kern_resource.c revision 1.71.2.7 1 /* $NetBSD: kern_resource.c,v 1.71.2.7 2005/11/10 14:09:45 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.71.2.7 2005/11/10 14:09:45 skrll Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/pool.h>
49 #include <sys/proc.h>
50 #include <sys/sysctl.h>
51
52 #include <sys/mount.h>
53 #include <sys/sa.h>
54 #include <sys/syscallargs.h>
55
56 #include <uvm/uvm_extern.h>
57
58 /*
59 * Maximum process data and stack limits.
60 * They are variables so they are patchable.
61 */
62 rlim_t maxdmap = MAXDSIZ;
63 rlim_t maxsmap = MAXSSIZ;
64
65 struct uihashhead *uihashtbl;
66 u_long uihash; /* size of hash table - 1 */
67 struct simplelock uihashtbl_slock = SIMPLELOCK_INITIALIZER;
68
69
70 /*
71 * Resource controls and accounting.
72 */
73
74 int
75 sys_getpriority(struct lwp *l, void *v, register_t *retval)
76 {
77 struct sys_getpriority_args /* {
78 syscallarg(int) which;
79 syscallarg(id_t) who;
80 } */ *uap = v;
81 struct proc *curp = l->l_proc, *p;
82 int low = NZERO + PRIO_MAX + 1;
83
84 switch (SCARG(uap, which)) {
85
86 case PRIO_PROCESS:
87 if (SCARG(uap, who) == 0)
88 p = curp;
89 else
90 p = pfind(SCARG(uap, who));
91 if (p == 0)
92 break;
93 low = p->p_nice;
94 break;
95
96 case PRIO_PGRP: {
97 struct pgrp *pg;
98
99 if (SCARG(uap, who) == 0)
100 pg = curp->p_pgrp;
101 else if ((pg = pgfind(SCARG(uap, who))) == NULL)
102 break;
103 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
104 if (p->p_nice < low)
105 low = p->p_nice;
106 }
107 break;
108 }
109
110 case PRIO_USER:
111 if (SCARG(uap, who) == 0)
112 SCARG(uap, who) = curp->p_ucred->cr_uid;
113 proclist_lock_read();
114 PROCLIST_FOREACH(p, &allproc) {
115 if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who) &&
116 p->p_nice < low)
117 low = p->p_nice;
118 }
119 proclist_unlock_read();
120 break;
121
122 default:
123 return (EINVAL);
124 }
125 if (low == NZERO + PRIO_MAX + 1)
126 return (ESRCH);
127 *retval = low - NZERO;
128 return (0);
129 }
130
131 /* ARGSUSED */
132 int
133 sys_setpriority(struct lwp *l, void *v, register_t *retval)
134 {
135 struct sys_setpriority_args /* {
136 syscallarg(int) which;
137 syscallarg(id_t) who;
138 syscallarg(int) prio;
139 } */ *uap = v;
140 struct proc *curp = l->l_proc, *p;
141 int found = 0, error = 0;
142
143 switch (SCARG(uap, which)) {
144
145 case PRIO_PROCESS:
146 if (SCARG(uap, who) == 0)
147 p = curp;
148 else
149 p = pfind(SCARG(uap, who));
150 if (p == 0)
151 break;
152 error = donice(curp, p, SCARG(uap, prio));
153 found++;
154 break;
155
156 case PRIO_PGRP: {
157 struct pgrp *pg;
158
159 if (SCARG(uap, who) == 0)
160 pg = curp->p_pgrp;
161 else if ((pg = pgfind(SCARG(uap, who))) == NULL)
162 break;
163 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
164 error = donice(curp, p, SCARG(uap, prio));
165 found++;
166 }
167 break;
168 }
169
170 case PRIO_USER:
171 if (SCARG(uap, who) == 0)
172 SCARG(uap, who) = curp->p_ucred->cr_uid;
173 proclist_lock_read();
174 PROCLIST_FOREACH(p, &allproc) {
175 if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who)) {
176 error = donice(curp, p, SCARG(uap, prio));
177 found++;
178 }
179 }
180 proclist_unlock_read();
181 break;
182
183 default:
184 return (EINVAL);
185 }
186 if (found == 0)
187 return (ESRCH);
188 return (error);
189 }
190
191 int
192 donice(struct proc *curp, struct proc *chgp, int n)
193 {
194 struct pcred *pcred = curp->p_cred;
195 int s;
196
197 if (pcred->pc_ucred->cr_uid && pcred->p_ruid &&
198 pcred->pc_ucred->cr_uid != chgp->p_ucred->cr_uid &&
199 pcred->p_ruid != chgp->p_ucred->cr_uid)
200 return (EPERM);
201 if (n > PRIO_MAX)
202 n = PRIO_MAX;
203 if (n < PRIO_MIN)
204 n = PRIO_MIN;
205 n += NZERO;
206 if (n < chgp->p_nice && suser(pcred->pc_ucred, &curp->p_acflag))
207 return (EACCES);
208 chgp->p_nice = n;
209 SCHED_LOCK(s);
210 (void)resetprocpriority(chgp);
211 SCHED_UNLOCK(s);
212 return (0);
213 }
214
215 /* ARGSUSED */
216 int
217 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
218 {
219 struct sys_setrlimit_args /* {
220 syscallarg(int) which;
221 syscallarg(const struct rlimit *) rlp;
222 } */ *uap = v;
223 struct proc *p = l->l_proc;
224 int which = SCARG(uap, which);
225 struct rlimit alim;
226 int error;
227
228 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
229 if (error)
230 return (error);
231 return (dosetrlimit(p, p->p_cred, which, &alim));
232 }
233
234 int
235 dosetrlimit(struct proc *p, struct pcred *cred, int which, struct rlimit *limp)
236 {
237 struct rlimit *alimp;
238 struct plimit *oldplim;
239 int error;
240
241 if ((u_int)which >= RLIM_NLIMITS)
242 return (EINVAL);
243
244 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
245 return (EINVAL);
246
247 alimp = &p->p_rlimit[which];
248 /* if we don't change the value, no need to limcopy() */
249 if (limp->rlim_cur == alimp->rlim_cur &&
250 limp->rlim_max == alimp->rlim_max)
251 return 0;
252
253 if (limp->rlim_cur > limp->rlim_max) {
254 /*
255 * This is programming error. According to SUSv2, we should
256 * return error in this case.
257 */
258 return (EINVAL);
259 }
260 if (limp->rlim_max > alimp->rlim_max
261 && (error = suser(cred->pc_ucred, &p->p_acflag)) != 0)
262 return (error);
263
264 if (p->p_limit->p_refcnt > 1 &&
265 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
266 p->p_limit = limcopy(oldplim = p->p_limit);
267 limfree(oldplim);
268 alimp = &p->p_rlimit[which];
269 }
270
271 switch (which) {
272
273 case RLIMIT_DATA:
274 if (limp->rlim_cur > maxdmap)
275 limp->rlim_cur = maxdmap;
276 if (limp->rlim_max > maxdmap)
277 limp->rlim_max = maxdmap;
278 break;
279
280 case RLIMIT_STACK:
281 if (limp->rlim_cur > maxsmap)
282 limp->rlim_cur = maxsmap;
283 if (limp->rlim_max > maxsmap)
284 limp->rlim_max = maxsmap;
285
286 /*
287 * Return EINVAL if the new stack size limit is lower than
288 * current usage. Otherwise, the process would get SIGSEGV the
289 * moment it would try to access anything on it's current stack.
290 * This conforms to SUSv2.
291 */
292 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
293 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
294 return (EINVAL);
295
296 /*
297 * Stack is allocated to the max at exec time with
298 * only "rlim_cur" bytes accessible (In other words,
299 * allocates stack dividing two contiguous regions at
300 * "rlim_cur" bytes boundary).
301 *
302 * Since allocation is done in terms of page, roundup
303 * "rlim_cur" (otherwise, contiguous regions
304 * overlap). If stack limit is going up make more
305 * accessible, if going down make inaccessible.
306 */
307 limp->rlim_cur = round_page(limp->rlim_cur);
308 if (limp->rlim_cur != alimp->rlim_cur) {
309 vaddr_t addr;
310 vsize_t size;
311 vm_prot_t prot;
312
313 if (limp->rlim_cur > alimp->rlim_cur) {
314 prot = VM_PROT_READ | VM_PROT_WRITE;
315 size = limp->rlim_cur - alimp->rlim_cur;
316 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
317 limp->rlim_cur;
318 } else {
319 prot = VM_PROT_NONE;
320 size = alimp->rlim_cur - limp->rlim_cur;
321 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
322 alimp->rlim_cur;
323 }
324 (void) uvm_map_protect(&p->p_vmspace->vm_map,
325 addr, addr+size, prot, FALSE);
326 }
327 break;
328
329 case RLIMIT_NOFILE:
330 if (limp->rlim_cur > maxfiles)
331 limp->rlim_cur = maxfiles;
332 if (limp->rlim_max > maxfiles)
333 limp->rlim_max = maxfiles;
334 break;
335
336 case RLIMIT_NPROC:
337 if (limp->rlim_cur > maxproc)
338 limp->rlim_cur = maxproc;
339 if (limp->rlim_max > maxproc)
340 limp->rlim_max = maxproc;
341 break;
342 }
343 *alimp = *limp;
344 return (0);
345 }
346
347 /* ARGSUSED */
348 int
349 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
350 {
351 struct sys_getrlimit_args /* {
352 syscallarg(int) which;
353 syscallarg(struct rlimit *) rlp;
354 } */ *uap = v;
355 struct proc *p = l->l_proc;
356 int which = SCARG(uap, which);
357
358 if ((u_int)which >= RLIM_NLIMITS)
359 return (EINVAL);
360 return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
361 sizeof(struct rlimit)));
362 }
363
364 /*
365 * Transform the running time and tick information in proc p into user,
366 * system, and interrupt time usage.
367 */
368 void
369 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
370 struct timeval *ip)
371 {
372 u_quad_t u, st, ut, it, tot;
373 unsigned long sec;
374 long usec;
375 int s;
376 struct timeval tv;
377 struct lwp *l;
378
379 s = splstatclock();
380 st = p->p_sticks;
381 ut = p->p_uticks;
382 it = p->p_iticks;
383 splx(s);
384
385 sec = p->p_rtime.tv_sec;
386 usec = p->p_rtime.tv_usec;
387 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
388 if (l->l_stat == LSONPROC) {
389 struct schedstate_percpu *spc;
390
391 KDASSERT(l->l_cpu != NULL);
392 spc = &l->l_cpu->ci_schedstate;
393
394 /*
395 * Adjust for the current time slice. This is
396 * actually fairly important since the error
397 * here is on the order of a time quantum,
398 * which is much greater than the sampling
399 * error.
400 */
401 microtime(&tv);
402 sec += tv.tv_sec - spc->spc_runtime.tv_sec;
403 usec += tv.tv_usec - spc->spc_runtime.tv_usec;
404 }
405 }
406
407 tot = st + ut + it;
408 u = sec * 1000000ull + usec;
409
410 if (tot == 0) {
411 /* No ticks, so can't use to share time out, split 50-50 */
412 st = ut = u / 2;
413 } else {
414 st = (u * st) / tot;
415 ut = (u * ut) / tot;
416 }
417 sp->tv_sec = st / 1000000;
418 sp->tv_usec = st % 1000000;
419 up->tv_sec = ut / 1000000;
420 up->tv_usec = ut % 1000000;
421 if (ip != NULL) {
422 if (it != 0)
423 it = (u * it) / tot;
424 ip->tv_sec = it / 1000000;
425 ip->tv_usec = it % 1000000;
426 }
427 }
428
429 /* ARGSUSED */
430 int
431 sys_getrusage(struct lwp *l, void *v, register_t *retval)
432 {
433 struct sys_getrusage_args /* {
434 syscallarg(int) who;
435 syscallarg(struct rusage *) rusage;
436 } */ *uap = v;
437 struct rusage *rup;
438 struct proc *p = l->l_proc;
439
440 switch (SCARG(uap, who)) {
441
442 case RUSAGE_SELF:
443 rup = &p->p_stats->p_ru;
444 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
445 break;
446
447 case RUSAGE_CHILDREN:
448 rup = &p->p_stats->p_cru;
449 break;
450
451 default:
452 return (EINVAL);
453 }
454 return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
455 }
456
457 void
458 ruadd(struct rusage *ru, struct rusage *ru2)
459 {
460 long *ip, *ip2;
461 int i;
462
463 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
464 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
465 if (ru->ru_maxrss < ru2->ru_maxrss)
466 ru->ru_maxrss = ru2->ru_maxrss;
467 ip = &ru->ru_first; ip2 = &ru2->ru_first;
468 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
469 *ip++ += *ip2++;
470 }
471
472 /*
473 * Make a copy of the plimit structure.
474 * We share these structures copy-on-write after fork,
475 * and copy when a limit is changed.
476 */
477 struct plimit *
478 limcopy(struct plimit *lim)
479 {
480 struct plimit *newlim;
481 size_t l = 0;
482
483 simple_lock(&lim->p_slock);
484 if (lim->pl_corename != defcorename)
485 l = strlen(lim->pl_corename) + 1;
486 simple_unlock(&lim->p_slock);
487
488 newlim = pool_get(&plimit_pool, PR_WAITOK);
489 simple_lock_init(&newlim->p_slock);
490 newlim->p_lflags = 0;
491 newlim->p_refcnt = 1;
492 newlim->pl_corename = (l != 0)
493 ? malloc(l, M_TEMP, M_WAITOK)
494 : defcorename;
495
496 simple_lock(&lim->p_slock);
497 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
498 sizeof(struct rlimit) * RLIM_NLIMITS);
499
500 if (l != 0)
501 strlcpy(newlim->pl_corename, lim->pl_corename, l);
502 simple_unlock(&lim->p_slock);
503
504 return (newlim);
505 }
506
507 void
508 limfree(struct plimit *lim)
509 {
510 int n;
511
512 simple_lock(&lim->p_slock);
513 n = --lim->p_refcnt;
514 simple_unlock(&lim->p_slock);
515 if (n > 0)
516 return;
517 #ifdef DIAGNOSTIC
518 if (n < 0)
519 panic("limfree");
520 #endif
521 if (lim->pl_corename != defcorename)
522 free(lim->pl_corename, M_TEMP);
523 pool_put(&plimit_pool, lim);
524 }
525
526 struct pstats *
527 pstatscopy(struct pstats *ps)
528 {
529
530 struct pstats *newps;
531
532 newps = pool_get(&pstats_pool, PR_WAITOK);
533
534 memset(&newps->pstat_startzero, 0,
535 (unsigned) ((caddr_t)&newps->pstat_endzero -
536 (caddr_t)&newps->pstat_startzero));
537 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
538 ((caddr_t)&newps->pstat_endcopy -
539 (caddr_t)&newps->pstat_startcopy));
540
541 return (newps);
542
543 }
544
545 void
546 pstatsfree(struct pstats *ps)
547 {
548
549 pool_put(&pstats_pool, ps);
550 }
551
552 /*
553 * sysctl interface in five parts
554 */
555
556 /*
557 * a routine for sysctl proc subtree helpers that need to pick a valid
558 * process by pid.
559 */
560 static int
561 sysctl_proc_findproc(struct proc *p, struct proc **p2, pid_t pid)
562 {
563 struct proc *ptmp;
564 int i, error = 0;
565
566 if (pid == PROC_CURPROC)
567 ptmp = p;
568 else if ((ptmp = pfind(pid)) == NULL)
569 error = ESRCH;
570 else {
571 /*
572 * suid proc of ours or proc not ours
573 */
574 if (p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
575 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
576 error = suser(p->p_ucred, &p->p_acflag);
577
578 /*
579 * sgid proc has sgid back to us temporarily
580 */
581 else if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
582 error = suser(p->p_ucred, &p->p_acflag);
583
584 /*
585 * our rgid must be in target's group list (ie,
586 * sub-processes started by a sgid process)
587 */
588 else {
589 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
590 if (p->p_ucred->cr_groups[i] ==
591 ptmp->p_cred->p_rgid)
592 break;
593 }
594 if (i == p->p_ucred->cr_ngroups)
595 error = suser(p->p_ucred, &p->p_acflag);
596 }
597 }
598
599 *p2 = ptmp;
600 return (error);
601 }
602
603 /*
604 * sysctl helper routine for setting a process's specific corefile
605 * name. picks the process based on the given pid and checks the
606 * correctness of the new value.
607 */
608 static int
609 sysctl_proc_corename(SYSCTLFN_ARGS)
610 {
611 struct proc *ptmp, *p;
612 struct plimit *lim;
613 int error = 0, len;
614 char cname[MAXPATHLEN], *tmp;
615 struct sysctlnode node;
616
617 /*
618 * is this all correct?
619 */
620 if (namelen != 0)
621 return (EINVAL);
622 if (name[-1] != PROC_PID_CORENAME)
623 return (EINVAL);
624
625 /*
626 * whom are we tweaking?
627 */
628 p = l->l_proc;
629 error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
630 if (error)
631 return (error);
632
633 /*
634 * let them modify a temporary copy of the core name
635 */
636 node = *rnode;
637 strlcpy(cname, ptmp->p_limit->pl_corename, sizeof(cname));
638 node.sysctl_data = cname;
639 error = sysctl_lookup(SYSCTLFN_CALL(&node));
640
641 /*
642 * if that failed, or they have nothing new to say, or we've
643 * heard it before...
644 */
645 if (error || newp == NULL ||
646 strcmp(cname, ptmp->p_limit->pl_corename) == 0)
647 return (error);
648
649 /*
650 * no error yet and cname now has the new core name in it.
651 * let's see if it looks acceptable. it must be either "core"
652 * or end in ".core" or "/core".
653 */
654 len = strlen(cname);
655 if (len < 4)
656 return (EINVAL);
657 if (strcmp(cname + len - 4, "core") != 0)
658 return (EINVAL);
659 if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.')
660 return (EINVAL);
661
662 /*
663 * hmm...looks good. now...where do we put it?
664 */
665 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
666 if (tmp == NULL)
667 return (ENOMEM);
668 strlcpy(tmp, cname, len + 1);
669
670 lim = ptmp->p_limit;
671 if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
672 ptmp->p_limit = limcopy(lim);
673 limfree(lim);
674 lim = ptmp->p_limit;
675 }
676 if (lim->pl_corename != defcorename)
677 free(lim->pl_corename, M_TEMP);
678 lim->pl_corename = tmp;
679
680 return (error);
681 }
682
683 /*
684 * sysctl helper routine for checking/setting a process's stop flags,
685 * one for fork and one for exec.
686 */
687 static int
688 sysctl_proc_stop(SYSCTLFN_ARGS)
689 {
690 struct proc *p, *ptmp;
691 int i, f, error = 0;
692 struct sysctlnode node;
693
694 if (namelen != 0)
695 return (EINVAL);
696
697 p = l->l_proc;
698 error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
699 if (error)
700 return (error);
701
702 switch (rnode->sysctl_num) {
703 case PROC_PID_STOPFORK:
704 f = P_STOPFORK;
705 break;
706 case PROC_PID_STOPEXEC:
707 f = P_STOPEXEC;
708 break;
709 case PROC_PID_STOPEXIT:
710 f = P_STOPEXIT;
711 break;
712 default:
713 return (EINVAL);
714 }
715
716 i = (ptmp->p_flag & f) ? 1 : 0;
717 node = *rnode;
718 node.sysctl_data = &i;
719 error = sysctl_lookup(SYSCTLFN_CALL(&node));
720 if (error || newp == NULL)
721 return (error);
722
723 if (i)
724 ptmp->p_flag |= f;
725 else
726 ptmp->p_flag &= ~f;
727
728 return (0);
729 }
730
731 /*
732 * sysctl helper routine for a process's rlimits as exposed by sysctl.
733 */
734 static int
735 sysctl_proc_plimit(SYSCTLFN_ARGS)
736 {
737 struct proc *ptmp, *p;
738 u_int limitno;
739 int which, error = 0;
740 struct rlimit alim;
741 struct sysctlnode node;
742
743 if (namelen != 0)
744 return (EINVAL);
745
746 which = name[-1];
747 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
748 which != PROC_PID_LIMIT_TYPE_HARD)
749 return (EINVAL);
750
751 limitno = name[-2] - 1;
752 if (limitno >= RLIM_NLIMITS)
753 return (EINVAL);
754
755 if (name[-3] != PROC_PID_LIMIT)
756 return (EINVAL);
757
758 p = l->l_proc;
759 error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-4]);
760 if (error)
761 return (error);
762
763 node = *rnode;
764 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
765 if (which == PROC_PID_LIMIT_TYPE_HARD)
766 node.sysctl_data = &alim.rlim_max;
767 else
768 node.sysctl_data = &alim.rlim_cur;
769
770 error = sysctl_lookup(SYSCTLFN_CALL(&node));
771 if (error || newp == NULL)
772 return (error);
773
774 return (dosetrlimit(ptmp, p->p_cred, limitno, &alim));
775 }
776
777 /*
778 * and finally, the actually glue that sticks it to the tree
779 */
780 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
781 {
782
783 sysctl_createv(clog, 0, NULL, NULL,
784 CTLFLAG_PERMANENT,
785 CTLTYPE_NODE, "proc", NULL,
786 NULL, 0, NULL, 0,
787 CTL_PROC, CTL_EOL);
788 sysctl_createv(clog, 0, NULL, NULL,
789 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
790 CTLTYPE_NODE, "curproc",
791 SYSCTL_DESCR("Per-process settings"),
792 NULL, 0, NULL, 0,
793 CTL_PROC, PROC_CURPROC, CTL_EOL);
794
795 sysctl_createv(clog, 0, NULL, NULL,
796 CTLFLAG_PERMANENT|CTLFLAG_READONLY2|CTLFLAG_ANYWRITE,
797 CTLTYPE_STRING, "corename",
798 SYSCTL_DESCR("Core file name"),
799 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
800 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
801 sysctl_createv(clog, 0, NULL, NULL,
802 CTLFLAG_PERMANENT,
803 CTLTYPE_NODE, "rlimit",
804 SYSCTL_DESCR("Process limits"),
805 NULL, 0, NULL, 0,
806 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
807
808 #define create_proc_plimit(s, n) do { \
809 sysctl_createv(clog, 0, NULL, NULL, \
810 CTLFLAG_PERMANENT, \
811 CTLTYPE_NODE, s, \
812 SYSCTL_DESCR("Process " s " limits"), \
813 NULL, 0, NULL, 0, \
814 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
815 CTL_EOL); \
816 sysctl_createv(clog, 0, NULL, NULL, \
817 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
818 CTLTYPE_QUAD, "soft", \
819 SYSCTL_DESCR("Process soft " s " limit"), \
820 sysctl_proc_plimit, 0, NULL, 0, \
821 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
822 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
823 sysctl_createv(clog, 0, NULL, NULL, \
824 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
825 CTLTYPE_QUAD, "hard", \
826 SYSCTL_DESCR("Process hard " s " limit"), \
827 sysctl_proc_plimit, 0, NULL, 0, \
828 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
829 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
830 } while (0/*CONSTCOND*/)
831
832 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
833 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
834 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
835 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
836 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
837 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
838 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
839 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
840 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
841 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
842
843 #undef create_proc_plimit
844
845 sysctl_createv(clog, 0, NULL, NULL,
846 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
847 CTLTYPE_INT, "stopfork",
848 SYSCTL_DESCR("Stop process at fork(2)"),
849 sysctl_proc_stop, 0, NULL, 0,
850 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
851 sysctl_createv(clog, 0, NULL, NULL,
852 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
853 CTLTYPE_INT, "stopexec",
854 SYSCTL_DESCR("Stop process at execve(2)"),
855 sysctl_proc_stop, 0, NULL, 0,
856 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
857 sysctl_createv(clog, 0, NULL, NULL,
858 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
859 CTLTYPE_INT, "stopexit",
860 SYSCTL_DESCR("Stop process before completing exit"),
861 sysctl_proc_stop, 0, NULL, 0,
862 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
863 }
864
865 struct uidinfo *
866 uid_find(uid_t uid)
867 {
868 struct uidinfo *uip;
869 struct uidinfo *newuip = NULL;
870 struct uihashhead *uipp;
871
872 uipp = UIHASH(uid);
873
874 again:
875 simple_lock(&uihashtbl_slock);
876 LIST_FOREACH(uip, uipp, ui_hash)
877 if (uip->ui_uid == uid) {
878 simple_unlock(&uihashtbl_slock);
879 if (newuip)
880 free(newuip, M_PROC);
881 return uip;
882 }
883
884 if (newuip == NULL) {
885 simple_unlock(&uihashtbl_slock);
886 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
887 goto again;
888 }
889 uip = newuip;
890
891 LIST_INSERT_HEAD(uipp, uip, ui_hash);
892 uip->ui_uid = uid;
893 simple_lock_init(&uip->ui_slock);
894 simple_unlock(&uihashtbl_slock);
895
896 return uip;
897 }
898
899 /*
900 * Change the count associated with number of processes
901 * a given user is using.
902 */
903 int
904 chgproccnt(uid_t uid, int diff)
905 {
906 struct uidinfo *uip;
907 int s;
908
909 if (diff == 0)
910 return 0;
911
912 uip = uid_find(uid);
913 UILOCK(uip, s);
914 uip->ui_proccnt += diff;
915 KASSERT(uip->ui_proccnt >= 0);
916 UIUNLOCK(uip, s);
917 return uip->ui_proccnt;
918 }
919
920 int
921 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
922 {
923 rlim_t nsb;
924 int s;
925
926 UILOCK(uip, s);
927 nsb = uip->ui_sbsize + to - *hiwat;
928 if (to > *hiwat && nsb > xmax) {
929 UIUNLOCK(uip, s);
930 splx(s);
931 return 0;
932 }
933 *hiwat = to;
934 uip->ui_sbsize = nsb;
935 KASSERT(uip->ui_sbsize >= 0);
936 UIUNLOCK(uip, s);
937 return 1;
938 }
939