Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.98.2.10
      1 /*	$NetBSD: kern_resource.c,v 1.98.2.10 2008/02/27 08:36:55 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.98.2.10 2008/02/27 08:36:55 yamt Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kmem.h>
     49 #include <sys/namei.h>
     50 #include <sys/pool.h>
     51 #include <sys/proc.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/timevar.h>
     54 #include <sys/kauth.h>
     55 #include <sys/atomic.h>
     56 #include <sys/mount.h>
     57 #include <sys/syscallargs.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Maximum process data and stack limits.
     63  * They are variables so they are patchable.
     64  */
     65 rlim_t maxdmap = MAXDSIZ;
     66 rlim_t maxsmap = MAXSSIZ;
     67 
     68 struct uihashhead *uihashtbl;
     69 u_long uihash;		/* size of hash table - 1 */
     70 kmutex_t uihashtbl_lock;
     71 
     72 static pool_cache_t plimit_cache;
     73 static pool_cache_t pstats_cache;
     74 
     75 void
     76 resource_init(void)
     77 {
     78 
     79 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
     80 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
     81 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
     82 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
     83 }
     84 
     85 /*
     86  * Resource controls and accounting.
     87  */
     88 
     89 int
     90 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, register_t *retval)
     91 {
     92 	/* {
     93 		syscallarg(int) which;
     94 		syscallarg(id_t) who;
     95 	} */
     96 	struct proc *curp = l->l_proc, *p;
     97 	int low = NZERO + PRIO_MAX + 1;
     98 	int who = SCARG(uap, who);
     99 
    100 	mutex_enter(&proclist_lock);
    101 	switch (SCARG(uap, which)) {
    102 	case PRIO_PROCESS:
    103 		if (who == 0)
    104 			p = curp;
    105 		else
    106 			p = p_find(who, PFIND_LOCKED);
    107 		if (p != NULL)
    108 			low = p->p_nice;
    109 		break;
    110 
    111 	case PRIO_PGRP: {
    112 		struct pgrp *pg;
    113 
    114 		if (who == 0)
    115 			pg = curp->p_pgrp;
    116 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    117 			break;
    118 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    119 			if (p->p_nice < low)
    120 				low = p->p_nice;
    121 		}
    122 		break;
    123 	}
    124 
    125 	case PRIO_USER:
    126 		if (who == 0)
    127 			who = (int)kauth_cred_geteuid(l->l_cred);
    128 		PROCLIST_FOREACH(p, &allproc) {
    129 			mutex_enter(&p->p_mutex);
    130 			if (kauth_cred_geteuid(p->p_cred) ==
    131 			    (uid_t)who && p->p_nice < low)
    132 				low = p->p_nice;
    133 			mutex_exit(&p->p_mutex);
    134 		}
    135 		break;
    136 
    137 	default:
    138 		mutex_exit(&proclist_lock);
    139 		return (EINVAL);
    140 	}
    141 	mutex_exit(&proclist_lock);
    142 
    143 	if (low == NZERO + PRIO_MAX + 1)
    144 		return (ESRCH);
    145 	*retval = low - NZERO;
    146 	return (0);
    147 }
    148 
    149 /* ARGSUSED */
    150 int
    151 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, register_t *retval)
    152 {
    153 	/* {
    154 		syscallarg(int) which;
    155 		syscallarg(id_t) who;
    156 		syscallarg(int) prio;
    157 	} */
    158 	struct proc *curp = l->l_proc, *p;
    159 	int found = 0, error = 0;
    160 	int who = SCARG(uap, who);
    161 
    162 	mutex_enter(&proclist_lock);
    163 	switch (SCARG(uap, which)) {
    164 	case PRIO_PROCESS:
    165 		if (who == 0)
    166 			p = curp;
    167 		else
    168 			p = p_find(who, PFIND_LOCKED);
    169 		if (p != 0) {
    170 			mutex_enter(&p->p_mutex);
    171 			error = donice(l, p, SCARG(uap, prio));
    172 			mutex_exit(&p->p_mutex);
    173 		}
    174 		found++;
    175 		break;
    176 
    177 	case PRIO_PGRP: {
    178 		struct pgrp *pg;
    179 
    180 		if (who == 0)
    181 			pg = curp->p_pgrp;
    182 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    183 			break;
    184 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    185 			mutex_enter(&p->p_mutex);
    186 			error = donice(l, p, SCARG(uap, prio));
    187 			mutex_exit(&p->p_mutex);
    188 			found++;
    189 		}
    190 		break;
    191 	}
    192 
    193 	case PRIO_USER:
    194 		if (who == 0)
    195 			who = (int)kauth_cred_geteuid(l->l_cred);
    196 		PROCLIST_FOREACH(p, &allproc) {
    197 			mutex_enter(&p->p_mutex);
    198 			if (kauth_cred_geteuid(p->p_cred) ==
    199 			    (uid_t)SCARG(uap, who)) {
    200 				error = donice(l, p, SCARG(uap, prio));
    201 				found++;
    202 			}
    203 			mutex_exit(&p->p_mutex);
    204 		}
    205 		break;
    206 
    207 	default:
    208 		error = EINVAL;
    209 		break;
    210 	}
    211 	mutex_exit(&proclist_lock);
    212 	if (found == 0)
    213 		return (ESRCH);
    214 	return (error);
    215 }
    216 
    217 /*
    218  * Renice a process.
    219  *
    220  * Call with the target process' credentials locked.
    221  */
    222 int
    223 donice(struct lwp *l, struct proc *chgp, int n)
    224 {
    225 	kauth_cred_t cred = l->l_cred;
    226 	int onice;
    227 
    228 	KASSERT(mutex_owned(&chgp->p_mutex));
    229 
    230 	if (n > PRIO_MAX)
    231 		n = PRIO_MAX;
    232 	if (n < PRIO_MIN)
    233 		n = PRIO_MIN;
    234 	n += NZERO;
    235 	onice = chgp->p_nice;
    236 	onice = chgp->p_nice;
    237 
    238   again:
    239 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    240 	    KAUTH_ARG(n), NULL, NULL))
    241 		return (EACCES);
    242 	mutex_spin_enter(&chgp->p_smutex);
    243 	if (onice != chgp->p_nice) {
    244 		mutex_spin_exit(&chgp->p_smutex);
    245 		goto again;
    246 	}
    247 	sched_nice(chgp, n);
    248 	mutex_spin_exit(&chgp->p_smutex);
    249 	return (0);
    250 }
    251 
    252 /* ARGSUSED */
    253 int
    254 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, register_t *retval)
    255 {
    256 	/* {
    257 		syscallarg(int) which;
    258 		syscallarg(const struct rlimit *) rlp;
    259 	} */
    260 	int which = SCARG(uap, which);
    261 	struct rlimit alim;
    262 	int error;
    263 
    264 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    265 	if (error)
    266 		return (error);
    267 	return (dosetrlimit(l, l->l_proc, which, &alim));
    268 }
    269 
    270 int
    271 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    272 {
    273 	struct rlimit *alimp;
    274 	int error;
    275 
    276 	if ((u_int)which >= RLIM_NLIMITS)
    277 		return (EINVAL);
    278 
    279 	if (limp->rlim_cur < 0 || limp->rlim_max < 0)
    280 		return (EINVAL);
    281 
    282 	if (limp->rlim_cur > limp->rlim_max) {
    283 		/*
    284 		 * This is programming error. According to SUSv2, we should
    285 		 * return error in this case.
    286 		 */
    287 		return (EINVAL);
    288 	}
    289 
    290 	alimp = &p->p_rlimit[which];
    291 	/* if we don't change the value, no need to limcopy() */
    292 	if (limp->rlim_cur == alimp->rlim_cur &&
    293 	    limp->rlim_max == alimp->rlim_max)
    294 		return 0;
    295 
    296 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    297 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    298 	if (error)
    299 		return (error);
    300 
    301 	lim_privatise(p, false);
    302 	/* p->p_limit is now unchangeable */
    303 	alimp = &p->p_rlimit[which];
    304 
    305 	switch (which) {
    306 
    307 	case RLIMIT_DATA:
    308 		if (limp->rlim_cur > maxdmap)
    309 			limp->rlim_cur = maxdmap;
    310 		if (limp->rlim_max > maxdmap)
    311 			limp->rlim_max = maxdmap;
    312 		break;
    313 
    314 	case RLIMIT_STACK:
    315 		if (limp->rlim_cur > maxsmap)
    316 			limp->rlim_cur = maxsmap;
    317 		if (limp->rlim_max > maxsmap)
    318 			limp->rlim_max = maxsmap;
    319 
    320 		/*
    321 		 * Return EINVAL if the new stack size limit is lower than
    322 		 * current usage. Otherwise, the process would get SIGSEGV the
    323 		 * moment it would try to access anything on it's current stack.
    324 		 * This conforms to SUSv2.
    325 		 */
    326 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    327 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    328 			return (EINVAL);
    329 		}
    330 
    331 		/*
    332 		 * Stack is allocated to the max at exec time with
    333 		 * only "rlim_cur" bytes accessible (In other words,
    334 		 * allocates stack dividing two contiguous regions at
    335 		 * "rlim_cur" bytes boundary).
    336 		 *
    337 		 * Since allocation is done in terms of page, roundup
    338 		 * "rlim_cur" (otherwise, contiguous regions
    339 		 * overlap).  If stack limit is going up make more
    340 		 * accessible, if going down make inaccessible.
    341 		 */
    342 		limp->rlim_cur = round_page(limp->rlim_cur);
    343 		if (limp->rlim_cur != alimp->rlim_cur) {
    344 			vaddr_t addr;
    345 			vsize_t size;
    346 			vm_prot_t prot;
    347 
    348 			if (limp->rlim_cur > alimp->rlim_cur) {
    349 				prot = VM_PROT_READ | VM_PROT_WRITE;
    350 				size = limp->rlim_cur - alimp->rlim_cur;
    351 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    352 				    limp->rlim_cur;
    353 			} else {
    354 				prot = VM_PROT_NONE;
    355 				size = alimp->rlim_cur - limp->rlim_cur;
    356 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    357 				     alimp->rlim_cur;
    358 			}
    359 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    360 			    addr, addr+size, prot, false);
    361 		}
    362 		break;
    363 
    364 	case RLIMIT_NOFILE:
    365 		if (limp->rlim_cur > maxfiles)
    366 			limp->rlim_cur = maxfiles;
    367 		if (limp->rlim_max > maxfiles)
    368 			limp->rlim_max = maxfiles;
    369 		break;
    370 
    371 	case RLIMIT_NPROC:
    372 		if (limp->rlim_cur > maxproc)
    373 			limp->rlim_cur = maxproc;
    374 		if (limp->rlim_max > maxproc)
    375 			limp->rlim_max = maxproc;
    376 		break;
    377 	}
    378 
    379 	mutex_enter(&p->p_limit->pl_lock);
    380 	*alimp = *limp;
    381 	mutex_exit(&p->p_limit->pl_lock);
    382 	return (0);
    383 }
    384 
    385 /* ARGSUSED */
    386 int
    387 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, register_t *retval)
    388 {
    389 	/* {
    390 		syscallarg(int) which;
    391 		syscallarg(struct rlimit *) rlp;
    392 	} */
    393 	struct proc *p = l->l_proc;
    394 	int which = SCARG(uap, which);
    395 	struct rlimit rl;
    396 
    397 	if ((u_int)which >= RLIM_NLIMITS)
    398 		return (EINVAL);
    399 
    400 	mutex_enter(&p->p_mutex);
    401 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    402 	mutex_exit(&p->p_mutex);
    403 
    404 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    405 }
    406 
    407 /*
    408  * Transform the running time and tick information in proc p into user,
    409  * system, and interrupt time usage.
    410  *
    411  * Should be called with p->p_smutex held unless called from exit1().
    412  */
    413 void
    414 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    415     struct timeval *ip, struct timeval *rp)
    416 {
    417 	uint64_t u, st, ut, it, tot;
    418 	struct lwp *l;
    419 	struct bintime tm;
    420 	struct timeval tv;
    421 
    422 	mutex_spin_enter(&p->p_stmutex);
    423 	st = p->p_sticks;
    424 	ut = p->p_uticks;
    425 	it = p->p_iticks;
    426 	mutex_spin_exit(&p->p_stmutex);
    427 
    428 	tm = p->p_rtime;
    429 
    430 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    431 		lwp_lock(l);
    432 		bintime_add(&tm, &l->l_rtime);
    433 		if ((l->l_flag & LW_RUNNING) != 0) {
    434 			struct bintime diff;
    435 			/*
    436 			 * Adjust for the current time slice.  This is
    437 			 * actually fairly important since the error
    438 			 * here is on the order of a time quantum,
    439 			 * which is much greater than the sampling
    440 			 * error.
    441 			 */
    442 			binuptime(&diff);
    443 			bintime_sub(&diff, &l->l_stime);
    444 			bintime_add(&tm, &diff);
    445 		}
    446 		lwp_unlock(l);
    447 	}
    448 
    449 	tot = st + ut + it;
    450 	bintime2timeval(&tm, &tv);
    451 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    452 
    453 	if (tot == 0) {
    454 		/* No ticks, so can't use to share time out, split 50-50 */
    455 		st = ut = u / 2;
    456 	} else {
    457 		st = (u * st) / tot;
    458 		ut = (u * ut) / tot;
    459 	}
    460 	if (sp != NULL) {
    461 		sp->tv_sec = st / 1000000;
    462 		sp->tv_usec = st % 1000000;
    463 	}
    464 	if (up != NULL) {
    465 		up->tv_sec = ut / 1000000;
    466 		up->tv_usec = ut % 1000000;
    467 	}
    468 	if (ip != NULL) {
    469 		if (it != 0)
    470 			it = (u * it) / tot;
    471 		ip->tv_sec = it / 1000000;
    472 		ip->tv_usec = it % 1000000;
    473 	}
    474 	if (rp != NULL) {
    475 		*rp = tv;
    476 	}
    477 }
    478 
    479 /* ARGSUSED */
    480 int
    481 sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap, register_t *retval)
    482 {
    483 	/* {
    484 		syscallarg(int) who;
    485 		syscallarg(struct rusage *) rusage;
    486 	} */
    487 	struct rusage ru;
    488 	struct proc *p = l->l_proc;
    489 
    490 	switch (SCARG(uap, who)) {
    491 	case RUSAGE_SELF:
    492 		mutex_enter(&p->p_smutex);
    493 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    494 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    495 		mutex_exit(&p->p_smutex);
    496 		break;
    497 
    498 	case RUSAGE_CHILDREN:
    499 		mutex_enter(&p->p_smutex);
    500 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    501 		mutex_exit(&p->p_smutex);
    502 		break;
    503 
    504 	default:
    505 		return EINVAL;
    506 	}
    507 
    508 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    509 }
    510 
    511 void
    512 ruadd(struct rusage *ru, struct rusage *ru2)
    513 {
    514 	long *ip, *ip2;
    515 	int i;
    516 
    517 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    518 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    519 	if (ru->ru_maxrss < ru2->ru_maxrss)
    520 		ru->ru_maxrss = ru2->ru_maxrss;
    521 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    522 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    523 		*ip++ += *ip2++;
    524 }
    525 
    526 /*
    527  * Make a copy of the plimit structure.
    528  * We share these structures copy-on-write after fork,
    529  * and copy when a limit is changed.
    530  *
    531  * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
    532  * we are copying to change beneath our feet!
    533  */
    534 struct plimit *
    535 lim_copy(struct plimit *lim)
    536 {
    537 	struct plimit *newlim;
    538 	char *corename;
    539 	size_t alen, len;
    540 
    541 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    542 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    543 	newlim->pl_flags = 0;
    544 	newlim->pl_refcnt = 1;
    545 	newlim->pl_sv_limit = NULL;
    546 
    547 	mutex_enter(&lim->pl_lock);
    548 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    549 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    550 
    551 	alen = 0;
    552 	corename = NULL;
    553 	for (;;) {
    554 		if (lim->pl_corename == defcorename) {
    555 			newlim->pl_corename = defcorename;
    556 			break;
    557 		}
    558 		len = strlen(lim->pl_corename) + 1;
    559 		if (len <= alen) {
    560 			newlim->pl_corename = corename;
    561 			memcpy(corename, lim->pl_corename, len);
    562 			corename = NULL;
    563 			break;
    564 		}
    565 		mutex_exit(&lim->pl_lock);
    566 		if (corename != NULL)
    567 			free(corename, M_TEMP);
    568 		alen = len;
    569 		corename = malloc(alen, M_TEMP, M_WAITOK);
    570 		mutex_enter(&lim->pl_lock);
    571 	}
    572 	mutex_exit(&lim->pl_lock);
    573 	if (corename != NULL)
    574 		free(corename, M_TEMP);
    575 	return newlim;
    576 }
    577 
    578 void
    579 lim_addref(struct plimit *lim)
    580 {
    581 	atomic_inc_uint(&lim->pl_refcnt);
    582 }
    583 
    584 /*
    585  * Give a process it's own private plimit structure.
    586  * This will only be shared (in fork) if modifications are to be shared.
    587  */
    588 void
    589 lim_privatise(struct proc *p, bool set_shared)
    590 {
    591 	struct plimit *lim, *newlim;
    592 
    593 	lim = p->p_limit;
    594 	if (lim->pl_flags & PL_WRITEABLE) {
    595 		if (set_shared)
    596 			lim->pl_flags |= PL_SHAREMOD;
    597 		return;
    598 	}
    599 
    600 	if (set_shared && lim->pl_flags & PL_SHAREMOD)
    601 		return;
    602 
    603 	newlim = lim_copy(lim);
    604 
    605 	mutex_enter(&p->p_mutex);
    606 	if (p->p_limit->pl_flags & PL_WRITEABLE) {
    607 		/* Someone crept in while we were busy */
    608 		mutex_exit(&p->p_mutex);
    609 		limfree(newlim);
    610 		if (set_shared)
    611 			p->p_limit->pl_flags |= PL_SHAREMOD;
    612 		return;
    613 	}
    614 
    615 	/*
    616 	 * Since most accesses to p->p_limit aren't locked, we must not
    617 	 * delete the old limit structure yet.
    618 	 */
    619 	newlim->pl_sv_limit = p->p_limit;
    620 	newlim->pl_flags |= PL_WRITEABLE;
    621 	if (set_shared)
    622 		newlim->pl_flags |= PL_SHAREMOD;
    623 	p->p_limit = newlim;
    624 	mutex_exit(&p->p_mutex);
    625 }
    626 
    627 void
    628 limfree(struct plimit *lim)
    629 {
    630 	struct plimit *sv_lim;
    631 
    632 	do {
    633 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
    634 			return;
    635 		if (lim->pl_corename != defcorename)
    636 			free(lim->pl_corename, M_TEMP);
    637 		sv_lim = lim->pl_sv_limit;
    638 		mutex_destroy(&lim->pl_lock);
    639 		pool_cache_put(plimit_cache, lim);
    640 	} while ((lim = sv_lim) != NULL);
    641 }
    642 
    643 struct pstats *
    644 pstatscopy(struct pstats *ps)
    645 {
    646 
    647 	struct pstats *newps;
    648 
    649 	newps = pool_cache_get(pstats_cache, PR_WAITOK);
    650 
    651 	memset(&newps->pstat_startzero, 0,
    652 	(unsigned) ((char *)&newps->pstat_endzero -
    653 		    (char *)&newps->pstat_startzero));
    654 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    655 	((char *)&newps->pstat_endcopy -
    656 	 (char *)&newps->pstat_startcopy));
    657 
    658 	return (newps);
    659 
    660 }
    661 
    662 void
    663 pstatsfree(struct pstats *ps)
    664 {
    665 
    666 	pool_cache_put(pstats_cache, ps);
    667 }
    668 
    669 /*
    670  * sysctl interface in five parts
    671  */
    672 
    673 /*
    674  * a routine for sysctl proc subtree helpers that need to pick a valid
    675  * process by pid.
    676  */
    677 static int
    678 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
    679 {
    680 	struct proc *ptmp;
    681 	int error = 0;
    682 
    683 	if (pid == PROC_CURPROC)
    684 		ptmp = l->l_proc;
    685 	else if ((ptmp = pfind(pid)) == NULL)
    686 		error = ESRCH;
    687 
    688 	*p2 = ptmp;
    689 	return (error);
    690 }
    691 
    692 /*
    693  * sysctl helper routine for setting a process's specific corefile
    694  * name.  picks the process based on the given pid and checks the
    695  * correctness of the new value.
    696  */
    697 static int
    698 sysctl_proc_corename(SYSCTLFN_ARGS)
    699 {
    700 	struct proc *ptmp;
    701 	struct plimit *lim;
    702 	int error = 0, len;
    703 	char *cname;
    704 	char *ocore;
    705 	char *tmp;
    706 	struct sysctlnode node;
    707 
    708 	/*
    709 	 * is this all correct?
    710 	 */
    711 	if (namelen != 0)
    712 		return (EINVAL);
    713 	if (name[-1] != PROC_PID_CORENAME)
    714 		return (EINVAL);
    715 
    716 	/*
    717 	 * whom are we tweaking?
    718 	 */
    719 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    720 	if (error)
    721 		return (error);
    722 
    723 	/* XXX-elad */
    724 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    725 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    726 	if (error)
    727 		return (error);
    728 
    729 	if (newp == NULL) {
    730 		error = kauth_authorize_process(l->l_cred,
    731 		    KAUTH_PROCESS_CORENAME, ptmp,
    732 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    733 		if (error)
    734 			return (error);
    735 	}
    736 
    737 	/*
    738 	 * let them modify a temporary copy of the core name
    739 	 */
    740 	cname = PNBUF_GET();
    741 	lim = ptmp->p_limit;
    742 	mutex_enter(&lim->pl_lock);
    743 	strlcpy(cname, lim->pl_corename, MAXPATHLEN);
    744 	mutex_exit(&lim->pl_lock);
    745 
    746 	node = *rnode;
    747 	node.sysctl_data = cname;
    748 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    749 
    750 	/*
    751 	 * if that failed, or they have nothing new to say, or we've
    752 	 * heard it before...
    753 	 */
    754 	if (error || newp == NULL)
    755 		goto done;
    756 	lim = ptmp->p_limit;
    757 	mutex_enter(&lim->pl_lock);
    758 	error = strcmp(cname, lim->pl_corename);
    759 	mutex_exit(&lim->pl_lock);
    760 	if (error == 0)
    761 		/* Unchanged */
    762 		goto done;
    763 
    764 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    765 	    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
    766 	if (error)
    767 		return (error);
    768 
    769 	/*
    770 	 * no error yet and cname now has the new core name in it.
    771 	 * let's see if it looks acceptable.  it must be either "core"
    772 	 * or end in ".core" or "/core".
    773 	 */
    774 	len = strlen(cname);
    775 	if (len < 4) {
    776 		error = EINVAL;
    777 	} else if (strcmp(cname + len - 4, "core") != 0) {
    778 		error = EINVAL;
    779 	} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
    780 		error = EINVAL;
    781 	}
    782 	if (error != 0) {
    783 		goto done;
    784 	}
    785 
    786 	/*
    787 	 * hmm...looks good.  now...where do we put it?
    788 	 */
    789 	tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
    790 	if (tmp == NULL) {
    791 		error = ENOMEM;
    792 		goto done;
    793 	}
    794 	memcpy(tmp, cname, len + 1);
    795 
    796 	lim_privatise(ptmp, false);
    797 	lim = ptmp->p_limit;
    798 	mutex_enter(&lim->pl_lock);
    799 	ocore = lim->pl_corename;
    800 	lim->pl_corename = tmp;
    801 	mutex_exit(&lim->pl_lock);
    802 	if (ocore != defcorename)
    803 		free(ocore, M_TEMP);
    804 
    805 done:
    806 	PNBUF_PUT(cname);
    807 	return error;
    808 }
    809 
    810 /*
    811  * sysctl helper routine for checking/setting a process's stop flags,
    812  * one for fork and one for exec.
    813  */
    814 static int
    815 sysctl_proc_stop(SYSCTLFN_ARGS)
    816 {
    817 	struct proc *ptmp;
    818 	int i, f, error = 0;
    819 	struct sysctlnode node;
    820 
    821 	if (namelen != 0)
    822 		return (EINVAL);
    823 
    824 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    825 	if (error)
    826 		return (error);
    827 
    828 	/* XXX-elad */
    829 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    830 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    831 	if (error)
    832 		return (error);
    833 
    834 	switch (rnode->sysctl_num) {
    835 	case PROC_PID_STOPFORK:
    836 		f = PS_STOPFORK;
    837 		break;
    838 	case PROC_PID_STOPEXEC:
    839 		f = PS_STOPEXEC;
    840 		break;
    841 	case PROC_PID_STOPEXIT:
    842 		f = PS_STOPEXIT;
    843 		break;
    844 	default:
    845 		return (EINVAL);
    846 	}
    847 
    848 	i = (ptmp->p_flag & f) ? 1 : 0;
    849 	node = *rnode;
    850 	node.sysctl_data = &i;
    851 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    852 	if (error || newp == NULL)
    853 		return (error);
    854 
    855 	mutex_enter(&ptmp->p_smutex);
    856 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    857 	    ptmp, KAUTH_ARG(f), NULL, NULL);
    858 	if (error)
    859 		return (error);
    860 	if (i)
    861 		ptmp->p_sflag |= f;
    862 	else
    863 		ptmp->p_sflag &= ~f;
    864 	mutex_exit(&ptmp->p_smutex);
    865 
    866 	return (0);
    867 }
    868 
    869 /*
    870  * sysctl helper routine for a process's rlimits as exposed by sysctl.
    871  */
    872 static int
    873 sysctl_proc_plimit(SYSCTLFN_ARGS)
    874 {
    875 	struct proc *ptmp;
    876 	u_int limitno;
    877 	int which, error = 0;
    878         struct rlimit alim;
    879 	struct sysctlnode node;
    880 
    881 	if (namelen != 0)
    882 		return (EINVAL);
    883 
    884 	which = name[-1];
    885 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    886 	    which != PROC_PID_LIMIT_TYPE_HARD)
    887 		return (EINVAL);
    888 
    889 	limitno = name[-2] - 1;
    890 	if (limitno >= RLIM_NLIMITS)
    891 		return (EINVAL);
    892 
    893 	if (name[-3] != PROC_PID_LIMIT)
    894 		return (EINVAL);
    895 
    896 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
    897 	if (error)
    898 		return (error);
    899 
    900 	/* XXX-elad */
    901 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    902 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    903 	if (error)
    904 		return (error);
    905 
    906 	/* Check if we can view limits. */
    907 	if (newp == NULL) {
    908 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    909 		    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
    910 		    KAUTH_ARG(which));
    911 		if (error)
    912 			return (error);
    913 	}
    914 
    915 	node = *rnode;
    916 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
    917 	if (which == PROC_PID_LIMIT_TYPE_HARD)
    918 		node.sysctl_data = &alim.rlim_max;
    919 	else
    920 		node.sysctl_data = &alim.rlim_cur;
    921 
    922 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    923 	if (error || newp == NULL)
    924 		return (error);
    925 
    926 	return (dosetrlimit(l, ptmp, limitno, &alim));
    927 }
    928 
    929 /*
    930  * and finally, the actually glue that sticks it to the tree
    931  */
    932 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
    933 {
    934 
    935 	sysctl_createv(clog, 0, NULL, NULL,
    936 		       CTLFLAG_PERMANENT,
    937 		       CTLTYPE_NODE, "proc", NULL,
    938 		       NULL, 0, NULL, 0,
    939 		       CTL_PROC, CTL_EOL);
    940 	sysctl_createv(clog, 0, NULL, NULL,
    941 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
    942 		       CTLTYPE_NODE, "curproc",
    943 		       SYSCTL_DESCR("Per-process settings"),
    944 		       NULL, 0, NULL, 0,
    945 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
    946 
    947 	sysctl_createv(clog, 0, NULL, NULL,
    948 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    949 		       CTLTYPE_STRING, "corename",
    950 		       SYSCTL_DESCR("Core file name"),
    951 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
    952 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
    953 	sysctl_createv(clog, 0, NULL, NULL,
    954 		       CTLFLAG_PERMANENT,
    955 		       CTLTYPE_NODE, "rlimit",
    956 		       SYSCTL_DESCR("Process limits"),
    957 		       NULL, 0, NULL, 0,
    958 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
    959 
    960 #define create_proc_plimit(s, n) do {					\
    961 	sysctl_createv(clog, 0, NULL, NULL,				\
    962 		       CTLFLAG_PERMANENT,				\
    963 		       CTLTYPE_NODE, s,					\
    964 		       SYSCTL_DESCR("Process " s " limits"),		\
    965 		       NULL, 0, NULL, 0,				\
    966 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    967 		       CTL_EOL);					\
    968 	sysctl_createv(clog, 0, NULL, NULL,				\
    969 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    970 		       CTLTYPE_QUAD, "soft",				\
    971 		       SYSCTL_DESCR("Process soft " s " limit"),	\
    972 		       sysctl_proc_plimit, 0, NULL, 0,			\
    973 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    974 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
    975 	sysctl_createv(clog, 0, NULL, NULL,				\
    976 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    977 		       CTLTYPE_QUAD, "hard",				\
    978 		       SYSCTL_DESCR("Process hard " s " limit"),	\
    979 		       sysctl_proc_plimit, 0, NULL, 0,			\
    980 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    981 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
    982 	} while (0/*CONSTCOND*/)
    983 
    984 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
    985 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
    986 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
    987 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
    988 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
    989 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
    990 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
    991 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
    992 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
    993 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
    994 
    995 #undef create_proc_plimit
    996 
    997 	sysctl_createv(clog, 0, NULL, NULL,
    998 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    999 		       CTLTYPE_INT, "stopfork",
   1000 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1001 		       sysctl_proc_stop, 0, NULL, 0,
   1002 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1003 	sysctl_createv(clog, 0, NULL, NULL,
   1004 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1005 		       CTLTYPE_INT, "stopexec",
   1006 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1007 		       sysctl_proc_stop, 0, NULL, 0,
   1008 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1009 	sysctl_createv(clog, 0, NULL, NULL,
   1010 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1011 		       CTLTYPE_INT, "stopexit",
   1012 		       SYSCTL_DESCR("Stop process before completing exit"),
   1013 		       sysctl_proc_stop, 0, NULL, 0,
   1014 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1015 }
   1016 
   1017 void
   1018 uid_init(void)
   1019 {
   1020 
   1021 	/*
   1022 	 * XXXSMP This could be at IPL_SOFTNET, but for now we want
   1023 	 * to to be deadlock free, so it must be at IPL_VM.
   1024 	 */
   1025 	mutex_init(&uihashtbl_lock, MUTEX_DEFAULT, IPL_VM);
   1026 
   1027 	/*
   1028 	 * Ensure that uid 0 is always in the user hash table, as
   1029 	 * sbreserve() expects it available from interrupt context.
   1030 	 */
   1031 	(void)uid_find(0);
   1032 }
   1033 
   1034 struct uidinfo *
   1035 uid_find(uid_t uid)
   1036 {
   1037 	struct uidinfo *uip;
   1038 	struct uidinfo *newuip = NULL;
   1039 	struct uihashhead *uipp;
   1040 
   1041 	uipp = UIHASH(uid);
   1042 
   1043 again:
   1044 	mutex_enter(&uihashtbl_lock);
   1045 	LIST_FOREACH(uip, uipp, ui_hash)
   1046 		if (uip->ui_uid == uid) {
   1047 			mutex_exit(&uihashtbl_lock);
   1048 			if (newuip) {
   1049 				mutex_destroy(&newuip->ui_lock);
   1050 				kmem_free(newuip, sizeof(*newuip));
   1051 			}
   1052 			return uip;
   1053 		}
   1054 	if (newuip == NULL) {
   1055 		mutex_exit(&uihashtbl_lock);
   1056 		/* Must not be called from interrupt context. */
   1057 		newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
   1058 		/* XXX this could be IPL_SOFTNET */
   1059 		mutex_init(&newuip->ui_lock, MUTEX_DEFAULT, IPL_VM);
   1060 		goto again;
   1061 	}
   1062 	uip = newuip;
   1063 
   1064 	LIST_INSERT_HEAD(uipp, uip, ui_hash);
   1065 	uip->ui_uid = uid;
   1066 	mutex_exit(&uihashtbl_lock);
   1067 
   1068 	return uip;
   1069 }
   1070 
   1071 /*
   1072  * Change the count associated with number of processes
   1073  * a given user is using.
   1074  */
   1075 int
   1076 chgproccnt(uid_t uid, int diff)
   1077 {
   1078 	struct uidinfo *uip;
   1079 
   1080 	uip = uid_find(uid);
   1081 	mutex_enter(&uip->ui_lock);
   1082 	uip->ui_proccnt += diff;
   1083 	KASSERT(uip->ui_proccnt >= 0);
   1084 	mutex_exit(&uip->ui_lock);
   1085 	return uip->ui_proccnt;
   1086 }
   1087 
   1088 int
   1089 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
   1090 {
   1091 	rlim_t nsb;
   1092 
   1093 	mutex_enter(&uip->ui_lock);
   1094 	nsb = uip->ui_sbsize + to - *hiwat;
   1095 	if (to > *hiwat && nsb > xmax) {
   1096 		mutex_exit(&uip->ui_lock);
   1097 		return 0;
   1098 	}
   1099 	*hiwat = to;
   1100 	uip->ui_sbsize = nsb;
   1101 	KASSERT(uip->ui_sbsize >= 0);
   1102 	mutex_exit(&uip->ui_lock);
   1103 	return 1;
   1104 }
   1105