NTHR:
    446 		if (limp->rlim_cur > maxlwp)
    447 			limp->rlim_cur = maxlwp;
    448 		if (limp->rlim_max > maxlwp)
    449 			limp->rlim_max = maxlwp;
    450 		break;
    451 	}
    452 
    453 	mutex_enter(&p->p_limit->pl_lock);
    454 	*alimp = *limp;
    455 	mutex_exit(&p->p_limit->pl_lock);
    456 	return 0;
    457 }
    458 
    459 int
    460 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    461     register_t *retval)
    462 {
    463 	/* {
    464 		syscallarg(int) which;
    465 		syscallarg(struct rlimit *) rlp;
    466 	} */
    467 	struct proc *p = l->l_proc;
    468 	int which = SCARG(uap, which);
    469 	struct rlimit rl;
    470 
    471 	if ((u_int)which >= RLIM_NLIMITS)
    472 		return EINVAL;
    473 
    474 	mutex_enter(p->p_lock);
    475 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    476 	mutex_exit(p->p_lock);
    477 
    478 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    479 }
    480 
    481 void
    482 addrulwp(struct lwp *l, struct bintime *tm)
    483 {
    484 
    485 	lwp_lock(l);
    486 	bintime_add(tm, &l->l_rtime);
    487 	if ((l->l_pflag & LP_RUNNING) != 0 &&
    488 	    (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) {
    489 		struct bintime diff;
    490 		/*
    491 		 * Adjust for the current time slice.  This is
    492 		 * actually fairly important since the error
    493 		 * here is on the order of a time quantum,
    494 		 * which is much greater than the sampling
    495 		 * error.
    496 		 */
    497 		binuptime(&diff);
    498 		membar_consumer(); /* for softint_dispatch() */
    499 		bintime_sub(&diff, &l->l_stime);
    500 		bintime_add(tm, &diff);
    501 	}
    502 	lwp_unlock(l);
    503 }
    504 
    505 /*
    506  * Transform the running time and tick information in proc p into user,
    507  * system, and interrupt time usage.
    508  *
    509  * Should be called with p->p_lock held unless called from exit1().
    510  */
    511 void
    512 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    513     struct timeval *ip, struct timeval *rp)
    514 {
    515 	uint64_t u, st, ut, it, tot, dt;
    516 	struct lwp *l;
    517 	struct bintime tm;
    518 	struct timeval tv;
    519 
    520 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
    521 
    522 	mutex_spin_enter(&p->p_stmutex);
    523 	st = p->p_sticks;
    524 	ut = p->p_uticks;
    525 	it = p->p_iticks;
    526 	mutex_spin_exit(&p->p_stmutex);
    527 
    528 	tm = p->p_rtime;
    529 
    530 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    531 		addrulwp(l, &tm);
    532 	}
    533 
    534 	tot = st + ut + it;
    535 	bintime2timeval(&tm, &tv);
    536 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    537 
    538 	if (tot == 0) {
    539 		/* No ticks, so can't use to share time out, split 50-50 */
    540 		st = ut = u / 2;
    541 	} else {
    542 		st = (u * st) / tot;
    543 		ut = (u * ut) / tot;
    544 	}
    545 
    546 	/*
    547 	 * Try to avoid lying to the users (too much)
    548 	 *
    549 	 * Of course, user/sys time are based on sampling (ie: statistics)
    550 	 * so that would be impossible, but convincing the mark
    551 	 * that we have used less ?time this call than we had
    552 	 * last time, is beyond reasonable...  (the con fails!)
    553 	 *
    554 	 * Note that since actual used time cannot decrease, either
    555 	 * utime or stime (or both) must be greater now than last time
    556 	 * (or both the same) - if one seems to have decreased, hold
    557 	 * it constant and steal the necessary bump from the other
    558 	 * which must have increased.
    559 	 */
    560 	if (p->p_xutime > ut) {
    561 		dt = p->p_xutime - ut;
    562 		st -= uimin(dt, st);
    563 		ut = p->p_xutime;
    564 	} else if (p->p_xstime > st) {
    565 		dt = p->p_xstime - st;
    566 		ut -= uimin(dt, ut);
    567 		st = p->p_xstime;
    568 	}
    569 
    570 	if (sp != NULL) {
    571 		p->p_xstime = st;
    572 		sp->tv_sec = st / 1000000;
    573 		sp->tv_usec = st % 1000000;
    574 	}
    575 	if (up != NULL) {
    576 		p->p_xutime = ut;
    577 		up->tv_sec = ut / 1000000;
    578 		up->tv_usec = ut % 1000000;
    579 	}
    580 	if (ip != NULL) {
    581 		if (it != 0)		/* it != 0 --> tot != 0 */
    582 			it = (u * it) / tot;
    583 		ip->tv_sec = it / 1000000;
    584 		ip->tv_usec = it % 1000000;
    585 	}
    586 	if (rp != NULL) {
    587 		*rp = tv;
    588 	}
    589 }
    590 
    591 int
    592 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    593     register_t *retval)
    594 {
    595 	/* {
    596 		syscallarg(int) who;
    597 		syscallarg(struct rusage *) rusage;
    598 	} */
    599 	int error;
    600 	struct rusage ru;
    601 	struct proc *p = l->l_proc;
    602 
    603 	error = getrusage1(p, SCARG(uap, who), &ru);
    604 	if (error != 0)
    605 		return error;
    606 
    607 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    608 }
    609 
    610 int
    611 getrusage1(struct proc *p, int who, struct rusage *ru)
    612 {
    613 
    614 	switch (who) {
    615 	case RUSAGE_SELF:
    616 		mutex_enter(p->p_lock);
    617 		ruspace(p);
    618 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
    619 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
    620 		rulwps(p, ru);
    621 		mutex_exit(p->p_lock);
    622 		break;
    623 	case RUSAGE_CHILDREN:
    624 		mutex_enter(p->p_lock);
    625 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
    626 		mutex_exit(p->p_lock);
    627 		break;
    628 	default:
    629 		return EINVAL;
    630 	}
    631 
    632 	return 0;
    633 }
    634 
    635 void
    636 ruspace(struct proc *p)
    637 {
    638 	struct vmspace *vm = p->p_vmspace;
    639 	struct rusage *ru = &p->p_stats->p_ru;
    640 
    641 	ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
    642 	ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
    643 	ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
    644 #ifdef __HAVE_NO_PMAP_STATS
    645 	/* We don't keep track of the max so we get the current */
    646 	ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
    647 #else
    648 	ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
    649 #endif
    650 }
    651 
    652 void
    653 ruadd(struct rusage *ru, struct rusage *ru2)
    654 {
    655 	long *ip, *ip2;
    656 	int i;
    657 
    658 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    659 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    660 	if (ru->ru_maxrss < ru2->ru_maxrss)
    661 		ru->ru_maxrss = ru2->ru_maxrss;
    662 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    663 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    664 		*ip++ += *ip2++;
    665 }
    666 
    667 void
    668 rulwps(proc_t *p, struct rusage *ru)
    669 {
    670 	lwp_t *l;
    671 
    672 	KASSERT(mutex_owned(p->p_lock));
    673 
    674 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    675 		ruadd(ru, &l->l_ru);
    676 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    677 		ru->ru_nivcsw += l->l_nivcsw;
    678 	}
    679 }
    680 
    681 /*
    682  * lim_copy: make a copy of the plimit structure.
    683  *
    684  * We use copy-on-write after fork, and copy when a limit is changed.
    685  */
    686 struct plimit *
    687 lim_copy(struct plimit *lim)
    688 {
    689 	struct plimit *newlim;
    690 	char *corename;
    691 	size_t alen, len;
    692 
    693 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    694 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    695 	newlim->pl_writeable = false;
    696 	newlim->pl_refcnt = 1;
    697 	newlim->pl_sv_limit = NULL;
    698 
    699 	mutex_enter(&lim->pl_lock);
    700 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    701 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    702 
    703 	/*
    704 	 * Note: the common case is a use of default core name.
    705 	 */
    706 	alen = 0;
    707 	corename = NULL;
    708 	for (;;) {
    709 		if (lim->pl_corename == defcorename) {
    710 			newlim->pl_corename = defcorename;
    711 			newlim->pl_cnlen = 0;
    712 			break;
    713 		}
    714 		len = lim->pl_cnlen;
    715 		if (len == alen) {
    716 			newlim->pl_corename = corename;
    717 			newlim->pl_cnlen = len;
    718 			memcpy(corename, lim->pl_corename, len);
    719 			corename = NULL;
    720 			break;
    721 		}
    722 		mutex_exit(&lim->pl_lock);
    723 		if (corename) {
    724 			kmem_free(corename, alen);
    725 		}
    726 		alen = len;
    727 		corename = kmem_alloc(alen, KM_SLEEP);
    728 		mutex_enter(&lim->pl_lock);
    729 	}
    730 	mutex_exit(&lim->pl_lock);
    731 
    732 	if (corename) {
    733 		kmem_free(corename, alen);
    734 	}
    735 	return newlim;
    736 }
    737 
    738 void
    739 lim_addref(struct plimit *lim)
    740 {
    741 	atomic_inc_uint(&lim->pl_refcnt);
    742 }
    743 
    744 /*
    745  * lim_privatise: give a process its own private plimit structure.
    746  */
    747 void
    748 lim_privatise(proc_t *p)
    749 {
    750 	struct plimit *lim = p->p_limit, *newlim;
    751 
    752 	if (lim->pl_writeable) {
    753 		return;
    754 	}
    755 
    756 	newlim = lim_copy(lim);
    757 
    758 	mutex_enter(p->p_lock);
    759 	if (p->p_limit->pl_writeable) {
    760 		/* Other thread won the race. */
    761 		mutex_exit(p->p_lock);
    762 		lim_free(newlim);
    763 		return;
    764 	}
    765 
    766 	/*
    767 	 * Since p->p_limit can be accessed without locked held,
    768 	 * old limit structure must not be deleted yet.
    769 	 */
    770 	newlim->pl_sv_limit = p->p_limit;
    771 	newlim->pl_writeable = true;
    772 	p->p_limit = newlim;
    773 	mutex_exit(p->p_lock);
    774 }
    775 
    776 void
    777 lim_setcorename(proc_t *p, char *name, size_t len)
    778 {
    779 	struct plimit *lim;
    780 	char *oname;
    781 	size_t olen;
    782 
    783 	lim_privatise(p);
    784 	lim = p->p_limit;
    785 
    786 	mutex_enter(&lim->pl_lock);
    787 	oname = lim->pl_corename;
    788 	olen = lim->pl_cnlen;
    789 	lim->pl_corename = name;
    790 	lim->pl_cnlen = len;
    791 	mutex_exit(&lim->pl_lock);
    792 
    793 	if (oname != defcorename) {
    794 		kmem_free(oname, olen);
    795 	}
    796 }
    797 
    798 void
    799 lim_free(struct plimit *lim)
    800 {
    801 	struct plimit *sv_lim;
    802 
    803 	do {
    804 		membar_release();
    805 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    806 			return;
    807 		}
    808 		membar_acquire();
    809 		if (lim->pl_corename != defcorename) {
    810 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    811 		}
    812 		sv_lim = lim->pl_sv_limit;
    813 		mutex_destroy(&lim->pl_lock);
    814 		pool_cache_put(plimit_cache, lim);
    815 	} while ((lim = sv_lim) != NULL);
    816 }
    817 
    818 struct pstats *
    819 pstatscopy(struct pstats *ps)
    820 {
    821 	struct pstats *nps;
    822 	size_t len;
    823 
    824 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
    825 
    826 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
    827 	memset(&nps->pstat_startzero, 0, len);
    828 
    829 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
    830 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
    831 
    832 	return nps;
    833 }
    834 
    835 void
    836 pstatsfree(struct pstats *ps)
    837 {
    838 
    839 	pool_cache_put(pstats_cache, ps);
    840 }
    841 
    842 /*
    843  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    844  * need to pick a valid process by PID.
    845  *
    846  * => Hold a reference on the process, on success.
    847  */
    848 static int
    849 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    850 {
    851 	proc_t *p;
    852 	int error;
    853 
    854 	if (pid == PROC_CURPROC) {
    855 		p = l->l_proc;
    856 	} else {
    857 		mutex_enter(&proc_lock);
    858 		p = proc_find(pid);
    859 		if (p == NULL) {
    860 			mutex_exit(&proc_lock);
    861 			return ESRCH;
    862 		}
    863 	}
    864 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    865 	if (pid != PROC_CURPROC) {
    866 		mutex_exit(&proc_lock);
    867 	}
    868 	*p2 = p;
    869 	return error;
    870 }
    871 
    872 /*
    873  * sysctl_proc_paxflags: helper routine to get process's paxctl flags
    874  */
    875 static int
    876 sysctl_proc_paxflags(SYSCTLFN_ARGS)
    877 {
    878 	struct proc *p;
    879 	struct sysctlnode node;
    880 	int paxflags;
    881 	int error;
    882 
    883 	/* First, validate the request. */
    884 	if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
    885 		return EINVAL;
    886 
    887 	/* Find the process.  Hold a reference (p_reflock), if found. */
    888 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    889 	if (error)
    890 		return error;
    891 
    892 	/* XXX-elad */
    893 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    894 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    895 	if (error) {
    896 		rw_exit(&p->p_reflock);
    897 		return error;
    898 	}
    899 
    900 	/* Retrieve the limits. */
    901 	node = *rnode;
    902 	paxflags = p->p_pax;
    903 	node.sysctl_data = &paxflags;
    904 
    905 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    906 
    907 	/* If attempting to write new value, it's an error */
    908 	if (error == 0 && newp != NULL)
    909 		error = EACCES;
    910 
    911 	rw_exit(&p->p_reflock);
    912 	return error;
    913 }
    914 
    915 /*
    916  * sysctl_proc_corename: helper routine to get or set the core file name
    917  * for a process specified by PID.
    918  */
    919 static int
    920 sysctl_proc_corename(SYSCTLFN_ARGS)
    921 {
    922 	struct proc *p;
    923 	struct plimit *lim;
    924 	char *cnbuf, *cname;
    925 	struct sysctlnode node;
    926 	size_t len;
    927 	int error;
    928 
    929 	/* First, validate the request. */
    930 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    931 		return EINVAL;
    932 
    933 	/* Find the process.  Hold a reference (p_reflock), if found. */
    934 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    935 	if (error)
    936 		return error;
    937 
    938 	/* XXX-elad */
    939 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    940 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    941 	if (error) {
    942 		rw_exit(&p->p_reflock);
    943 		return error;
    944 	}
    945 
    946 	cnbuf = PNBUF_GET();
    947 
    948 	if (oldp) {
    949 		/* Get case: copy the core name into the buffer. */
    950 		error = kauth_authorize_process(l->l_cred,
    951 		    KAUTH_PROCESS_CORENAME, p,
    952 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    953 		if (error) {
    954 			goto done;
    955 		}
    956 		lim = p->p_limit;
    957 		mutex_enter(&lim->pl_lock);
    958 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    959 		mutex_exit(&lim->pl_lock);
    960 	}
    961 
    962 	node = *rnode;
    963 	node.sysctl_data = cnbuf;
    964 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    965 
    966 	/* Return if error, or if caller is only getting the core name. */
    967 	if (error || newp == NULL) {
    968 		goto done;
    969 	}
    970 
    971 	/*
    972 	 * Set case.  Check permission and then validate new core name.
    973 	 * It must be either "core", "/core", or end in ".core".
    974 	 */
    975 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    976 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    977 	if (error) {
    978 		goto done;
    979 	}
    980 	len = strlen(cnbuf);
    981 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    982 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    983 		error = EINVAL;
    984 		goto done;
    985 	}
    986 
    987 	/* Allocate, copy and set the new core name for plimit structure. */
    988 	cname = kmem_alloc(++len, KM_NOSLEEP);
    989 	if (cname == NULL) {
    990 		error = ENOMEM;
    991 		goto done;
    992 	}
    993 	memcpy(cname, cnbuf, len);
    994 	lim_setcorename(p, cname, len);
    995 done:
    996 	rw_exit(&p->p_reflock);
    997 	PNBUF_PUT(cnbuf);
    998 	return error;
    999 }
   1000 
   1001 /*
   1002  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
   1003  */
   1004 static int
   1005 sysctl_proc_stop(SYSCTLFN_ARGS)
   1006 {
   1007 	struct proc *p;
   1008 	int isset, flag, error = 0;
   1009 	struct sysctlnode node;
   1010 
   1011 	if (namelen != 0)
   1012 		return EINVAL;
   1013 
   1014 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1015 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
   1016 	if (error)
   1017 		return error;
   1018 
   1019 	/* XXX-elad */
   1020 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1021 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1022 	if (error) {
   1023 		goto out;
   1024 	}
   1025 
   1026 	/* Determine the flag. */
   1027 	switch (rnode->sysctl_num) {
   1028 	case PROC_PID_STOPFORK:
   1029 		flag = PS_STOPFORK;
   1030 		break;
   1031 	case PROC_PID_STOPEXEC:
   1032 		flag = PS_STOPEXEC;
   1033 		break;
   1034 	case PROC_PID_STOPEXIT:
   1035 		flag = PS_STOPEXIT;
   1036 		break;
   1037 	default:
   1038 		error = EINVAL;
   1039 		goto out;
   1040 	}
   1041 	isset = (p->p_flag & flag) ? 1 : 0;
   1042 	node = *rnode;
   1043 	node.sysctl_data = &isset;
   1044 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1045 
   1046 	/* Return if error, or if callers is only getting the flag. */
   1047 	if (error || newp == NULL) {
   1048 		goto out;
   1049 	}
   1050 
   1051 	/* Check if caller can set the flags. */
   1052 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
   1053 	    p, KAUTH_ARG(flag), NULL, NULL);
   1054 	if (error) {
   1055 		goto out;
   1056 	}
   1057 	mutex_enter(p->p_lock);
   1058 	if (isset) {
   1059 		p->p_sflag |= flag;
   1060 	} else {
   1061 		p->p_sflag &= ~flag;
   1062 	}
   1063 	mutex_exit(p->p_lock);
   1064 out:
   1065 	rw_exit(&p->p_reflock);
   1066 	return error;
   1067 }
   1068 
   1069 /*
   1070  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
   1071  */
   1072 static int
   1073 sysctl_proc_plimit(SYSCTLFN_ARGS)
   1074 {
   1075 	struct proc *p;
   1076 	u_int limitno;
   1077 	int which, error = 0;
   1078         struct rlimit alim;
   1079 	struct sysctlnode node;
   1080 
   1081 	if (namelen != 0)
   1082 		return EINVAL;
   1083 
   1084 	which = name[-1];
   1085 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
   1086 	    which != PROC_PID_LIMIT_TYPE_HARD)
   1087 		return EINVAL;
   1088 
   1089 	limitno = name[-2] - 1;
   1090 	if (limitno >= RLIM_NLIMITS)
   1091 		return EINVAL;
   1092 
   1093 	if (name[-3] != PROC_PID_LIMIT)
   1094 		return EINVAL;
   1095 
   1096 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1097 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
   1098 	if (error)
   1099 		return error;
   1100 
   1101 	/* XXX-elad */
   1102 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1103 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1104 	if (error)
   1105 		goto out;
   1106 
   1107 	/* Check if caller can retrieve the limits. */
   1108 	if (newp == NULL) {
   1109 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
   1110 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
   1111 		    KAUTH_ARG(which));
   1112 		if (error)
   1113 			goto out;
   1114 	}
   1115 
   1116 	/* Retrieve the limits. */
   1117 	node = *rnode;
   1118 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
   1119 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
   1120 		node.sysctl_data = &alim.rlim_max;
   1121 	} else {
   1122 		node.sysctl_data = &alim.rlim_cur;
   1123 	}
   1124 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1125 
   1126 	/* Return if error, or if we are only retrieving the limits. */
   1127 	if (error || newp == NULL) {
   1128 		goto out;
   1129 	}
   1130 	error = dosetrlimit(l, p, limitno, &alim);
   1131 out:
   1132 	rw_exit(&p->p_reflock);
   1133 	return error;
   1134 }
   1135 
   1136 /*
   1137  * Setup sysctl nodes.
   1138  */
   1139 static void
   1140 sysctl_proc_setup(void)
   1141 {
   1142 
   1143 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1144 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1145 		       CTLTYPE_NODE, "curproc",
   1146 		       SYSCTL_DESCR("Per-process settings"),
   1147 		       NULL, 0, NULL, 0,
   1148 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1149 
   1150 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1151 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1152 		       CTLTYPE_INT, "paxflags",
   1153 		       SYSCTL_DESCR("Process PAX control flags"),
   1154 		       sysctl_proc_paxflags, 0, NULL, 0,
   1155 		       CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
   1156 
   1157 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1158 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1159 		       CTLTYPE_STRING, "corename",
   1160 		       SYSCTL_DESCR("Core file name"),
   1161 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1162 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1163 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1164 		       CTLFLAG_PERMANENT,
   1165 		       CTLTYPE_NODE, "rlimit",
   1166 		       SYSCTL_DESCR("Process limits"),
   1167 		       NULL, 0, NULL, 0,
   1168 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1169 
   1170 #define create_proc_plimit(s, n) do {					\
   1171 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1172 		       CTLFLAG_PERMANENT,				\
   1173 		       CTLTYPE_NODE, s,					\
   1174 		       SYSCTL_DESCR("Process " s " limits"),		\
   1175 		       NULL, 0, NULL, 0,				\
   1176 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1177 		       CTL_EOL);					\
   1178 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1179 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1180 		       CTLTYPE_QUAD, "soft",				\
   1181 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1182 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1183 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1184 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1185 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1186 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1187 		       CTLTYPE_QUAD, "hard",				\
   1188 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1189 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1190 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1191 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1192 	} while (0/*CONSTCOND*/)
   1193 
   1194 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1195 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1196 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1197 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1198 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1199 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1200 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1201 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1202 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1203 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1204 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1205 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
   1206 
   1207 #undef create_proc_plimit
   1208 
   1209 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1210 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1211 		       CTLTYPE_INT, "stopfork",
   1212 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1213 		       sysctl_proc_stop, 0, NULL, 0,
   1214 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1215 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1216 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1217 		       CTLTYPE_INT, "stopexec",
   1218 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1219 		       sysctl_proc_stop, 0, NULL, 0,
   1220 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1221 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1222 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1223 		       CTLTYPE_INT, "stopexit",
   1224 		       SYSCTL_DESCR("Stop process before completing exit"),
   1225 		       sysctl_proc_stop, 0, NULL, 0,
   1226 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1227 }
   1228