kern_resource.c revision 1.98.2.11 1 /* $NetBSD: kern_resource.c,v 1.98.2.11 2008/03/17 09:15:33 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.98.2.11 2008/03/17 09:15:33 yamt Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/kmem.h>
49 #include <sys/namei.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/timevar.h>
54 #include <sys/kauth.h>
55 #include <sys/atomic.h>
56 #include <sys/mount.h>
57 #include <sys/syscallargs.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Maximum process data and stack limits.
63 * They are variables so they are patchable.
64 */
65 rlim_t maxdmap = MAXDSIZ;
66 rlim_t maxsmap = MAXSSIZ;
67
68 static kmutex_t uihashtbl_lock;
69 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
70 static u_long uihash;
71
72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash])
73
74 static pool_cache_t plimit_cache;
75 static pool_cache_t pstats_cache;
76
77 void
78 resource_init(void)
79 {
80
81 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
82 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
83 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
84 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
85 uihashtbl = hashinit(maxproc / 16, HASH_LIST, M_PROC,
86 M_WAITOK, &uihash);
87 }
88
89 /*
90 * Resource controls and accounting.
91 */
92
93 int
94 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
95 register_t *retval)
96 {
97 /* {
98 syscallarg(int) which;
99 syscallarg(id_t) who;
100 } */
101 struct proc *curp = l->l_proc, *p;
102 int low = NZERO + PRIO_MAX + 1;
103 int who = SCARG(uap, who);
104
105 mutex_enter(&proclist_lock);
106 switch (SCARG(uap, which)) {
107 case PRIO_PROCESS:
108 if (who == 0)
109 p = curp;
110 else
111 p = p_find(who, PFIND_LOCKED);
112 if (p != NULL)
113 low = p->p_nice;
114 break;
115
116 case PRIO_PGRP: {
117 struct pgrp *pg;
118
119 if (who == 0)
120 pg = curp->p_pgrp;
121 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
122 break;
123 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
124 if (p->p_nice < low)
125 low = p->p_nice;
126 }
127 break;
128 }
129
130 case PRIO_USER:
131 if (who == 0)
132 who = (int)kauth_cred_geteuid(l->l_cred);
133 PROCLIST_FOREACH(p, &allproc) {
134 mutex_enter(&p->p_mutex);
135 if (kauth_cred_geteuid(p->p_cred) ==
136 (uid_t)who && p->p_nice < low)
137 low = p->p_nice;
138 mutex_exit(&p->p_mutex);
139 }
140 break;
141
142 default:
143 mutex_exit(&proclist_lock);
144 return (EINVAL);
145 }
146 mutex_exit(&proclist_lock);
147
148 if (low == NZERO + PRIO_MAX + 1)
149 return (ESRCH);
150 *retval = low - NZERO;
151 return (0);
152 }
153
154 /* ARGSUSED */
155 int
156 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
157 register_t *retval)
158 {
159 /* {
160 syscallarg(int) which;
161 syscallarg(id_t) who;
162 syscallarg(int) prio;
163 } */
164 struct proc *curp = l->l_proc, *p;
165 int found = 0, error = 0;
166 int who = SCARG(uap, who);
167
168 mutex_enter(&proclist_lock);
169 switch (SCARG(uap, which)) {
170 case PRIO_PROCESS:
171 if (who == 0)
172 p = curp;
173 else
174 p = p_find(who, PFIND_LOCKED);
175 if (p != 0) {
176 mutex_enter(&p->p_mutex);
177 error = donice(l, p, SCARG(uap, prio));
178 mutex_exit(&p->p_mutex);
179 }
180 found++;
181 break;
182
183 case PRIO_PGRP: {
184 struct pgrp *pg;
185
186 if (who == 0)
187 pg = curp->p_pgrp;
188 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
189 break;
190 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
191 mutex_enter(&p->p_mutex);
192 error = donice(l, p, SCARG(uap, prio));
193 mutex_exit(&p->p_mutex);
194 found++;
195 }
196 break;
197 }
198
199 case PRIO_USER:
200 if (who == 0)
201 who = (int)kauth_cred_geteuid(l->l_cred);
202 PROCLIST_FOREACH(p, &allproc) {
203 mutex_enter(&p->p_mutex);
204 if (kauth_cred_geteuid(p->p_cred) ==
205 (uid_t)SCARG(uap, who)) {
206 error = donice(l, p, SCARG(uap, prio));
207 found++;
208 }
209 mutex_exit(&p->p_mutex);
210 }
211 break;
212
213 default:
214 error = EINVAL;
215 break;
216 }
217 mutex_exit(&proclist_lock);
218 if (found == 0)
219 return (ESRCH);
220 return (error);
221 }
222
223 /*
224 * Renice a process.
225 *
226 * Call with the target process' credentials locked.
227 */
228 int
229 donice(struct lwp *l, struct proc *chgp, int n)
230 {
231 kauth_cred_t cred = l->l_cred;
232 int onice;
233
234 KASSERT(mutex_owned(&chgp->p_mutex));
235
236 if (n > PRIO_MAX)
237 n = PRIO_MAX;
238 if (n < PRIO_MIN)
239 n = PRIO_MIN;
240 n += NZERO;
241 onice = chgp->p_nice;
242 onice = chgp->p_nice;
243
244 again:
245 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
246 KAUTH_ARG(n), NULL, NULL))
247 return (EACCES);
248 mutex_spin_enter(&chgp->p_smutex);
249 if (onice != chgp->p_nice) {
250 mutex_spin_exit(&chgp->p_smutex);
251 goto again;
252 }
253 sched_nice(chgp, n);
254 mutex_spin_exit(&chgp->p_smutex);
255 return (0);
256 }
257
258 /* ARGSUSED */
259 int
260 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
261 register_t *retval)
262 {
263 /* {
264 syscallarg(int) which;
265 syscallarg(const struct rlimit *) rlp;
266 } */
267 int which = SCARG(uap, which);
268 struct rlimit alim;
269 int error;
270
271 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
272 if (error)
273 return (error);
274 return (dosetrlimit(l, l->l_proc, which, &alim));
275 }
276
277 int
278 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
279 {
280 struct rlimit *alimp;
281 int error;
282
283 if ((u_int)which >= RLIM_NLIMITS)
284 return (EINVAL);
285
286 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
287 return (EINVAL);
288
289 if (limp->rlim_cur > limp->rlim_max) {
290 /*
291 * This is programming error. According to SUSv2, we should
292 * return error in this case.
293 */
294 return (EINVAL);
295 }
296
297 alimp = &p->p_rlimit[which];
298 /* if we don't change the value, no need to limcopy() */
299 if (limp->rlim_cur == alimp->rlim_cur &&
300 limp->rlim_max == alimp->rlim_max)
301 return 0;
302
303 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
304 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
305 if (error)
306 return (error);
307
308 lim_privatise(p, false);
309 /* p->p_limit is now unchangeable */
310 alimp = &p->p_rlimit[which];
311
312 switch (which) {
313
314 case RLIMIT_DATA:
315 if (limp->rlim_cur > maxdmap)
316 limp->rlim_cur = maxdmap;
317 if (limp->rlim_max > maxdmap)
318 limp->rlim_max = maxdmap;
319 break;
320
321 case RLIMIT_STACK:
322 if (limp->rlim_cur > maxsmap)
323 limp->rlim_cur = maxsmap;
324 if (limp->rlim_max > maxsmap)
325 limp->rlim_max = maxsmap;
326
327 /*
328 * Return EINVAL if the new stack size limit is lower than
329 * current usage. Otherwise, the process would get SIGSEGV the
330 * moment it would try to access anything on it's current stack.
331 * This conforms to SUSv2.
332 */
333 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
334 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
335 return (EINVAL);
336 }
337
338 /*
339 * Stack is allocated to the max at exec time with
340 * only "rlim_cur" bytes accessible (In other words,
341 * allocates stack dividing two contiguous regions at
342 * "rlim_cur" bytes boundary).
343 *
344 * Since allocation is done in terms of page, roundup
345 * "rlim_cur" (otherwise, contiguous regions
346 * overlap). If stack limit is going up make more
347 * accessible, if going down make inaccessible.
348 */
349 limp->rlim_cur = round_page(limp->rlim_cur);
350 if (limp->rlim_cur != alimp->rlim_cur) {
351 vaddr_t addr;
352 vsize_t size;
353 vm_prot_t prot;
354
355 if (limp->rlim_cur > alimp->rlim_cur) {
356 prot = VM_PROT_READ | VM_PROT_WRITE;
357 size = limp->rlim_cur - alimp->rlim_cur;
358 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
359 limp->rlim_cur;
360 } else {
361 prot = VM_PROT_NONE;
362 size = alimp->rlim_cur - limp->rlim_cur;
363 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
364 alimp->rlim_cur;
365 }
366 (void) uvm_map_protect(&p->p_vmspace->vm_map,
367 addr, addr+size, prot, false);
368 }
369 break;
370
371 case RLIMIT_NOFILE:
372 if (limp->rlim_cur > maxfiles)
373 limp->rlim_cur = maxfiles;
374 if (limp->rlim_max > maxfiles)
375 limp->rlim_max = maxfiles;
376 break;
377
378 case RLIMIT_NPROC:
379 if (limp->rlim_cur > maxproc)
380 limp->rlim_cur = maxproc;
381 if (limp->rlim_max > maxproc)
382 limp->rlim_max = maxproc;
383 break;
384 }
385
386 mutex_enter(&p->p_limit->pl_lock);
387 *alimp = *limp;
388 mutex_exit(&p->p_limit->pl_lock);
389 return (0);
390 }
391
392 /* ARGSUSED */
393 int
394 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
395 register_t *retval)
396 {
397 /* {
398 syscallarg(int) which;
399 syscallarg(struct rlimit *) rlp;
400 } */
401 struct proc *p = l->l_proc;
402 int which = SCARG(uap, which);
403 struct rlimit rl;
404
405 if ((u_int)which >= RLIM_NLIMITS)
406 return (EINVAL);
407
408 mutex_enter(&p->p_mutex);
409 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
410 mutex_exit(&p->p_mutex);
411
412 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
413 }
414
415 /*
416 * Transform the running time and tick information in proc p into user,
417 * system, and interrupt time usage.
418 *
419 * Should be called with p->p_smutex held unless called from exit1().
420 */
421 void
422 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
423 struct timeval *ip, struct timeval *rp)
424 {
425 uint64_t u, st, ut, it, tot;
426 struct lwp *l;
427 struct bintime tm;
428 struct timeval tv;
429
430 mutex_spin_enter(&p->p_stmutex);
431 st = p->p_sticks;
432 ut = p->p_uticks;
433 it = p->p_iticks;
434 mutex_spin_exit(&p->p_stmutex);
435
436 tm = p->p_rtime;
437
438 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
439 lwp_lock(l);
440 bintime_add(&tm, &l->l_rtime);
441 if ((l->l_flag & LW_RUNNING) != 0) {
442 struct bintime diff;
443 /*
444 * Adjust for the current time slice. This is
445 * actually fairly important since the error
446 * here is on the order of a time quantum,
447 * which is much greater than the sampling
448 * error.
449 */
450 binuptime(&diff);
451 bintime_sub(&diff, &l->l_stime);
452 bintime_add(&tm, &diff);
453 }
454 lwp_unlock(l);
455 }
456
457 tot = st + ut + it;
458 bintime2timeval(&tm, &tv);
459 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
460
461 if (tot == 0) {
462 /* No ticks, so can't use to share time out, split 50-50 */
463 st = ut = u / 2;
464 } else {
465 st = (u * st) / tot;
466 ut = (u * ut) / tot;
467 }
468 if (sp != NULL) {
469 sp->tv_sec = st / 1000000;
470 sp->tv_usec = st % 1000000;
471 }
472 if (up != NULL) {
473 up->tv_sec = ut / 1000000;
474 up->tv_usec = ut % 1000000;
475 }
476 if (ip != NULL) {
477 if (it != 0)
478 it = (u * it) / tot;
479 ip->tv_sec = it / 1000000;
480 ip->tv_usec = it % 1000000;
481 }
482 if (rp != NULL) {
483 *rp = tv;
484 }
485 }
486
487 /* ARGSUSED */
488 int
489 sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap,
490 register_t *retval)
491 {
492 /* {
493 syscallarg(int) who;
494 syscallarg(struct rusage *) rusage;
495 } */
496 struct rusage ru;
497 struct proc *p = l->l_proc;
498
499 switch (SCARG(uap, who)) {
500 case RUSAGE_SELF:
501 mutex_enter(&p->p_smutex);
502 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
503 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
504 mutex_exit(&p->p_smutex);
505 break;
506
507 case RUSAGE_CHILDREN:
508 mutex_enter(&p->p_smutex);
509 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
510 mutex_exit(&p->p_smutex);
511 break;
512
513 default:
514 return EINVAL;
515 }
516
517 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
518 }
519
520 void
521 ruadd(struct rusage *ru, struct rusage *ru2)
522 {
523 long *ip, *ip2;
524 int i;
525
526 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
527 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
528 if (ru->ru_maxrss < ru2->ru_maxrss)
529 ru->ru_maxrss = ru2->ru_maxrss;
530 ip = &ru->ru_first; ip2 = &ru2->ru_first;
531 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
532 *ip++ += *ip2++;
533 }
534
535 /*
536 * Make a copy of the plimit structure.
537 * We share these structures copy-on-write after fork,
538 * and copy when a limit is changed.
539 *
540 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
541 * we are copying to change beneath our feet!
542 */
543 struct plimit *
544 lim_copy(struct plimit *lim)
545 {
546 struct plimit *newlim;
547 char *corename;
548 size_t alen, len;
549
550 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
551 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
552 newlim->pl_flags = 0;
553 newlim->pl_refcnt = 1;
554 newlim->pl_sv_limit = NULL;
555
556 mutex_enter(&lim->pl_lock);
557 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
558 sizeof(struct rlimit) * RLIM_NLIMITS);
559
560 alen = 0;
561 corename = NULL;
562 for (;;) {
563 if (lim->pl_corename == defcorename) {
564 newlim->pl_corename = defcorename;
565 break;
566 }
567 len = strlen(lim->pl_corename) + 1;
568 if (len <= alen) {
569 newlim->pl_corename = corename;
570 memcpy(corename, lim->pl_corename, len);
571 corename = NULL;
572 break;
573 }
574 mutex_exit(&lim->pl_lock);
575 if (corename != NULL)
576 free(corename, M_TEMP);
577 alen = len;
578 corename = malloc(alen, M_TEMP, M_WAITOK);
579 mutex_enter(&lim->pl_lock);
580 }
581 mutex_exit(&lim->pl_lock);
582 if (corename != NULL)
583 free(corename, M_TEMP);
584 return newlim;
585 }
586
587 void
588 lim_addref(struct plimit *lim)
589 {
590 atomic_inc_uint(&lim->pl_refcnt);
591 }
592
593 /*
594 * Give a process it's own private plimit structure.
595 * This will only be shared (in fork) if modifications are to be shared.
596 */
597 void
598 lim_privatise(struct proc *p, bool set_shared)
599 {
600 struct plimit *lim, *newlim;
601
602 lim = p->p_limit;
603 if (lim->pl_flags & PL_WRITEABLE) {
604 if (set_shared)
605 lim->pl_flags |= PL_SHAREMOD;
606 return;
607 }
608
609 if (set_shared && lim->pl_flags & PL_SHAREMOD)
610 return;
611
612 newlim = lim_copy(lim);
613
614 mutex_enter(&p->p_mutex);
615 if (p->p_limit->pl_flags & PL_WRITEABLE) {
616 /* Someone crept in while we were busy */
617 mutex_exit(&p->p_mutex);
618 limfree(newlim);
619 if (set_shared)
620 p->p_limit->pl_flags |= PL_SHAREMOD;
621 return;
622 }
623
624 /*
625 * Since most accesses to p->p_limit aren't locked, we must not
626 * delete the old limit structure yet.
627 */
628 newlim->pl_sv_limit = p->p_limit;
629 newlim->pl_flags |= PL_WRITEABLE;
630 if (set_shared)
631 newlim->pl_flags |= PL_SHAREMOD;
632 p->p_limit = newlim;
633 mutex_exit(&p->p_mutex);
634 }
635
636 void
637 limfree(struct plimit *lim)
638 {
639 struct plimit *sv_lim;
640
641 do {
642 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
643 return;
644 if (lim->pl_corename != defcorename)
645 free(lim->pl_corename, M_TEMP);
646 sv_lim = lim->pl_sv_limit;
647 mutex_destroy(&lim->pl_lock);
648 pool_cache_put(plimit_cache, lim);
649 } while ((lim = sv_lim) != NULL);
650 }
651
652 struct pstats *
653 pstatscopy(struct pstats *ps)
654 {
655
656 struct pstats *newps;
657
658 newps = pool_cache_get(pstats_cache, PR_WAITOK);
659
660 memset(&newps->pstat_startzero, 0,
661 (unsigned) ((char *)&newps->pstat_endzero -
662 (char *)&newps->pstat_startzero));
663 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
664 ((char *)&newps->pstat_endcopy -
665 (char *)&newps->pstat_startcopy));
666
667 return (newps);
668
669 }
670
671 void
672 pstatsfree(struct pstats *ps)
673 {
674
675 pool_cache_put(pstats_cache, ps);
676 }
677
678 /*
679 * sysctl interface in five parts
680 */
681
682 /*
683 * a routine for sysctl proc subtree helpers that need to pick a valid
684 * process by pid.
685 */
686 static int
687 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
688 {
689 struct proc *ptmp;
690 int error = 0;
691
692 if (pid == PROC_CURPROC)
693 ptmp = l->l_proc;
694 else if ((ptmp = pfind(pid)) == NULL)
695 error = ESRCH;
696
697 *p2 = ptmp;
698 return (error);
699 }
700
701 /*
702 * sysctl helper routine for setting a process's specific corefile
703 * name. picks the process based on the given pid and checks the
704 * correctness of the new value.
705 */
706 static int
707 sysctl_proc_corename(SYSCTLFN_ARGS)
708 {
709 struct proc *ptmp;
710 struct plimit *lim;
711 int error = 0, len;
712 char *cname;
713 char *ocore;
714 char *tmp;
715 struct sysctlnode node;
716
717 /*
718 * is this all correct?
719 */
720 if (namelen != 0)
721 return (EINVAL);
722 if (name[-1] != PROC_PID_CORENAME)
723 return (EINVAL);
724
725 /*
726 * whom are we tweaking?
727 */
728 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
729 if (error)
730 return (error);
731
732 /* XXX-elad */
733 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
734 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
735 if (error)
736 return (error);
737
738 if (newp == NULL) {
739 error = kauth_authorize_process(l->l_cred,
740 KAUTH_PROCESS_CORENAME, ptmp,
741 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
742 if (error)
743 return (error);
744 }
745
746 /*
747 * let them modify a temporary copy of the core name
748 */
749 cname = PNBUF_GET();
750 lim = ptmp->p_limit;
751 mutex_enter(&lim->pl_lock);
752 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
753 mutex_exit(&lim->pl_lock);
754
755 node = *rnode;
756 node.sysctl_data = cname;
757 error = sysctl_lookup(SYSCTLFN_CALL(&node));
758
759 /*
760 * if that failed, or they have nothing new to say, or we've
761 * heard it before...
762 */
763 if (error || newp == NULL)
764 goto done;
765 lim = ptmp->p_limit;
766 mutex_enter(&lim->pl_lock);
767 error = strcmp(cname, lim->pl_corename);
768 mutex_exit(&lim->pl_lock);
769 if (error == 0)
770 /* Unchanged */
771 goto done;
772
773 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
774 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
775 if (error)
776 return (error);
777
778 /*
779 * no error yet and cname now has the new core name in it.
780 * let's see if it looks acceptable. it must be either "core"
781 * or end in ".core" or "/core".
782 */
783 len = strlen(cname);
784 if (len < 4) {
785 error = EINVAL;
786 } else if (strcmp(cname + len - 4, "core") != 0) {
787 error = EINVAL;
788 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
789 error = EINVAL;
790 }
791 if (error != 0) {
792 goto done;
793 }
794
795 /*
796 * hmm...looks good. now...where do we put it?
797 */
798 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
799 if (tmp == NULL) {
800 error = ENOMEM;
801 goto done;
802 }
803 memcpy(tmp, cname, len + 1);
804
805 lim_privatise(ptmp, false);
806 lim = ptmp->p_limit;
807 mutex_enter(&lim->pl_lock);
808 ocore = lim->pl_corename;
809 lim->pl_corename = tmp;
810 mutex_exit(&lim->pl_lock);
811 if (ocore != defcorename)
812 free(ocore, M_TEMP);
813
814 done:
815 PNBUF_PUT(cname);
816 return error;
817 }
818
819 /*
820 * sysctl helper routine for checking/setting a process's stop flags,
821 * one for fork and one for exec.
822 */
823 static int
824 sysctl_proc_stop(SYSCTLFN_ARGS)
825 {
826 struct proc *ptmp;
827 int i, f, error = 0;
828 struct sysctlnode node;
829
830 if (namelen != 0)
831 return (EINVAL);
832
833 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
834 if (error)
835 return (error);
836
837 /* XXX-elad */
838 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
839 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
840 if (error)
841 return (error);
842
843 switch (rnode->sysctl_num) {
844 case PROC_PID_STOPFORK:
845 f = PS_STOPFORK;
846 break;
847 case PROC_PID_STOPEXEC:
848 f = PS_STOPEXEC;
849 break;
850 case PROC_PID_STOPEXIT:
851 f = PS_STOPEXIT;
852 break;
853 default:
854 return (EINVAL);
855 }
856
857 i = (ptmp->p_flag & f) ? 1 : 0;
858 node = *rnode;
859 node.sysctl_data = &i;
860 error = sysctl_lookup(SYSCTLFN_CALL(&node));
861 if (error || newp == NULL)
862 return (error);
863
864 mutex_enter(&ptmp->p_smutex);
865 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
866 ptmp, KAUTH_ARG(f), NULL, NULL);
867 if (error)
868 return (error);
869 if (i)
870 ptmp->p_sflag |= f;
871 else
872 ptmp->p_sflag &= ~f;
873 mutex_exit(&ptmp->p_smutex);
874
875 return (0);
876 }
877
878 /*
879 * sysctl helper routine for a process's rlimits as exposed by sysctl.
880 */
881 static int
882 sysctl_proc_plimit(SYSCTLFN_ARGS)
883 {
884 struct proc *ptmp;
885 u_int limitno;
886 int which, error = 0;
887 struct rlimit alim;
888 struct sysctlnode node;
889
890 if (namelen != 0)
891 return (EINVAL);
892
893 which = name[-1];
894 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
895 which != PROC_PID_LIMIT_TYPE_HARD)
896 return (EINVAL);
897
898 limitno = name[-2] - 1;
899 if (limitno >= RLIM_NLIMITS)
900 return (EINVAL);
901
902 if (name[-3] != PROC_PID_LIMIT)
903 return (EINVAL);
904
905 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
906 if (error)
907 return (error);
908
909 /* XXX-elad */
910 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
911 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
912 if (error)
913 return (error);
914
915 /* Check if we can view limits. */
916 if (newp == NULL) {
917 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
918 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
919 KAUTH_ARG(which));
920 if (error)
921 return (error);
922 }
923
924 node = *rnode;
925 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
926 if (which == PROC_PID_LIMIT_TYPE_HARD)
927 node.sysctl_data = &alim.rlim_max;
928 else
929 node.sysctl_data = &alim.rlim_cur;
930
931 error = sysctl_lookup(SYSCTLFN_CALL(&node));
932 if (error || newp == NULL)
933 return (error);
934
935 return (dosetrlimit(l, ptmp, limitno, &alim));
936 }
937
938 /*
939 * and finally, the actually glue that sticks it to the tree
940 */
941 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
942 {
943
944 sysctl_createv(clog, 0, NULL, NULL,
945 CTLFLAG_PERMANENT,
946 CTLTYPE_NODE, "proc", NULL,
947 NULL, 0, NULL, 0,
948 CTL_PROC, CTL_EOL);
949 sysctl_createv(clog, 0, NULL, NULL,
950 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
951 CTLTYPE_NODE, "curproc",
952 SYSCTL_DESCR("Per-process settings"),
953 NULL, 0, NULL, 0,
954 CTL_PROC, PROC_CURPROC, CTL_EOL);
955
956 sysctl_createv(clog, 0, NULL, NULL,
957 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
958 CTLTYPE_STRING, "corename",
959 SYSCTL_DESCR("Core file name"),
960 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
961 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
962 sysctl_createv(clog, 0, NULL, NULL,
963 CTLFLAG_PERMANENT,
964 CTLTYPE_NODE, "rlimit",
965 SYSCTL_DESCR("Process limits"),
966 NULL, 0, NULL, 0,
967 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
968
969 #define create_proc_plimit(s, n) do { \
970 sysctl_createv(clog, 0, NULL, NULL, \
971 CTLFLAG_PERMANENT, \
972 CTLTYPE_NODE, s, \
973 SYSCTL_DESCR("Process " s " limits"), \
974 NULL, 0, NULL, 0, \
975 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
976 CTL_EOL); \
977 sysctl_createv(clog, 0, NULL, NULL, \
978 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
979 CTLTYPE_QUAD, "soft", \
980 SYSCTL_DESCR("Process soft " s " limit"), \
981 sysctl_proc_plimit, 0, NULL, 0, \
982 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
983 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
984 sysctl_createv(clog, 0, NULL, NULL, \
985 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
986 CTLTYPE_QUAD, "hard", \
987 SYSCTL_DESCR("Process hard " s " limit"), \
988 sysctl_proc_plimit, 0, NULL, 0, \
989 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
990 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
991 } while (0/*CONSTCOND*/)
992
993 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
994 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
995 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
996 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
997 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
998 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
999 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1000 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1001 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1002 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1003
1004 #undef create_proc_plimit
1005
1006 sysctl_createv(clog, 0, NULL, NULL,
1007 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1008 CTLTYPE_INT, "stopfork",
1009 SYSCTL_DESCR("Stop process at fork(2)"),
1010 sysctl_proc_stop, 0, NULL, 0,
1011 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1012 sysctl_createv(clog, 0, NULL, NULL,
1013 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1014 CTLTYPE_INT, "stopexec",
1015 SYSCTL_DESCR("Stop process at execve(2)"),
1016 sysctl_proc_stop, 0, NULL, 0,
1017 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1018 sysctl_createv(clog, 0, NULL, NULL,
1019 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1020 CTLTYPE_INT, "stopexit",
1021 SYSCTL_DESCR("Stop process before completing exit"),
1022 sysctl_proc_stop, 0, NULL, 0,
1023 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1024 }
1025
1026 void
1027 uid_init(void)
1028 {
1029
1030 /*
1031 * XXXSMP This could be at IPL_SOFTNET, but for now we want
1032 * to to be deadlock free, so it must be at IPL_VM.
1033 */
1034 mutex_init(&uihashtbl_lock, MUTEX_DEFAULT, IPL_VM);
1035
1036 /*
1037 * Ensure that uid 0 is always in the user hash table, as
1038 * sbreserve() expects it available from interrupt context.
1039 */
1040 (void)uid_find(0);
1041 }
1042
1043 struct uidinfo *
1044 uid_find(uid_t uid)
1045 {
1046 struct uidinfo *uip;
1047 struct uidinfo *newuip = NULL;
1048 struct uihashhead *uipp;
1049
1050 uipp = UIHASH(uid);
1051
1052 again:
1053 mutex_enter(&uihashtbl_lock);
1054 LIST_FOREACH(uip, uipp, ui_hash)
1055 if (uip->ui_uid == uid) {
1056 mutex_exit(&uihashtbl_lock);
1057 if (newuip) {
1058 mutex_destroy(&newuip->ui_lock);
1059 kmem_free(newuip, sizeof(*newuip));
1060 }
1061 return uip;
1062 }
1063 if (newuip == NULL) {
1064 mutex_exit(&uihashtbl_lock);
1065 /* Must not be called from interrupt context. */
1066 newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
1067 /* XXX this could be IPL_SOFTNET */
1068 mutex_init(&newuip->ui_lock, MUTEX_DEFAULT, IPL_VM);
1069 goto again;
1070 }
1071 uip = newuip;
1072
1073 LIST_INSERT_HEAD(uipp, uip, ui_hash);
1074 uip->ui_uid = uid;
1075 mutex_exit(&uihashtbl_lock);
1076
1077 return uip;
1078 }
1079
1080 /*
1081 * Change the count associated with number of processes
1082 * a given user is using.
1083 */
1084 int
1085 chgproccnt(uid_t uid, int diff)
1086 {
1087 struct uidinfo *uip;
1088
1089 uip = uid_find(uid);
1090 mutex_enter(&uip->ui_lock);
1091 uip->ui_proccnt += diff;
1092 KASSERT(uip->ui_proccnt >= 0);
1093 mutex_exit(&uip->ui_lock);
1094 return uip->ui_proccnt;
1095 }
1096
1097 int
1098 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1099 {
1100 rlim_t nsb;
1101
1102 mutex_enter(&uip->ui_lock);
1103 nsb = uip->ui_sbsize + to - *hiwat;
1104 if (to > *hiwat && nsb > xmax) {
1105 mutex_exit(&uip->ui_lock);
1106 return 0;
1107 }
1108 *hiwat = to;
1109 uip->ui_sbsize = nsb;
1110 KASSERT(uip->ui_sbsize >= 0);
1111 mutex_exit(&uip->ui_lock);
1112 return 1;
1113 }
1114