Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.98.2.12
      1 /*	$NetBSD: kern_resource.c,v 1.98.2.12 2008/03/24 09:39:01 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.98.2.12 2008/03/24 09:39:01 yamt Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kmem.h>
     49 #include <sys/namei.h>
     50 #include <sys/pool.h>
     51 #include <sys/proc.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/timevar.h>
     54 #include <sys/kauth.h>
     55 #include <sys/atomic.h>
     56 #include <sys/mount.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/atomic.h>
     59 
     60 #include <uvm/uvm_extern.h>
     61 
     62 /*
     63  * Maximum process data and stack limits.
     64  * They are variables so they are patchable.
     65  */
     66 rlim_t maxdmap = MAXDSIZ;
     67 rlim_t maxsmap = MAXSSIZ;
     68 
     69 static SLIST_HEAD(uihashhead, uidinfo) *uihashtbl;
     70 static u_long 		uihash;
     71 
     72 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
     73 
     74 static pool_cache_t	plimit_cache;
     75 static pool_cache_t	pstats_cache;
     76 
     77 void
     78 resource_init(void)
     79 {
     80 	/*
     81 	 * In case of MP system, SLIST_FOREACH would force a cache line
     82 	 * write-back for every modified 'uidinfo', thus we try to keep the
     83 	 * lists short.
     84 	 */
     85 	const u_int uihash_sz = (maxproc > 1 ? 1024 : 64);
     86 
     87 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
     88 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
     89 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
     90 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
     91 	uihashtbl = hashinit(uihash_sz, HASH_SLIST, M_PROC, M_WAITOK, &uihash);
     92 }
     93 
     94 /*
     95  * Resource controls and accounting.
     96  */
     97 
     98 int
     99 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    100     register_t *retval)
    101 {
    102 	/* {
    103 		syscallarg(int) which;
    104 		syscallarg(id_t) who;
    105 	} */
    106 	struct proc *curp = l->l_proc, *p;
    107 	int low = NZERO + PRIO_MAX + 1;
    108 	int who = SCARG(uap, who);
    109 
    110 	mutex_enter(&proclist_lock);
    111 	switch (SCARG(uap, which)) {
    112 	case PRIO_PROCESS:
    113 		if (who == 0)
    114 			p = curp;
    115 		else
    116 			p = p_find(who, PFIND_LOCKED);
    117 		if (p != NULL)
    118 			low = p->p_nice;
    119 		break;
    120 
    121 	case PRIO_PGRP: {
    122 		struct pgrp *pg;
    123 
    124 		if (who == 0)
    125 			pg = curp->p_pgrp;
    126 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    127 			break;
    128 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    129 			if (p->p_nice < low)
    130 				low = p->p_nice;
    131 		}
    132 		break;
    133 	}
    134 
    135 	case PRIO_USER:
    136 		if (who == 0)
    137 			who = (int)kauth_cred_geteuid(l->l_cred);
    138 		PROCLIST_FOREACH(p, &allproc) {
    139 			mutex_enter(&p->p_mutex);
    140 			if (kauth_cred_geteuid(p->p_cred) ==
    141 			    (uid_t)who && p->p_nice < low)
    142 				low = p->p_nice;
    143 			mutex_exit(&p->p_mutex);
    144 		}
    145 		break;
    146 
    147 	default:
    148 		mutex_exit(&proclist_lock);
    149 		return (EINVAL);
    150 	}
    151 	mutex_exit(&proclist_lock);
    152 
    153 	if (low == NZERO + PRIO_MAX + 1)
    154 		return (ESRCH);
    155 	*retval = low - NZERO;
    156 	return (0);
    157 }
    158 
    159 /* ARGSUSED */
    160 int
    161 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    162     register_t *retval)
    163 {
    164 	/* {
    165 		syscallarg(int) which;
    166 		syscallarg(id_t) who;
    167 		syscallarg(int) prio;
    168 	} */
    169 	struct proc *curp = l->l_proc, *p;
    170 	int found = 0, error = 0;
    171 	int who = SCARG(uap, who);
    172 
    173 	mutex_enter(&proclist_lock);
    174 	switch (SCARG(uap, which)) {
    175 	case PRIO_PROCESS:
    176 		if (who == 0)
    177 			p = curp;
    178 		else
    179 			p = p_find(who, PFIND_LOCKED);
    180 		if (p != 0) {
    181 			mutex_enter(&p->p_mutex);
    182 			error = donice(l, p, SCARG(uap, prio));
    183 			mutex_exit(&p->p_mutex);
    184 		}
    185 		found++;
    186 		break;
    187 
    188 	case PRIO_PGRP: {
    189 		struct pgrp *pg;
    190 
    191 		if (who == 0)
    192 			pg = curp->p_pgrp;
    193 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    194 			break;
    195 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    196 			mutex_enter(&p->p_mutex);
    197 			error = donice(l, p, SCARG(uap, prio));
    198 			mutex_exit(&p->p_mutex);
    199 			found++;
    200 		}
    201 		break;
    202 	}
    203 
    204 	case PRIO_USER:
    205 		if (who == 0)
    206 			who = (int)kauth_cred_geteuid(l->l_cred);
    207 		PROCLIST_FOREACH(p, &allproc) {
    208 			mutex_enter(&p->p_mutex);
    209 			if (kauth_cred_geteuid(p->p_cred) ==
    210 			    (uid_t)SCARG(uap, who)) {
    211 				error = donice(l, p, SCARG(uap, prio));
    212 				found++;
    213 			}
    214 			mutex_exit(&p->p_mutex);
    215 		}
    216 		break;
    217 
    218 	default:
    219 		error = EINVAL;
    220 		break;
    221 	}
    222 	mutex_exit(&proclist_lock);
    223 	if (found == 0)
    224 		return (ESRCH);
    225 	return (error);
    226 }
    227 
    228 /*
    229  * Renice a process.
    230  *
    231  * Call with the target process' credentials locked.
    232  */
    233 int
    234 donice(struct lwp *l, struct proc *chgp, int n)
    235 {
    236 	kauth_cred_t cred = l->l_cred;
    237 	int onice;
    238 
    239 	KASSERT(mutex_owned(&chgp->p_mutex));
    240 
    241 	if (n > PRIO_MAX)
    242 		n = PRIO_MAX;
    243 	if (n < PRIO_MIN)
    244 		n = PRIO_MIN;
    245 	n += NZERO;
    246 	onice = chgp->p_nice;
    247 	onice = chgp->p_nice;
    248 
    249   again:
    250 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    251 	    KAUTH_ARG(n), NULL, NULL))
    252 		return (EACCES);
    253 	mutex_spin_enter(&chgp->p_smutex);
    254 	if (onice != chgp->p_nice) {
    255 		mutex_spin_exit(&chgp->p_smutex);
    256 		goto again;
    257 	}
    258 	sched_nice(chgp, n);
    259 	mutex_spin_exit(&chgp->p_smutex);
    260 	return (0);
    261 }
    262 
    263 /* ARGSUSED */
    264 int
    265 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    266     register_t *retval)
    267 {
    268 	/* {
    269 		syscallarg(int) which;
    270 		syscallarg(const struct rlimit *) rlp;
    271 	} */
    272 	int which = SCARG(uap, which);
    273 	struct rlimit alim;
    274 	int error;
    275 
    276 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    277 	if (error)
    278 		return (error);
    279 	return (dosetrlimit(l, l->l_proc, which, &alim));
    280 }
    281 
    282 int
    283 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    284 {
    285 	struct rlimit *alimp;
    286 	int error;
    287 
    288 	if ((u_int)which >= RLIM_NLIMITS)
    289 		return (EINVAL);
    290 
    291 	if (limp->rlim_cur < 0 || limp->rlim_max < 0)
    292 		return (EINVAL);
    293 
    294 	if (limp->rlim_cur > limp->rlim_max) {
    295 		/*
    296 		 * This is programming error. According to SUSv2, we should
    297 		 * return error in this case.
    298 		 */
    299 		return (EINVAL);
    300 	}
    301 
    302 	alimp = &p->p_rlimit[which];
    303 	/* if we don't change the value, no need to limcopy() */
    304 	if (limp->rlim_cur == alimp->rlim_cur &&
    305 	    limp->rlim_max == alimp->rlim_max)
    306 		return 0;
    307 
    308 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    309 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    310 	if (error)
    311 		return (error);
    312 
    313 	lim_privatise(p, false);
    314 	/* p->p_limit is now unchangeable */
    315 	alimp = &p->p_rlimit[which];
    316 
    317 	switch (which) {
    318 
    319 	case RLIMIT_DATA:
    320 		if (limp->rlim_cur > maxdmap)
    321 			limp->rlim_cur = maxdmap;
    322 		if (limp->rlim_max > maxdmap)
    323 			limp->rlim_max = maxdmap;
    324 		break;
    325 
    326 	case RLIMIT_STACK:
    327 		if (limp->rlim_cur > maxsmap)
    328 			limp->rlim_cur = maxsmap;
    329 		if (limp->rlim_max > maxsmap)
    330 			limp->rlim_max = maxsmap;
    331 
    332 		/*
    333 		 * Return EINVAL if the new stack size limit is lower than
    334 		 * current usage. Otherwise, the process would get SIGSEGV the
    335 		 * moment it would try to access anything on it's current stack.
    336 		 * This conforms to SUSv2.
    337 		 */
    338 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    339 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    340 			return (EINVAL);
    341 		}
    342 
    343 		/*
    344 		 * Stack is allocated to the max at exec time with
    345 		 * only "rlim_cur" bytes accessible (In other words,
    346 		 * allocates stack dividing two contiguous regions at
    347 		 * "rlim_cur" bytes boundary).
    348 		 *
    349 		 * Since allocation is done in terms of page, roundup
    350 		 * "rlim_cur" (otherwise, contiguous regions
    351 		 * overlap).  If stack limit is going up make more
    352 		 * accessible, if going down make inaccessible.
    353 		 */
    354 		limp->rlim_cur = round_page(limp->rlim_cur);
    355 		if (limp->rlim_cur != alimp->rlim_cur) {
    356 			vaddr_t addr;
    357 			vsize_t size;
    358 			vm_prot_t prot;
    359 
    360 			if (limp->rlim_cur > alimp->rlim_cur) {
    361 				prot = VM_PROT_READ | VM_PROT_WRITE;
    362 				size = limp->rlim_cur - alimp->rlim_cur;
    363 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    364 				    limp->rlim_cur;
    365 			} else {
    366 				prot = VM_PROT_NONE;
    367 				size = alimp->rlim_cur - limp->rlim_cur;
    368 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    369 				     alimp->rlim_cur;
    370 			}
    371 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    372 			    addr, addr+size, prot, false);
    373 		}
    374 		break;
    375 
    376 	case RLIMIT_NOFILE:
    377 		if (limp->rlim_cur > maxfiles)
    378 			limp->rlim_cur = maxfiles;
    379 		if (limp->rlim_max > maxfiles)
    380 			limp->rlim_max = maxfiles;
    381 		break;
    382 
    383 	case RLIMIT_NPROC:
    384 		if (limp->rlim_cur > maxproc)
    385 			limp->rlim_cur = maxproc;
    386 		if (limp->rlim_max > maxproc)
    387 			limp->rlim_max = maxproc;
    388 		break;
    389 	}
    390 
    391 	mutex_enter(&p->p_limit->pl_lock);
    392 	*alimp = *limp;
    393 	mutex_exit(&p->p_limit->pl_lock);
    394 	return (0);
    395 }
    396 
    397 /* ARGSUSED */
    398 int
    399 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    400     register_t *retval)
    401 {
    402 	/* {
    403 		syscallarg(int) which;
    404 		syscallarg(struct rlimit *) rlp;
    405 	} */
    406 	struct proc *p = l->l_proc;
    407 	int which = SCARG(uap, which);
    408 	struct rlimit rl;
    409 
    410 	if ((u_int)which >= RLIM_NLIMITS)
    411 		return (EINVAL);
    412 
    413 	mutex_enter(&p->p_mutex);
    414 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    415 	mutex_exit(&p->p_mutex);
    416 
    417 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    418 }
    419 
    420 /*
    421  * Transform the running time and tick information in proc p into user,
    422  * system, and interrupt time usage.
    423  *
    424  * Should be called with p->p_smutex held unless called from exit1().
    425  */
    426 void
    427 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    428     struct timeval *ip, struct timeval *rp)
    429 {
    430 	uint64_t u, st, ut, it, tot;
    431 	struct lwp *l;
    432 	struct bintime tm;
    433 	struct timeval tv;
    434 
    435 	mutex_spin_enter(&p->p_stmutex);
    436 	st = p->p_sticks;
    437 	ut = p->p_uticks;
    438 	it = p->p_iticks;
    439 	mutex_spin_exit(&p->p_stmutex);
    440 
    441 	tm = p->p_rtime;
    442 
    443 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    444 		lwp_lock(l);
    445 		bintime_add(&tm, &l->l_rtime);
    446 		if ((l->l_flag & LW_RUNNING) != 0) {
    447 			struct bintime diff;
    448 			/*
    449 			 * Adjust for the current time slice.  This is
    450 			 * actually fairly important since the error
    451 			 * here is on the order of a time quantum,
    452 			 * which is much greater than the sampling
    453 			 * error.
    454 			 */
    455 			binuptime(&diff);
    456 			bintime_sub(&diff, &l->l_stime);
    457 			bintime_add(&tm, &diff);
    458 		}
    459 		lwp_unlock(l);
    460 	}
    461 
    462 	tot = st + ut + it;
    463 	bintime2timeval(&tm, &tv);
    464 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    465 
    466 	if (tot == 0) {
    467 		/* No ticks, so can't use to share time out, split 50-50 */
    468 		st = ut = u / 2;
    469 	} else {
    470 		st = (u * st) / tot;
    471 		ut = (u * ut) / tot;
    472 	}
    473 	if (sp != NULL) {
    474 		sp->tv_sec = st / 1000000;
    475 		sp->tv_usec = st % 1000000;
    476 	}
    477 	if (up != NULL) {
    478 		up->tv_sec = ut / 1000000;
    479 		up->tv_usec = ut % 1000000;
    480 	}
    481 	if (ip != NULL) {
    482 		if (it != 0)
    483 			it = (u * it) / tot;
    484 		ip->tv_sec = it / 1000000;
    485 		ip->tv_usec = it % 1000000;
    486 	}
    487 	if (rp != NULL) {
    488 		*rp = tv;
    489 	}
    490 }
    491 
    492 /* ARGSUSED */
    493 int
    494 sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap,
    495     register_t *retval)
    496 {
    497 	/* {
    498 		syscallarg(int) who;
    499 		syscallarg(struct rusage *) rusage;
    500 	} */
    501 	struct rusage ru;
    502 	struct proc *p = l->l_proc;
    503 
    504 	switch (SCARG(uap, who)) {
    505 	case RUSAGE_SELF:
    506 		mutex_enter(&p->p_smutex);
    507 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    508 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    509 		mutex_exit(&p->p_smutex);
    510 		break;
    511 
    512 	case RUSAGE_CHILDREN:
    513 		mutex_enter(&p->p_smutex);
    514 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    515 		mutex_exit(&p->p_smutex);
    516 		break;
    517 
    518 	default:
    519 		return EINVAL;
    520 	}
    521 
    522 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    523 }
    524 
    525 void
    526 ruadd(struct rusage *ru, struct rusage *ru2)
    527 {
    528 	long *ip, *ip2;
    529 	int i;
    530 
    531 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    532 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    533 	if (ru->ru_maxrss < ru2->ru_maxrss)
    534 		ru->ru_maxrss = ru2->ru_maxrss;
    535 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    536 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    537 		*ip++ += *ip2++;
    538 }
    539 
    540 /*
    541  * Make a copy of the plimit structure.
    542  * We share these structures copy-on-write after fork,
    543  * and copy when a limit is changed.
    544  *
    545  * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
    546  * we are copying to change beneath our feet!
    547  */
    548 struct plimit *
    549 lim_copy(struct plimit *lim)
    550 {
    551 	struct plimit *newlim;
    552 	char *corename;
    553 	size_t alen, len;
    554 
    555 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    556 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    557 	newlim->pl_flags = 0;
    558 	newlim->pl_refcnt = 1;
    559 	newlim->pl_sv_limit = NULL;
    560 
    561 	mutex_enter(&lim->pl_lock);
    562 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    563 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    564 
    565 	alen = 0;
    566 	corename = NULL;
    567 	for (;;) {
    568 		if (lim->pl_corename == defcorename) {
    569 			newlim->pl_corename = defcorename;
    570 			break;
    571 		}
    572 		len = strlen(lim->pl_corename) + 1;
    573 		if (len <= alen) {
    574 			newlim->pl_corename = corename;
    575 			memcpy(corename, lim->pl_corename, len);
    576 			corename = NULL;
    577 			break;
    578 		}
    579 		mutex_exit(&lim->pl_lock);
    580 		if (corename != NULL)
    581 			free(corename, M_TEMP);
    582 		alen = len;
    583 		corename = malloc(alen, M_TEMP, M_WAITOK);
    584 		mutex_enter(&lim->pl_lock);
    585 	}
    586 	mutex_exit(&lim->pl_lock);
    587 	if (corename != NULL)
    588 		free(corename, M_TEMP);
    589 	return newlim;
    590 }
    591 
    592 void
    593 lim_addref(struct plimit *lim)
    594 {
    595 	atomic_inc_uint(&lim->pl_refcnt);
    596 }
    597 
    598 /*
    599  * Give a process it's own private plimit structure.
    600  * This will only be shared (in fork) if modifications are to be shared.
    601  */
    602 void
    603 lim_privatise(struct proc *p, bool set_shared)
    604 {
    605 	struct plimit *lim, *newlim;
    606 
    607 	lim = p->p_limit;
    608 	if (lim->pl_flags & PL_WRITEABLE) {
    609 		if (set_shared)
    610 			lim->pl_flags |= PL_SHAREMOD;
    611 		return;
    612 	}
    613 
    614 	if (set_shared && lim->pl_flags & PL_SHAREMOD)
    615 		return;
    616 
    617 	newlim = lim_copy(lim);
    618 
    619 	mutex_enter(&p->p_mutex);
    620 	if (p->p_limit->pl_flags & PL_WRITEABLE) {
    621 		/* Someone crept in while we were busy */
    622 		mutex_exit(&p->p_mutex);
    623 		limfree(newlim);
    624 		if (set_shared)
    625 			p->p_limit->pl_flags |= PL_SHAREMOD;
    626 		return;
    627 	}
    628 
    629 	/*
    630 	 * Since most accesses to p->p_limit aren't locked, we must not
    631 	 * delete the old limit structure yet.
    632 	 */
    633 	newlim->pl_sv_limit = p->p_limit;
    634 	newlim->pl_flags |= PL_WRITEABLE;
    635 	if (set_shared)
    636 		newlim->pl_flags |= PL_SHAREMOD;
    637 	p->p_limit = newlim;
    638 	mutex_exit(&p->p_mutex);
    639 }
    640 
    641 void
    642 limfree(struct plimit *lim)
    643 {
    644 	struct plimit *sv_lim;
    645 
    646 	do {
    647 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
    648 			return;
    649 		if (lim->pl_corename != defcorename)
    650 			free(lim->pl_corename, M_TEMP);
    651 		sv_lim = lim->pl_sv_limit;
    652 		mutex_destroy(&lim->pl_lock);
    653 		pool_cache_put(plimit_cache, lim);
    654 	} while ((lim = sv_lim) != NULL);
    655 }
    656 
    657 struct pstats *
    658 pstatscopy(struct pstats *ps)
    659 {
    660 
    661 	struct pstats *newps;
    662 
    663 	newps = pool_cache_get(pstats_cache, PR_WAITOK);
    664 
    665 	memset(&newps->pstat_startzero, 0,
    666 	(unsigned) ((char *)&newps->pstat_endzero -
    667 		    (char *)&newps->pstat_startzero));
    668 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    669 	((char *)&newps->pstat_endcopy -
    670 	 (char *)&newps->pstat_startcopy));
    671 
    672 	return (newps);
    673 
    674 }
    675 
    676 void
    677 pstatsfree(struct pstats *ps)
    678 {
    679 
    680 	pool_cache_put(pstats_cache, ps);
    681 }
    682 
    683 /*
    684  * sysctl interface in five parts
    685  */
    686 
    687 /*
    688  * a routine for sysctl proc subtree helpers that need to pick a valid
    689  * process by pid.
    690  */
    691 static int
    692 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
    693 {
    694 	struct proc *ptmp;
    695 	int error = 0;
    696 
    697 	if (pid == PROC_CURPROC)
    698 		ptmp = l->l_proc;
    699 	else if ((ptmp = pfind(pid)) == NULL)
    700 		error = ESRCH;
    701 
    702 	*p2 = ptmp;
    703 	return (error);
    704 }
    705 
    706 /*
    707  * sysctl helper routine for setting a process's specific corefile
    708  * name.  picks the process based on the given pid and checks the
    709  * correctness of the new value.
    710  */
    711 static int
    712 sysctl_proc_corename(SYSCTLFN_ARGS)
    713 {
    714 	struct proc *ptmp;
    715 	struct plimit *lim;
    716 	int error = 0, len;
    717 	char *cname;
    718 	char *ocore;
    719 	char *tmp;
    720 	struct sysctlnode node;
    721 
    722 	/*
    723 	 * is this all correct?
    724 	 */
    725 	if (namelen != 0)
    726 		return (EINVAL);
    727 	if (name[-1] != PROC_PID_CORENAME)
    728 		return (EINVAL);
    729 
    730 	/*
    731 	 * whom are we tweaking?
    732 	 */
    733 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    734 	if (error)
    735 		return (error);
    736 
    737 	/* XXX-elad */
    738 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    739 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    740 	if (error)
    741 		return (error);
    742 
    743 	if (newp == NULL) {
    744 		error = kauth_authorize_process(l->l_cred,
    745 		    KAUTH_PROCESS_CORENAME, ptmp,
    746 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    747 		if (error)
    748 			return (error);
    749 	}
    750 
    751 	/*
    752 	 * let them modify a temporary copy of the core name
    753 	 */
    754 	cname = PNBUF_GET();
    755 	lim = ptmp->p_limit;
    756 	mutex_enter(&lim->pl_lock);
    757 	strlcpy(cname, lim->pl_corename, MAXPATHLEN);
    758 	mutex_exit(&lim->pl_lock);
    759 
    760 	node = *rnode;
    761 	node.sysctl_data = cname;
    762 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    763 
    764 	/*
    765 	 * if that failed, or they have nothing new to say, or we've
    766 	 * heard it before...
    767 	 */
    768 	if (error || newp == NULL)
    769 		goto done;
    770 	lim = ptmp->p_limit;
    771 	mutex_enter(&lim->pl_lock);
    772 	error = strcmp(cname, lim->pl_corename);
    773 	mutex_exit(&lim->pl_lock);
    774 	if (error == 0)
    775 		/* Unchanged */
    776 		goto done;
    777 
    778 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    779 	    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
    780 	if (error)
    781 		return (error);
    782 
    783 	/*
    784 	 * no error yet and cname now has the new core name in it.
    785 	 * let's see if it looks acceptable.  it must be either "core"
    786 	 * or end in ".core" or "/core".
    787 	 */
    788 	len = strlen(cname);
    789 	if (len < 4) {
    790 		error = EINVAL;
    791 	} else if (strcmp(cname + len - 4, "core") != 0) {
    792 		error = EINVAL;
    793 	} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
    794 		error = EINVAL;
    795 	}
    796 	if (error != 0) {
    797 		goto done;
    798 	}
    799 
    800 	/*
    801 	 * hmm...looks good.  now...where do we put it?
    802 	 */
    803 	tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
    804 	if (tmp == NULL) {
    805 		error = ENOMEM;
    806 		goto done;
    807 	}
    808 	memcpy(tmp, cname, len + 1);
    809 
    810 	lim_privatise(ptmp, false);
    811 	lim = ptmp->p_limit;
    812 	mutex_enter(&lim->pl_lock);
    813 	ocore = lim->pl_corename;
    814 	lim->pl_corename = tmp;
    815 	mutex_exit(&lim->pl_lock);
    816 	if (ocore != defcorename)
    817 		free(ocore, M_TEMP);
    818 
    819 done:
    820 	PNBUF_PUT(cname);
    821 	return error;
    822 }
    823 
    824 /*
    825  * sysctl helper routine for checking/setting a process's stop flags,
    826  * one for fork and one for exec.
    827  */
    828 static int
    829 sysctl_proc_stop(SYSCTLFN_ARGS)
    830 {
    831 	struct proc *ptmp;
    832 	int i, f, error = 0;
    833 	struct sysctlnode node;
    834 
    835 	if (namelen != 0)
    836 		return (EINVAL);
    837 
    838 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    839 	if (error)
    840 		return (error);
    841 
    842 	/* XXX-elad */
    843 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    844 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    845 	if (error)
    846 		return (error);
    847 
    848 	switch (rnode->sysctl_num) {
    849 	case PROC_PID_STOPFORK:
    850 		f = PS_STOPFORK;
    851 		break;
    852 	case PROC_PID_STOPEXEC:
    853 		f = PS_STOPEXEC;
    854 		break;
    855 	case PROC_PID_STOPEXIT:
    856 		f = PS_STOPEXIT;
    857 		break;
    858 	default:
    859 		return (EINVAL);
    860 	}
    861 
    862 	i = (ptmp->p_flag & f) ? 1 : 0;
    863 	node = *rnode;
    864 	node.sysctl_data = &i;
    865 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    866 	if (error || newp == NULL)
    867 		return (error);
    868 
    869 	mutex_enter(&ptmp->p_smutex);
    870 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    871 	    ptmp, KAUTH_ARG(f), NULL, NULL);
    872 	if (error)
    873 		return (error);
    874 	if (i)
    875 		ptmp->p_sflag |= f;
    876 	else
    877 		ptmp->p_sflag &= ~f;
    878 	mutex_exit(&ptmp->p_smutex);
    879 
    880 	return (0);
    881 }
    882 
    883 /*
    884  * sysctl helper routine for a process's rlimits as exposed by sysctl.
    885  */
    886 static int
    887 sysctl_proc_plimit(SYSCTLFN_ARGS)
    888 {
    889 	struct proc *ptmp;
    890 	u_int limitno;
    891 	int which, error = 0;
    892         struct rlimit alim;
    893 	struct sysctlnode node;
    894 
    895 	if (namelen != 0)
    896 		return (EINVAL);
    897 
    898 	which = name[-1];
    899 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    900 	    which != PROC_PID_LIMIT_TYPE_HARD)
    901 		return (EINVAL);
    902 
    903 	limitno = name[-2] - 1;
    904 	if (limitno >= RLIM_NLIMITS)
    905 		return (EINVAL);
    906 
    907 	if (name[-3] != PROC_PID_LIMIT)
    908 		return (EINVAL);
    909 
    910 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
    911 	if (error)
    912 		return (error);
    913 
    914 	/* XXX-elad */
    915 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    916 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    917 	if (error)
    918 		return (error);
    919 
    920 	/* Check if we can view limits. */
    921 	if (newp == NULL) {
    922 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    923 		    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
    924 		    KAUTH_ARG(which));
    925 		if (error)
    926 			return (error);
    927 	}
    928 
    929 	node = *rnode;
    930 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
    931 	if (which == PROC_PID_LIMIT_TYPE_HARD)
    932 		node.sysctl_data = &alim.rlim_max;
    933 	else
    934 		node.sysctl_data = &alim.rlim_cur;
    935 
    936 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    937 	if (error || newp == NULL)
    938 		return (error);
    939 
    940 	return (dosetrlimit(l, ptmp, limitno, &alim));
    941 }
    942 
    943 /*
    944  * and finally, the actually glue that sticks it to the tree
    945  */
    946 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
    947 {
    948 
    949 	sysctl_createv(clog, 0, NULL, NULL,
    950 		       CTLFLAG_PERMANENT,
    951 		       CTLTYPE_NODE, "proc", NULL,
    952 		       NULL, 0, NULL, 0,
    953 		       CTL_PROC, CTL_EOL);
    954 	sysctl_createv(clog, 0, NULL, NULL,
    955 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
    956 		       CTLTYPE_NODE, "curproc",
    957 		       SYSCTL_DESCR("Per-process settings"),
    958 		       NULL, 0, NULL, 0,
    959 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
    960 
    961 	sysctl_createv(clog, 0, NULL, NULL,
    962 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    963 		       CTLTYPE_STRING, "corename",
    964 		       SYSCTL_DESCR("Core file name"),
    965 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
    966 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
    967 	sysctl_createv(clog, 0, NULL, NULL,
    968 		       CTLFLAG_PERMANENT,
    969 		       CTLTYPE_NODE, "rlimit",
    970 		       SYSCTL_DESCR("Process limits"),
    971 		       NULL, 0, NULL, 0,
    972 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
    973 
    974 #define create_proc_plimit(s, n) do {					\
    975 	sysctl_createv(clog, 0, NULL, NULL,				\
    976 		       CTLFLAG_PERMANENT,				\
    977 		       CTLTYPE_NODE, s,					\
    978 		       SYSCTL_DESCR("Process " s " limits"),		\
    979 		       NULL, 0, NULL, 0,				\
    980 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    981 		       CTL_EOL);					\
    982 	sysctl_createv(clog, 0, NULL, NULL,				\
    983 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    984 		       CTLTYPE_QUAD, "soft",				\
    985 		       SYSCTL_DESCR("Process soft " s " limit"),	\
    986 		       sysctl_proc_plimit, 0, NULL, 0,			\
    987 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    988 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
    989 	sysctl_createv(clog, 0, NULL, NULL,				\
    990 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    991 		       CTLTYPE_QUAD, "hard",				\
    992 		       SYSCTL_DESCR("Process hard " s " limit"),	\
    993 		       sysctl_proc_plimit, 0, NULL, 0,			\
    994 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    995 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
    996 	} while (0/*CONSTCOND*/)
    997 
    998 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
    999 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1000 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1001 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1002 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1003 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1004 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1005 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1006 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1007 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1008 
   1009 #undef create_proc_plimit
   1010 
   1011 	sysctl_createv(clog, 0, NULL, NULL,
   1012 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1013 		       CTLTYPE_INT, "stopfork",
   1014 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1015 		       sysctl_proc_stop, 0, NULL, 0,
   1016 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1017 	sysctl_createv(clog, 0, NULL, NULL,
   1018 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1019 		       CTLTYPE_INT, "stopexec",
   1020 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1021 		       sysctl_proc_stop, 0, NULL, 0,
   1022 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1023 	sysctl_createv(clog, 0, NULL, NULL,
   1024 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1025 		       CTLTYPE_INT, "stopexit",
   1026 		       SYSCTL_DESCR("Stop process before completing exit"),
   1027 		       sysctl_proc_stop, 0, NULL, 0,
   1028 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1029 }
   1030 
   1031 void
   1032 uid_init(void)
   1033 {
   1034 
   1035 	/*
   1036 	 * Ensure that uid 0 is always in the user hash table, as
   1037 	 * sbreserve() expects it available from interrupt context.
   1038 	 */
   1039 	(void)uid_find(0);
   1040 }
   1041 
   1042 struct uidinfo *
   1043 uid_find(uid_t uid)
   1044 {
   1045 	struct uidinfo *uip, *uip_first, *newuip;
   1046 	struct uihashhead *uipp;
   1047 
   1048 	uipp = UIHASH(uid);
   1049 	newuip = NULL;
   1050 
   1051 	/*
   1052 	 * To make insertion atomic, abstraction of SLIST will be violated.
   1053 	 */
   1054 	uip_first = uipp->slh_first;
   1055  again:
   1056 	SLIST_FOREACH(uip, uipp, ui_hash) {
   1057 		if (uip->ui_uid != uid)
   1058 			continue;
   1059 		if (newuip != NULL)
   1060 			kmem_free(newuip, sizeof(*newuip));
   1061 		return uip;
   1062 	}
   1063 	if (newuip == NULL)
   1064 		newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
   1065 	newuip->ui_uid = uid;
   1066 
   1067 	/*
   1068 	 * If atomic insert is unsuccessful, another thread might be
   1069 	 * allocated this 'uid', thus full re-check is needed.
   1070 	 */
   1071 	newuip->ui_hash.sle_next = uip_first;
   1072 	membar_producer();
   1073 	uip = atomic_cas_ptr(&uipp->slh_first, uip_first, newuip);
   1074 	if (uip != uip_first) {
   1075 		uip_first = uip;
   1076 		goto again;
   1077 	}
   1078 
   1079 	return newuip;
   1080 }
   1081 
   1082 /*
   1083  * Change the count associated with number of processes
   1084  * a given user is using.
   1085  */
   1086 int
   1087 chgproccnt(uid_t uid, int diff)
   1088 {
   1089 	struct uidinfo *uip;
   1090 	long proccnt;
   1091 
   1092 	uip = uid_find(uid);
   1093 	proccnt = atomic_add_long_nv(&uip->ui_proccnt, diff);
   1094 	KASSERT(proccnt >= 0);
   1095 	return proccnt;
   1096 }
   1097 
   1098 int
   1099 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
   1100 {
   1101 	rlim_t nsb;
   1102 	const long diff = to - *hiwat;
   1103 
   1104 	nsb = atomic_add_long_nv((long *)&uip->ui_sbsize, diff);
   1105 	if (diff > 0 && nsb > xmax) {
   1106 		atomic_add_long((long *)&uip->ui_sbsize, -diff);
   1107 		return 0;
   1108 	}
   1109 	*hiwat = to;
   1110 	KASSERT(nsb >= 0);
   1111 	return 1;
   1112 }
   1113