kern_resource.c revision 1.86.4.1 1 /* $NetBSD: kern_resource.c,v 1.86.4.1 2005/04/29 11:29:23 kent Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.86.4.1 2005/04/29 11:29:23 kent Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/pool.h>
49 #include <sys/proc.h>
50 #include <sys/sysctl.h>
51
52 #include <sys/mount.h>
53 #include <sys/sa.h>
54 #include <sys/syscallargs.h>
55
56 #include <uvm/uvm_extern.h>
57
58 /*
59 * Maximum process data and stack limits.
60 * They are variables so they are patchable.
61 */
62 rlim_t maxdmap = MAXDSIZ;
63 rlim_t maxsmap = MAXSSIZ;
64
65 struct uihashhead *uihashtbl;
66 u_long uihash; /* size of hash table - 1 */
67 struct simplelock uihashtbl_slock = SIMPLELOCK_INITIALIZER;
68
69
70 /*
71 * Resource controls and accounting.
72 */
73
74 int
75 sys_getpriority(l, v, retval)
76 struct lwp *l;
77 void *v;
78 register_t *retval;
79 {
80 struct sys_getpriority_args /* {
81 syscallarg(int) which;
82 syscallarg(id_t) who;
83 } */ *uap = v;
84 struct proc *curp = l->l_proc, *p;
85 int low = NZERO + PRIO_MAX + 1;
86
87 switch (SCARG(uap, which)) {
88
89 case PRIO_PROCESS:
90 if (SCARG(uap, who) == 0)
91 p = curp;
92 else
93 p = pfind(SCARG(uap, who));
94 if (p == 0)
95 break;
96 low = p->p_nice;
97 break;
98
99 case PRIO_PGRP: {
100 struct pgrp *pg;
101
102 if (SCARG(uap, who) == 0)
103 pg = curp->p_pgrp;
104 else if ((pg = pgfind(SCARG(uap, who))) == NULL)
105 break;
106 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
107 if (p->p_nice < low)
108 low = p->p_nice;
109 }
110 break;
111 }
112
113 case PRIO_USER:
114 if (SCARG(uap, who) == 0)
115 SCARG(uap, who) = curp->p_ucred->cr_uid;
116 proclist_lock_read();
117 PROCLIST_FOREACH(p, &allproc) {
118 if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who) &&
119 p->p_nice < low)
120 low = p->p_nice;
121 }
122 proclist_unlock_read();
123 break;
124
125 default:
126 return (EINVAL);
127 }
128 if (low == NZERO + PRIO_MAX + 1)
129 return (ESRCH);
130 *retval = low - NZERO;
131 return (0);
132 }
133
134 /* ARGSUSED */
135 int
136 sys_setpriority(l, v, retval)
137 struct lwp *l;
138 void *v;
139 register_t *retval;
140 {
141 struct sys_setpriority_args /* {
142 syscallarg(int) which;
143 syscallarg(id_t) who;
144 syscallarg(int) prio;
145 } */ *uap = v;
146 struct proc *curp = l->l_proc, *p;
147 int found = 0, error = 0;
148
149 switch (SCARG(uap, which)) {
150
151 case PRIO_PROCESS:
152 if (SCARG(uap, who) == 0)
153 p = curp;
154 else
155 p = pfind(SCARG(uap, who));
156 if (p == 0)
157 break;
158 error = donice(curp, p, SCARG(uap, prio));
159 found++;
160 break;
161
162 case PRIO_PGRP: {
163 struct pgrp *pg;
164
165 if (SCARG(uap, who) == 0)
166 pg = curp->p_pgrp;
167 else if ((pg = pgfind(SCARG(uap, who))) == NULL)
168 break;
169 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
170 error = donice(curp, p, SCARG(uap, prio));
171 found++;
172 }
173 break;
174 }
175
176 case PRIO_USER:
177 if (SCARG(uap, who) == 0)
178 SCARG(uap, who) = curp->p_ucred->cr_uid;
179 proclist_lock_read();
180 PROCLIST_FOREACH(p, &allproc) {
181 if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who)) {
182 error = donice(curp, p, SCARG(uap, prio));
183 found++;
184 }
185 }
186 proclist_unlock_read();
187 break;
188
189 default:
190 return (EINVAL);
191 }
192 if (found == 0)
193 return (ESRCH);
194 return (error);
195 }
196
197 int
198 donice(curp, chgp, n)
199 struct proc *curp, *chgp;
200 int n;
201 {
202 struct pcred *pcred = curp->p_cred;
203 int s;
204
205 if (pcred->pc_ucred->cr_uid && pcred->p_ruid &&
206 pcred->pc_ucred->cr_uid != chgp->p_ucred->cr_uid &&
207 pcred->p_ruid != chgp->p_ucred->cr_uid)
208 return (EPERM);
209 if (n > PRIO_MAX)
210 n = PRIO_MAX;
211 if (n < PRIO_MIN)
212 n = PRIO_MIN;
213 n += NZERO;
214 if (n < chgp->p_nice && suser(pcred->pc_ucred, &curp->p_acflag))
215 return (EACCES);
216 chgp->p_nice = n;
217 SCHED_LOCK(s);
218 (void)resetprocpriority(chgp);
219 SCHED_UNLOCK(s);
220 return (0);
221 }
222
223 /* ARGSUSED */
224 int
225 sys_setrlimit(l, v, retval)
226 struct lwp *l;
227 void *v;
228 register_t *retval;
229 {
230 struct sys_setrlimit_args /* {
231 syscallarg(int) which;
232 syscallarg(const struct rlimit *) rlp;
233 } */ *uap = v;
234 struct proc *p = l->l_proc;
235 int which = SCARG(uap, which);
236 struct rlimit alim;
237 int error;
238
239 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
240 if (error)
241 return (error);
242 return (dosetrlimit(p, p->p_cred, which, &alim));
243 }
244
245 int
246 dosetrlimit(p, cred, which, limp)
247 struct proc *p;
248 struct pcred *cred;
249 int which;
250 struct rlimit *limp;
251 {
252 struct rlimit *alimp;
253 struct plimit *oldplim;
254 int error;
255
256 if ((u_int)which >= RLIM_NLIMITS)
257 return (EINVAL);
258
259 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
260 return (EINVAL);
261
262 alimp = &p->p_rlimit[which];
263 /* if we don't change the value, no need to limcopy() */
264 if (limp->rlim_cur == alimp->rlim_cur &&
265 limp->rlim_max == alimp->rlim_max)
266 return 0;
267
268 if (limp->rlim_cur > limp->rlim_max) {
269 /*
270 * This is programming error. According to SUSv2, we should
271 * return error in this case.
272 */
273 return (EINVAL);
274 }
275 if (limp->rlim_max > alimp->rlim_max
276 && (error = suser(cred->pc_ucred, &p->p_acflag)) != 0)
277 return (error);
278
279 if (p->p_limit->p_refcnt > 1 &&
280 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
281 p->p_limit = limcopy(oldplim = p->p_limit);
282 limfree(oldplim);
283 alimp = &p->p_rlimit[which];
284 }
285
286 switch (which) {
287
288 case RLIMIT_DATA:
289 if (limp->rlim_cur > maxdmap)
290 limp->rlim_cur = maxdmap;
291 if (limp->rlim_max > maxdmap)
292 limp->rlim_max = maxdmap;
293 break;
294
295 case RLIMIT_STACK:
296 if (limp->rlim_cur > maxsmap)
297 limp->rlim_cur = maxsmap;
298 if (limp->rlim_max > maxsmap)
299 limp->rlim_max = maxsmap;
300
301 /*
302 * Return EINVAL if the new stack size limit is lower than
303 * current usage. Otherwise, the process would get SIGSEGV the
304 * moment it would try to access anything on it's current stack.
305 * This conforms to SUSv2.
306 */
307 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
308 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
309 return (EINVAL);
310
311 /*
312 * Stack is allocated to the max at exec time with
313 * only "rlim_cur" bytes accessible (In other words,
314 * allocates stack dividing two contiguous regions at
315 * "rlim_cur" bytes boundary).
316 *
317 * Since allocation is done in terms of page, roundup
318 * "rlim_cur" (otherwise, contiguous regions
319 * overlap). If stack limit is going up make more
320 * accessible, if going down make inaccessible.
321 */
322 limp->rlim_cur = round_page(limp->rlim_cur);
323 if (limp->rlim_cur != alimp->rlim_cur) {
324 vaddr_t addr;
325 vsize_t size;
326 vm_prot_t prot;
327
328 if (limp->rlim_cur > alimp->rlim_cur) {
329 prot = VM_PROT_READ | VM_PROT_WRITE;
330 size = limp->rlim_cur - alimp->rlim_cur;
331 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
332 limp->rlim_cur;
333 } else {
334 prot = VM_PROT_NONE;
335 size = alimp->rlim_cur - limp->rlim_cur;
336 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
337 alimp->rlim_cur;
338 }
339 (void) uvm_map_protect(&p->p_vmspace->vm_map,
340 addr, addr+size, prot, FALSE);
341 }
342 break;
343
344 case RLIMIT_NOFILE:
345 if (limp->rlim_cur > maxfiles)
346 limp->rlim_cur = maxfiles;
347 if (limp->rlim_max > maxfiles)
348 limp->rlim_max = maxfiles;
349 break;
350
351 case RLIMIT_NPROC:
352 if (limp->rlim_cur > maxproc)
353 limp->rlim_cur = maxproc;
354 if (limp->rlim_max > maxproc)
355 limp->rlim_max = maxproc;
356 break;
357 }
358 *alimp = *limp;
359 return (0);
360 }
361
362 /* ARGSUSED */
363 int
364 sys_getrlimit(l, v, retval)
365 struct lwp *l;
366 void *v;
367 register_t *retval;
368 {
369 struct sys_getrlimit_args /* {
370 syscallarg(int) which;
371 syscallarg(struct rlimit *) rlp;
372 } */ *uap = v;
373 struct proc *p = l->l_proc;
374 int which = SCARG(uap, which);
375
376 if ((u_int)which >= RLIM_NLIMITS)
377 return (EINVAL);
378 return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
379 sizeof(struct rlimit)));
380 }
381
382 /*
383 * Transform the running time and tick information in proc p into user,
384 * system, and interrupt time usage.
385 */
386 void
387 calcru(p, up, sp, ip)
388 struct proc *p;
389 struct timeval *up;
390 struct timeval *sp;
391 struct timeval *ip;
392 {
393 u_quad_t u, st, ut, it, tot;
394 unsigned long sec;
395 long usec;
396 int s;
397 struct timeval tv;
398 struct lwp *l;
399
400 s = splstatclock();
401 st = p->p_sticks;
402 ut = p->p_uticks;
403 it = p->p_iticks;
404 splx(s);
405
406 sec = p->p_rtime.tv_sec;
407 usec = p->p_rtime.tv_usec;
408 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
409 if (l->l_stat == LSONPROC) {
410 struct schedstate_percpu *spc;
411
412 KDASSERT(l->l_cpu != NULL);
413 spc = &l->l_cpu->ci_schedstate;
414
415 /*
416 * Adjust for the current time slice. This is
417 * actually fairly important since the error
418 * here is on the order of a time quantum,
419 * which is much greater than the sampling
420 * error.
421 */
422 microtime(&tv);
423 sec += tv.tv_sec - spc->spc_runtime.tv_sec;
424 usec += tv.tv_usec - spc->spc_runtime.tv_usec;
425 }
426 }
427
428 tot = st + ut + it;
429 u = sec * 1000000ull + usec;
430
431 if (tot == 0) {
432 /* No ticks, so can't use to share time out, split 50-50 */
433 st = ut = u / 2;
434 } else {
435 st = (u * st) / tot;
436 ut = (u * ut) / tot;
437 }
438 sp->tv_sec = st / 1000000;
439 sp->tv_usec = st % 1000000;
440 up->tv_sec = ut / 1000000;
441 up->tv_usec = ut % 1000000;
442 if (ip != NULL) {
443 if (it != 0)
444 it = (u * it) / tot;
445 ip->tv_sec = it / 1000000;
446 ip->tv_usec = it % 1000000;
447 }
448 }
449
450 /* ARGSUSED */
451 int
452 sys_getrusage(l, v, retval)
453 struct lwp *l;
454 void *v;
455 register_t *retval;
456 {
457 struct sys_getrusage_args /* {
458 syscallarg(int) who;
459 syscallarg(struct rusage *) rusage;
460 } */ *uap = v;
461 struct rusage *rup;
462 struct proc *p = l->l_proc;
463
464 switch (SCARG(uap, who)) {
465
466 case RUSAGE_SELF:
467 rup = &p->p_stats->p_ru;
468 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
469 break;
470
471 case RUSAGE_CHILDREN:
472 rup = &p->p_stats->p_cru;
473 break;
474
475 default:
476 return (EINVAL);
477 }
478 return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
479 }
480
481 void
482 ruadd(ru, ru2)
483 struct rusage *ru, *ru2;
484 {
485 long *ip, *ip2;
486 int i;
487
488 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
489 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
490 if (ru->ru_maxrss < ru2->ru_maxrss)
491 ru->ru_maxrss = ru2->ru_maxrss;
492 ip = &ru->ru_first; ip2 = &ru2->ru_first;
493 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
494 *ip++ += *ip2++;
495 }
496
497 /*
498 * Make a copy of the plimit structure.
499 * We share these structures copy-on-write after fork,
500 * and copy when a limit is changed.
501 */
502 struct plimit *
503 limcopy(lim)
504 struct plimit *lim;
505 {
506 struct plimit *newlim;
507 size_t l = 0;
508
509 simple_lock(&lim->p_slock);
510 if (lim->pl_corename != defcorename)
511 l = strlen(lim->pl_corename) + 1;
512 simple_unlock(&lim->p_slock);
513
514 newlim = pool_get(&plimit_pool, PR_WAITOK);
515 simple_lock_init(&newlim->p_slock);
516 newlim->p_lflags = 0;
517 newlim->p_refcnt = 1;
518 newlim->pl_corename = (l != 0)
519 ? malloc(l, M_TEMP, M_WAITOK)
520 : defcorename;
521
522 simple_lock(&lim->p_slock);
523 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
524 sizeof(struct rlimit) * RLIM_NLIMITS);
525
526 if (l != 0)
527 strlcpy(newlim->pl_corename, lim->pl_corename, l);
528 simple_unlock(&lim->p_slock);
529
530 return (newlim);
531 }
532
533 void
534 limfree(lim)
535 struct plimit *lim;
536 {
537 int n;
538
539 simple_lock(&lim->p_slock);
540 n = --lim->p_refcnt;
541 simple_unlock(&lim->p_slock);
542 if (n > 0)
543 return;
544 #ifdef DIAGNOSTIC
545 if (n < 0)
546 panic("limfree");
547 #endif
548 if (lim->pl_corename != defcorename)
549 free(lim->pl_corename, M_TEMP);
550 pool_put(&plimit_pool, lim);
551 }
552
553 struct pstats *
554 pstatscopy(ps)
555 struct pstats *ps;
556 {
557
558 struct pstats *newps;
559
560 newps = pool_get(&pstats_pool, PR_WAITOK);
561
562 memset(&newps->pstat_startzero, 0,
563 (unsigned) ((caddr_t)&newps->pstat_endzero -
564 (caddr_t)&newps->pstat_startzero));
565 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
566 ((caddr_t)&newps->pstat_endcopy -
567 (caddr_t)&newps->pstat_startcopy));
568
569 return (newps);
570
571 }
572
573 void
574 pstatsfree(ps)
575 struct pstats *ps;
576 {
577
578 pool_put(&pstats_pool, ps);
579 }
580
581 /*
582 * sysctl interface in five parts
583 */
584
585 /*
586 * a routine for sysctl proc subtree helpers that need to pick a valid
587 * process by pid.
588 */
589 static int
590 sysctl_proc_findproc(struct proc *p, struct proc **p2, pid_t pid)
591 {
592 struct proc *ptmp;
593 int i, error = 0;
594
595 if (pid == PROC_CURPROC)
596 ptmp = p;
597 else if ((ptmp = pfind(pid)) == NULL)
598 error = ESRCH;
599 else {
600 /*
601 * suid proc of ours or proc not ours
602 */
603 if (p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
604 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
605 error = suser(p->p_ucred, &p->p_acflag);
606
607 /*
608 * sgid proc has sgid back to us temporarily
609 */
610 else if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
611 error = suser(p->p_ucred, &p->p_acflag);
612
613 /*
614 * our rgid must be in target's group list (ie,
615 * sub-processes started by a sgid process)
616 */
617 else {
618 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
619 if (p->p_ucred->cr_groups[i] ==
620 ptmp->p_cred->p_rgid)
621 break;
622 }
623 if (i == p->p_ucred->cr_ngroups)
624 error = suser(p->p_ucred, &p->p_acflag);
625 }
626 }
627
628 *p2 = ptmp;
629 return (error);
630 }
631
632 /*
633 * sysctl helper routine for setting a process's specific corefile
634 * name. picks the process based on the given pid and checks the
635 * correctness of the new value.
636 */
637 static int
638 sysctl_proc_corename(SYSCTLFN_ARGS)
639 {
640 struct proc *ptmp, *p;
641 struct plimit *lim;
642 int error = 0, len;
643 char cname[MAXPATHLEN], *tmp;
644 struct sysctlnode node;
645
646 /*
647 * is this all correct?
648 */
649 if (namelen != 0)
650 return (EINVAL);
651 if (name[-1] != PROC_PID_CORENAME)
652 return (EINVAL);
653
654 /*
655 * whom are we tweaking?
656 */
657 p = l->l_proc;
658 error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
659 if (error)
660 return (error);
661
662 /*
663 * let them modify a temporary copy of the core name
664 */
665 node = *rnode;
666 strlcpy(cname, ptmp->p_limit->pl_corename, sizeof(cname));
667 node.sysctl_data = cname;
668 error = sysctl_lookup(SYSCTLFN_CALL(&node));
669
670 /*
671 * if that failed, or they have nothing new to say, or we've
672 * heard it before...
673 */
674 if (error || newp == NULL ||
675 strcmp(cname, ptmp->p_limit->pl_corename) == 0)
676 return (error);
677
678 /*
679 * no error yet and cname now has the new core name in it.
680 * let's see if it looks acceptable. it must be either "core"
681 * or end in ".core" or "/core".
682 */
683 len = strlen(cname);
684 if (len < 4)
685 return (EINVAL);
686 if (strcmp(cname + len - 4, "core") != 0)
687 return (EINVAL);
688 if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.')
689 return (EINVAL);
690
691 /*
692 * hmm...looks good. now...where do we put it?
693 */
694 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
695 if (tmp == NULL)
696 return (ENOMEM);
697 strlcpy(tmp, cname, len + 1);
698
699 lim = ptmp->p_limit;
700 if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
701 ptmp->p_limit = limcopy(lim);
702 limfree(lim);
703 lim = ptmp->p_limit;
704 }
705 if (lim->pl_corename != defcorename)
706 free(lim->pl_corename, M_TEMP);
707 lim->pl_corename = tmp;
708
709 return (error);
710 }
711
712 /*
713 * sysctl helper routine for checking/setting a process's stop flags,
714 * one for fork and one for exec.
715 */
716 static int
717 sysctl_proc_stop(SYSCTLFN_ARGS)
718 {
719 struct proc *p, *ptmp;
720 int i, f, error = 0;
721 struct sysctlnode node;
722
723 if (namelen != 0)
724 return (EINVAL);
725
726 p = l->l_proc;
727 error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
728 if (error)
729 return (error);
730
731 switch (rnode->sysctl_num) {
732 case PROC_PID_STOPFORK:
733 f = P_STOPFORK;
734 break;
735 case PROC_PID_STOPEXEC:
736 f = P_STOPEXEC;
737 break;
738 case PROC_PID_STOPEXIT:
739 f = P_STOPEXIT;
740 break;
741 default:
742 return (EINVAL);
743 }
744
745 i = (ptmp->p_flag & f) ? 1 : 0;
746 node = *rnode;
747 node.sysctl_data = &i;
748 error = sysctl_lookup(SYSCTLFN_CALL(&node));
749 if (error || newp == NULL)
750 return (error);
751
752 if (i)
753 ptmp->p_flag |= f;
754 else
755 ptmp->p_flag &= ~f;
756
757 return (0);
758 }
759
760 /*
761 * sysctl helper routine for a process's rlimits as exposed by sysctl.
762 */
763 static int
764 sysctl_proc_plimit(SYSCTLFN_ARGS)
765 {
766 struct proc *ptmp, *p;
767 u_int limitno;
768 int which, error = 0;
769 struct rlimit alim;
770 struct sysctlnode node;
771
772 if (namelen != 0)
773 return (EINVAL);
774
775 which = name[-1];
776 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
777 which != PROC_PID_LIMIT_TYPE_HARD)
778 return (EINVAL);
779
780 limitno = name[-2] - 1;
781 if (limitno >= RLIM_NLIMITS)
782 return (EINVAL);
783
784 if (name[-3] != PROC_PID_LIMIT)
785 return (EINVAL);
786
787 p = l->l_proc;
788 error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-4]);
789 if (error)
790 return (error);
791
792 node = *rnode;
793 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
794 if (which == PROC_PID_LIMIT_TYPE_HARD)
795 node.sysctl_data = &alim.rlim_max;
796 else
797 node.sysctl_data = &alim.rlim_cur;
798
799 error = sysctl_lookup(SYSCTLFN_CALL(&node));
800 if (error || newp == NULL)
801 return (error);
802
803 return (dosetrlimit(ptmp, p->p_cred, limitno, &alim));
804 }
805
806 /*
807 * and finally, the actually glue that sticks it to the tree
808 */
809 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
810 {
811
812 sysctl_createv(clog, 0, NULL, NULL,
813 CTLFLAG_PERMANENT,
814 CTLTYPE_NODE, "proc", NULL,
815 NULL, 0, NULL, 0,
816 CTL_PROC, CTL_EOL);
817 sysctl_createv(clog, 0, NULL, NULL,
818 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
819 CTLTYPE_NODE, "curproc",
820 SYSCTL_DESCR("Per-process settings"),
821 NULL, 0, NULL, 0,
822 CTL_PROC, PROC_CURPROC, CTL_EOL);
823
824 sysctl_createv(clog, 0, NULL, NULL,
825 CTLFLAG_PERMANENT|CTLFLAG_READONLY2|CTLFLAG_ANYWRITE,
826 CTLTYPE_STRING, "corename",
827 SYSCTL_DESCR("Core file name"),
828 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
829 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
830 sysctl_createv(clog, 0, NULL, NULL,
831 CTLFLAG_PERMANENT,
832 CTLTYPE_NODE, "rlimit",
833 SYSCTL_DESCR("Process limits"),
834 NULL, 0, NULL, 0,
835 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
836
837 #define create_proc_plimit(s, n) do { \
838 sysctl_createv(clog, 0, NULL, NULL, \
839 CTLFLAG_PERMANENT, \
840 CTLTYPE_NODE, s, \
841 SYSCTL_DESCR("Process " s " limits"), \
842 NULL, 0, NULL, 0, \
843 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
844 CTL_EOL); \
845 sysctl_createv(clog, 0, NULL, NULL, \
846 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
847 CTLTYPE_QUAD, "soft", \
848 SYSCTL_DESCR("Process soft " s " limit"), \
849 sysctl_proc_plimit, 0, NULL, 0, \
850 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
851 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
852 sysctl_createv(clog, 0, NULL, NULL, \
853 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
854 CTLTYPE_QUAD, "hard", \
855 SYSCTL_DESCR("Process hard " s " limit"), \
856 sysctl_proc_plimit, 0, NULL, 0, \
857 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
858 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
859 } while (0/*CONSTCOND*/)
860
861 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
862 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
863 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
864 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
865 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
866 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
867 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
868 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
869 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
870 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
871
872 #undef create_proc_plimit
873
874 sysctl_createv(clog, 0, NULL, NULL,
875 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
876 CTLTYPE_INT, "stopfork",
877 SYSCTL_DESCR("Stop process at fork(2)"),
878 sysctl_proc_stop, 0, NULL, 0,
879 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
880 sysctl_createv(clog, 0, NULL, NULL,
881 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
882 CTLTYPE_INT, "stopexec",
883 SYSCTL_DESCR("Stop process at execve(2)"),
884 sysctl_proc_stop, 0, NULL, 0,
885 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
886 sysctl_createv(clog, 0, NULL, NULL,
887 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
888 CTLTYPE_INT, "stopexit",
889 SYSCTL_DESCR("Stop process before completing exit"),
890 sysctl_proc_stop, 0, NULL, 0,
891 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
892 }
893
894 struct uidinfo *
895 uid_find(uid_t uid)
896 {
897 struct uidinfo *uip;
898 struct uidinfo *newuip = NULL;
899 struct uihashhead *uipp;
900
901 uipp = UIHASH(uid);
902
903 again:
904 simple_lock(&uihashtbl_slock);
905 LIST_FOREACH(uip, uipp, ui_hash)
906 if (uip->ui_uid == uid) {
907 simple_unlock(&uihashtbl_slock);
908 if (newuip)
909 free(newuip, M_PROC);
910 return uip;
911 }
912
913 if (newuip == NULL) {
914 simple_unlock(&uihashtbl_slock);
915 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
916 goto again;
917 }
918 uip = newuip;
919
920 LIST_INSERT_HEAD(uipp, uip, ui_hash);
921 uip->ui_uid = uid;
922 simple_unlock(&uihashtbl_slock);
923
924 return uip;
925 }
926
927 /*
928 * Change the count associated with number of processes
929 * a given user is using.
930 */
931 int
932 chgproccnt(uid_t uid, int diff)
933 {
934 struct uidinfo *uip;
935
936 if (diff == 0)
937 return 0;
938
939 uip = uid_find(uid);
940 uip->ui_proccnt += diff;
941 KASSERT(uip->ui_proccnt >= 0);
942 return uip->ui_proccnt;
943 }
944
945 int
946 chgsbsize(uid_t uid, u_long *hiwat, u_long to, rlim_t max)
947 {
948 struct uidinfo *uip;
949 rlim_t nsb;
950
951 uip = uid_find(uid);
952 nsb = uip->ui_sbsize + to - *hiwat;
953 if (to > *hiwat && nsb > max)
954 return 0;
955 *hiwat = to;
956 uip->ui_sbsize = nsb;
957 KASSERT(uip->ui_sbsize >= 0);
958 return 1;
959 }
960