kern_resource.c revision 1.98.2.2 1 /* $NetBSD: kern_resource.c,v 1.98.2.2 2006/12/30 20:50:05 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.98.2.2 2006/12/30 20:50:05 yamt Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/kauth.h>
53
54 #include <sys/mount.h>
55 #include <sys/sa.h>
56 #include <sys/syscallargs.h>
57
58 #include <uvm/uvm_extern.h>
59
60 /*
61 * Maximum process data and stack limits.
62 * They are variables so they are patchable.
63 */
64 rlim_t maxdmap = MAXDSIZ;
65 rlim_t maxsmap = MAXSSIZ;
66
67 struct uihashhead *uihashtbl;
68 u_long uihash; /* size of hash table - 1 */
69 struct simplelock uihashtbl_slock = SIMPLELOCK_INITIALIZER;
70
71
72 /*
73 * Resource controls and accounting.
74 */
75
76 int
77 sys_getpriority(struct lwp *l, void *v, register_t *retval)
78 {
79 struct sys_getpriority_args /* {
80 syscallarg(int) which;
81 syscallarg(id_t) who;
82 } */ *uap = v;
83 struct proc *curp = l->l_proc, *p;
84 int low = NZERO + PRIO_MAX + 1;
85
86 switch (SCARG(uap, which)) {
87
88 case PRIO_PROCESS:
89 if (SCARG(uap, who) == 0)
90 p = curp;
91 else
92 p = pfind(SCARG(uap, who));
93 if (p == 0)
94 break;
95 low = p->p_nice;
96 break;
97
98 case PRIO_PGRP: {
99 struct pgrp *pg;
100
101 if (SCARG(uap, who) == 0)
102 pg = curp->p_pgrp;
103 else if ((pg = pgfind(SCARG(uap, who))) == NULL)
104 break;
105 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
106 if (p->p_nice < low)
107 low = p->p_nice;
108 }
109 break;
110 }
111
112 case PRIO_USER:
113 if (SCARG(uap, who) == 0)
114 SCARG(uap, who) = kauth_cred_geteuid(l->l_cred);
115 proclist_lock_read();
116 PROCLIST_FOREACH(p, &allproc) {
117 if (kauth_cred_geteuid(p->p_cred) ==
118 (uid_t) SCARG(uap, who) && p->p_nice < low)
119 low = p->p_nice;
120 }
121 proclist_unlock_read();
122 break;
123
124 default:
125 return (EINVAL);
126 }
127 if (low == NZERO + PRIO_MAX + 1)
128 return (ESRCH);
129 *retval = low - NZERO;
130 return (0);
131 }
132
133 /* ARGSUSED */
134 int
135 sys_setpriority(struct lwp *l, void *v, register_t *retval)
136 {
137 struct sys_setpriority_args /* {
138 syscallarg(int) which;
139 syscallarg(id_t) who;
140 syscallarg(int) prio;
141 } */ *uap = v;
142 struct proc *curp = l->l_proc, *p;
143 int found = 0, error = 0;
144
145 switch (SCARG(uap, which)) {
146
147 case PRIO_PROCESS:
148 if (SCARG(uap, who) == 0)
149 p = curp;
150 else
151 p = pfind(SCARG(uap, who));
152 if (p == 0)
153 break;
154 error = donice(l, p, SCARG(uap, prio));
155 found++;
156 break;
157
158 case PRIO_PGRP: {
159 struct pgrp *pg;
160
161 if (SCARG(uap, who) == 0)
162 pg = curp->p_pgrp;
163 else if ((pg = pgfind(SCARG(uap, who))) == NULL)
164 break;
165 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
166 error = donice(l, p, SCARG(uap, prio));
167 found++;
168 }
169 break;
170 }
171
172 case PRIO_USER:
173 if (SCARG(uap, who) == 0)
174 SCARG(uap, who) = kauth_cred_geteuid(l->l_cred);
175 proclist_lock_read();
176 PROCLIST_FOREACH(p, &allproc) {
177 if (kauth_cred_geteuid(p->p_cred) ==
178 (uid_t)SCARG(uap, who)) {
179 error = donice(l, p, SCARG(uap, prio));
180 found++;
181 }
182 }
183 proclist_unlock_read();
184 break;
185
186 default:
187 return (EINVAL);
188 }
189 if (found == 0)
190 return (ESRCH);
191 return (error);
192 }
193
194 int
195 donice(struct lwp *l, struct proc *chgp, int n)
196 {
197 kauth_cred_t cred = l->l_cred;
198 int s;
199
200 if (n > PRIO_MAX)
201 n = PRIO_MAX;
202 if (n < PRIO_MIN)
203 n = PRIO_MIN;
204 n += NZERO;
205 if (kauth_authorize_process(cred, KAUTH_PROCESS_RESOURCE, chgp,
206 (void *)KAUTH_REQ_PROCESS_RESOURCE_NICE, KAUTH_ARG(n), NULL))
207 return (EACCES);
208 chgp->p_nice = n;
209 SCHED_LOCK(s);
210 (void)resetprocpriority(chgp);
211 SCHED_UNLOCK(s);
212 return (0);
213 }
214
215 /* ARGSUSED */
216 int
217 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
218 {
219 struct sys_setrlimit_args /* {
220 syscallarg(int) which;
221 syscallarg(const struct rlimit *) rlp;
222 } */ *uap = v;
223 int which = SCARG(uap, which);
224 struct rlimit alim;
225 int error;
226
227 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
228 if (error)
229 return (error);
230 return (dosetrlimit(l, l->l_proc, which, &alim));
231 }
232
233 int
234 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
235 {
236 struct rlimit *alimp;
237 struct plimit *oldplim;
238 int error;
239
240 if ((u_int)which >= RLIM_NLIMITS)
241 return (EINVAL);
242
243 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
244 return (EINVAL);
245
246 alimp = &p->p_rlimit[which];
247 /* if we don't change the value, no need to limcopy() */
248 if (limp->rlim_cur == alimp->rlim_cur &&
249 limp->rlim_max == alimp->rlim_max)
250 return 0;
251
252 if (limp->rlim_cur > limp->rlim_max) {
253 /*
254 * This is programming error. According to SUSv2, we should
255 * return error in this case.
256 */
257 return (EINVAL);
258 }
259 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RESOURCE,
260 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RESOURCE_RLIMIT), limp,
261 KAUTH_ARG(which));
262 if (error)
263 return (error);
264
265 if (p->p_limit->p_refcnt > 1 &&
266 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
267 p->p_limit = limcopy(oldplim = p->p_limit);
268 limfree(oldplim);
269 alimp = &p->p_rlimit[which];
270 }
271
272 switch (which) {
273
274 case RLIMIT_DATA:
275 if (limp->rlim_cur > maxdmap)
276 limp->rlim_cur = maxdmap;
277 if (limp->rlim_max > maxdmap)
278 limp->rlim_max = maxdmap;
279 break;
280
281 case RLIMIT_STACK:
282 if (limp->rlim_cur > maxsmap)
283 limp->rlim_cur = maxsmap;
284 if (limp->rlim_max > maxsmap)
285 limp->rlim_max = maxsmap;
286
287 /*
288 * Return EINVAL if the new stack size limit is lower than
289 * current usage. Otherwise, the process would get SIGSEGV the
290 * moment it would try to access anything on it's current stack.
291 * This conforms to SUSv2.
292 */
293 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
294 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
295 return (EINVAL);
296
297 /*
298 * Stack is allocated to the max at exec time with
299 * only "rlim_cur" bytes accessible (In other words,
300 * allocates stack dividing two contiguous regions at
301 * "rlim_cur" bytes boundary).
302 *
303 * Since allocation is done in terms of page, roundup
304 * "rlim_cur" (otherwise, contiguous regions
305 * overlap). If stack limit is going up make more
306 * accessible, if going down make inaccessible.
307 */
308 limp->rlim_cur = round_page(limp->rlim_cur);
309 if (limp->rlim_cur != alimp->rlim_cur) {
310 vaddr_t addr;
311 vsize_t size;
312 vm_prot_t prot;
313
314 if (limp->rlim_cur > alimp->rlim_cur) {
315 prot = VM_PROT_READ | VM_PROT_WRITE;
316 size = limp->rlim_cur - alimp->rlim_cur;
317 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
318 limp->rlim_cur;
319 } else {
320 prot = VM_PROT_NONE;
321 size = alimp->rlim_cur - limp->rlim_cur;
322 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
323 alimp->rlim_cur;
324 }
325 (void) uvm_map_protect(&p->p_vmspace->vm_map,
326 addr, addr+size, prot, FALSE);
327 }
328 break;
329
330 case RLIMIT_NOFILE:
331 if (limp->rlim_cur > maxfiles)
332 limp->rlim_cur = maxfiles;
333 if (limp->rlim_max > maxfiles)
334 limp->rlim_max = maxfiles;
335 break;
336
337 case RLIMIT_NPROC:
338 if (limp->rlim_cur > maxproc)
339 limp->rlim_cur = maxproc;
340 if (limp->rlim_max > maxproc)
341 limp->rlim_max = maxproc;
342 break;
343 }
344 *alimp = *limp;
345 return (0);
346 }
347
348 /* ARGSUSED */
349 int
350 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
351 {
352 struct sys_getrlimit_args /* {
353 syscallarg(int) which;
354 syscallarg(struct rlimit *) rlp;
355 } */ *uap = v;
356 struct proc *p = l->l_proc;
357 int which = SCARG(uap, which);
358
359 if ((u_int)which >= RLIM_NLIMITS)
360 return (EINVAL);
361 return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
362 sizeof(struct rlimit)));
363 }
364
365 /*
366 * Transform the running time and tick information in proc p into user,
367 * system, and interrupt time usage.
368 */
369 void
370 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
371 struct timeval *ip)
372 {
373 u_quad_t u, st, ut, it, tot;
374 unsigned long sec;
375 long usec;
376 int s;
377 struct timeval tv;
378 struct lwp *l;
379
380 s = splstatclock();
381 st = p->p_sticks;
382 ut = p->p_uticks;
383 it = p->p_iticks;
384 splx(s);
385
386 sec = p->p_rtime.tv_sec;
387 usec = p->p_rtime.tv_usec;
388 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
389 if (l->l_stat == LSONPROC) {
390 struct schedstate_percpu *spc;
391
392 KDASSERT(l->l_cpu != NULL);
393 spc = &l->l_cpu->ci_schedstate;
394
395 /*
396 * Adjust for the current time slice. This is
397 * actually fairly important since the error
398 * here is on the order of a time quantum,
399 * which is much greater than the sampling
400 * error.
401 */
402 microtime(&tv);
403 sec += tv.tv_sec - spc->spc_runtime.tv_sec;
404 usec += tv.tv_usec - spc->spc_runtime.tv_usec;
405 }
406 }
407
408 tot = st + ut + it;
409 u = sec * 1000000ull + usec;
410
411 if (tot == 0) {
412 /* No ticks, so can't use to share time out, split 50-50 */
413 st = ut = u / 2;
414 } else {
415 st = (u * st) / tot;
416 ut = (u * ut) / tot;
417 }
418 sp->tv_sec = st / 1000000;
419 sp->tv_usec = st % 1000000;
420 up->tv_sec = ut / 1000000;
421 up->tv_usec = ut % 1000000;
422 if (ip != NULL) {
423 if (it != 0)
424 it = (u * it) / tot;
425 ip->tv_sec = it / 1000000;
426 ip->tv_usec = it % 1000000;
427 }
428 }
429
430 /* ARGSUSED */
431 int
432 sys_getrusage(struct lwp *l, void *v, register_t *retval)
433 {
434 struct sys_getrusage_args /* {
435 syscallarg(int) who;
436 syscallarg(struct rusage *) rusage;
437 } */ *uap = v;
438 struct rusage *rup;
439 struct proc *p = l->l_proc;
440
441 switch (SCARG(uap, who)) {
442
443 case RUSAGE_SELF:
444 rup = &p->p_stats->p_ru;
445 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
446 break;
447
448 case RUSAGE_CHILDREN:
449 rup = &p->p_stats->p_cru;
450 break;
451
452 default:
453 return (EINVAL);
454 }
455 return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
456 }
457
458 void
459 ruadd(struct rusage *ru, struct rusage *ru2)
460 {
461 long *ip, *ip2;
462 int i;
463
464 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
465 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
466 if (ru->ru_maxrss < ru2->ru_maxrss)
467 ru->ru_maxrss = ru2->ru_maxrss;
468 ip = &ru->ru_first; ip2 = &ru2->ru_first;
469 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
470 *ip++ += *ip2++;
471 }
472
473 /*
474 * Make a copy of the plimit structure.
475 * We share these structures copy-on-write after fork,
476 * and copy when a limit is changed.
477 */
478 struct plimit *
479 limcopy(struct plimit *lim)
480 {
481 struct plimit *newlim;
482 size_t l = 0;
483
484 simple_lock(&lim->p_slock);
485 if (lim->pl_corename != defcorename)
486 l = strlen(lim->pl_corename) + 1;
487 simple_unlock(&lim->p_slock);
488
489 newlim = pool_get(&plimit_pool, PR_WAITOK);
490 simple_lock_init(&newlim->p_slock);
491 newlim->p_lflags = 0;
492 newlim->p_refcnt = 1;
493 newlim->pl_corename = (l != 0)
494 ? malloc(l, M_TEMP, M_WAITOK)
495 : defcorename;
496
497 simple_lock(&lim->p_slock);
498 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
499 sizeof(struct rlimit) * RLIM_NLIMITS);
500
501 if (l != 0)
502 strlcpy(newlim->pl_corename, lim->pl_corename, l);
503 simple_unlock(&lim->p_slock);
504
505 return (newlim);
506 }
507
508 void
509 limfree(struct plimit *lim)
510 {
511 int n;
512
513 simple_lock(&lim->p_slock);
514 n = --lim->p_refcnt;
515 simple_unlock(&lim->p_slock);
516 if (n > 0)
517 return;
518 #ifdef DIAGNOSTIC
519 if (n < 0)
520 panic("limfree");
521 #endif
522 if (lim->pl_corename != defcorename)
523 free(lim->pl_corename, M_TEMP);
524 pool_put(&plimit_pool, lim);
525 }
526
527 struct pstats *
528 pstatscopy(struct pstats *ps)
529 {
530
531 struct pstats *newps;
532
533 newps = pool_get(&pstats_pool, PR_WAITOK);
534
535 memset(&newps->pstat_startzero, 0,
536 (unsigned) ((caddr_t)&newps->pstat_endzero -
537 (caddr_t)&newps->pstat_startzero));
538 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
539 ((caddr_t)&newps->pstat_endcopy -
540 (caddr_t)&newps->pstat_startcopy));
541
542 return (newps);
543
544 }
545
546 void
547 pstatsfree(struct pstats *ps)
548 {
549
550 pool_put(&pstats_pool, ps);
551 }
552
553 /*
554 * sysctl interface in five parts
555 */
556
557 /*
558 * a routine for sysctl proc subtree helpers that need to pick a valid
559 * process by pid.
560 */
561 static int
562 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
563 {
564 struct proc *ptmp;
565 int error = 0;
566
567 if (pid == PROC_CURPROC)
568 ptmp = l->l_proc;
569 else if ((ptmp = pfind(pid)) == NULL)
570 error = ESRCH;
571
572 *p2 = ptmp;
573 return (error);
574 }
575
576 /*
577 * sysctl helper routine for setting a process's specific corefile
578 * name. picks the process based on the given pid and checks the
579 * correctness of the new value.
580 */
581 static int
582 sysctl_proc_corename(SYSCTLFN_ARGS)
583 {
584 struct proc *ptmp;
585 struct plimit *lim;
586 int error = 0, len;
587 char *cname;
588 char *tmp;
589 struct sysctlnode node;
590
591 /*
592 * is this all correct?
593 */
594 if (namelen != 0)
595 return (EINVAL);
596 if (name[-1] != PROC_PID_CORENAME)
597 return (EINVAL);
598
599 /*
600 * whom are we tweaking?
601 */
602 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
603 if (error)
604 return (error);
605
606 /* XXX this should be in p_find() */
607 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
608 ptmp, NULL, NULL, NULL);
609 if (error)
610 return (error);
611
612 cname = PNBUF_GET();
613 /*
614 * let them modify a temporary copy of the core name
615 */
616 node = *rnode;
617 strlcpy(cname, ptmp->p_limit->pl_corename, MAXPATHLEN);
618 node.sysctl_data = cname;
619 error = sysctl_lookup(SYSCTLFN_CALL(&node));
620
621 /*
622 * if that failed, or they have nothing new to say, or we've
623 * heard it before...
624 */
625 if (error || newp == NULL ||
626 strcmp(cname, ptmp->p_limit->pl_corename) == 0) {
627 goto done;
628 }
629
630 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
631 ptmp, cname, NULL, NULL);
632 if (error)
633 return (error);
634
635 /*
636 * no error yet and cname now has the new core name in it.
637 * let's see if it looks acceptable. it must be either "core"
638 * or end in ".core" or "/core".
639 */
640 len = strlen(cname);
641 if (len < 4) {
642 error = EINVAL;
643 } else if (strcmp(cname + len - 4, "core") != 0) {
644 error = EINVAL;
645 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
646 error = EINVAL;
647 }
648 if (error != 0) {
649 goto done;
650 }
651
652 /*
653 * hmm...looks good. now...where do we put it?
654 */
655 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
656 if (tmp == NULL) {
657 error = ENOMEM;
658 goto done;
659 }
660 strlcpy(tmp, cname, len + 1);
661
662 lim = ptmp->p_limit;
663 if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
664 ptmp->p_limit = limcopy(lim);
665 limfree(lim);
666 lim = ptmp->p_limit;
667 }
668 if (lim->pl_corename != defcorename)
669 free(lim->pl_corename, M_TEMP);
670 lim->pl_corename = tmp;
671 done:
672 PNBUF_PUT(cname);
673 return error;
674 }
675
676 /*
677 * sysctl helper routine for checking/setting a process's stop flags,
678 * one for fork and one for exec.
679 */
680 static int
681 sysctl_proc_stop(SYSCTLFN_ARGS)
682 {
683 struct proc *ptmp;
684 int i, f, error = 0;
685 struct sysctlnode node;
686
687 if (namelen != 0)
688 return (EINVAL);
689
690 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
691 if (error)
692 return (error);
693
694 /* XXX this should be in p_find() */
695 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
696 ptmp, NULL, NULL, NULL);
697 if (error)
698 return (error);
699
700 switch (rnode->sysctl_num) {
701 case PROC_PID_STOPFORK:
702 f = P_STOPFORK;
703 break;
704 case PROC_PID_STOPEXEC:
705 f = P_STOPEXEC;
706 break;
707 case PROC_PID_STOPEXIT:
708 f = P_STOPEXIT;
709 break;
710 default:
711 return (EINVAL);
712 }
713
714 i = (ptmp->p_flag & f) ? 1 : 0;
715 node = *rnode;
716 node.sysctl_data = &i;
717 error = sysctl_lookup(SYSCTLFN_CALL(&node));
718 if (error || newp == NULL)
719 return (error);
720
721 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
722 ptmp, KAUTH_ARG(f), NULL, NULL);
723 if (error)
724 return (error);
725
726 if (i)
727 ptmp->p_flag |= f;
728 else
729 ptmp->p_flag &= ~f;
730
731 return (0);
732 }
733
734 /*
735 * sysctl helper routine for a process's rlimits as exposed by sysctl.
736 */
737 static int
738 sysctl_proc_plimit(SYSCTLFN_ARGS)
739 {
740 struct proc *ptmp;
741 u_int limitno;
742 int which, error = 0;
743 struct rlimit alim;
744 struct sysctlnode node;
745
746 if (namelen != 0)
747 return (EINVAL);
748
749 which = name[-1];
750 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
751 which != PROC_PID_LIMIT_TYPE_HARD)
752 return (EINVAL);
753
754 limitno = name[-2] - 1;
755 if (limitno >= RLIM_NLIMITS)
756 return (EINVAL);
757
758 if (name[-3] != PROC_PID_LIMIT)
759 return (EINVAL);
760
761 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
762 if (error)
763 return (error);
764
765 /* XXX this should be in p_find() */
766 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
767 ptmp, NULL, NULL, NULL);
768 if (error)
769 return (error);
770
771 node = *rnode;
772 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
773 if (which == PROC_PID_LIMIT_TYPE_HARD)
774 node.sysctl_data = &alim.rlim_max;
775 else
776 node.sysctl_data = &alim.rlim_cur;
777
778 error = sysctl_lookup(SYSCTLFN_CALL(&node));
779 if (error || newp == NULL)
780 return (error);
781
782 return (dosetrlimit(l, ptmp, limitno, &alim));
783 }
784
785 /*
786 * and finally, the actually glue that sticks it to the tree
787 */
788 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
789 {
790
791 sysctl_createv(clog, 0, NULL, NULL,
792 CTLFLAG_PERMANENT,
793 CTLTYPE_NODE, "proc", NULL,
794 NULL, 0, NULL, 0,
795 CTL_PROC, CTL_EOL);
796 sysctl_createv(clog, 0, NULL, NULL,
797 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
798 CTLTYPE_NODE, "curproc",
799 SYSCTL_DESCR("Per-process settings"),
800 NULL, 0, NULL, 0,
801 CTL_PROC, PROC_CURPROC, CTL_EOL);
802
803 sysctl_createv(clog, 0, NULL, NULL,
804 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
805 CTLTYPE_STRING, "corename",
806 SYSCTL_DESCR("Core file name"),
807 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
808 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
809 sysctl_createv(clog, 0, NULL, NULL,
810 CTLFLAG_PERMANENT,
811 CTLTYPE_NODE, "rlimit",
812 SYSCTL_DESCR("Process limits"),
813 NULL, 0, NULL, 0,
814 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
815
816 #define create_proc_plimit(s, n) do { \
817 sysctl_createv(clog, 0, NULL, NULL, \
818 CTLFLAG_PERMANENT, \
819 CTLTYPE_NODE, s, \
820 SYSCTL_DESCR("Process " s " limits"), \
821 NULL, 0, NULL, 0, \
822 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
823 CTL_EOL); \
824 sysctl_createv(clog, 0, NULL, NULL, \
825 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
826 CTLTYPE_QUAD, "soft", \
827 SYSCTL_DESCR("Process soft " s " limit"), \
828 sysctl_proc_plimit, 0, NULL, 0, \
829 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
830 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
831 sysctl_createv(clog, 0, NULL, NULL, \
832 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
833 CTLTYPE_QUAD, "hard", \
834 SYSCTL_DESCR("Process hard " s " limit"), \
835 sysctl_proc_plimit, 0, NULL, 0, \
836 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
837 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
838 } while (0/*CONSTCOND*/)
839
840 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
841 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
842 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
843 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
844 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
845 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
846 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
847 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
848 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
849 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
850
851 #undef create_proc_plimit
852
853 sysctl_createv(clog, 0, NULL, NULL,
854 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
855 CTLTYPE_INT, "stopfork",
856 SYSCTL_DESCR("Stop process at fork(2)"),
857 sysctl_proc_stop, 0, NULL, 0,
858 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
859 sysctl_createv(clog, 0, NULL, NULL,
860 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
861 CTLTYPE_INT, "stopexec",
862 SYSCTL_DESCR("Stop process at execve(2)"),
863 sysctl_proc_stop, 0, NULL, 0,
864 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
865 sysctl_createv(clog, 0, NULL, NULL,
866 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
867 CTLTYPE_INT, "stopexit",
868 SYSCTL_DESCR("Stop process before completing exit"),
869 sysctl_proc_stop, 0, NULL, 0,
870 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
871 }
872
873 struct uidinfo *
874 uid_find(uid_t uid)
875 {
876 struct uidinfo *uip;
877 struct uidinfo *newuip = NULL;
878 struct uihashhead *uipp;
879
880 uipp = UIHASH(uid);
881
882 again:
883 simple_lock(&uihashtbl_slock);
884 LIST_FOREACH(uip, uipp, ui_hash)
885 if (uip->ui_uid == uid) {
886 simple_unlock(&uihashtbl_slock);
887 if (newuip)
888 free(newuip, M_PROC);
889 return uip;
890 }
891
892 if (newuip == NULL) {
893 simple_unlock(&uihashtbl_slock);
894 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
895 goto again;
896 }
897 uip = newuip;
898
899 LIST_INSERT_HEAD(uipp, uip, ui_hash);
900 uip->ui_uid = uid;
901 simple_lock_init(&uip->ui_slock);
902 simple_unlock(&uihashtbl_slock);
903
904 return uip;
905 }
906
907 /*
908 * Change the count associated with number of processes
909 * a given user is using.
910 */
911 int
912 chgproccnt(uid_t uid, int diff)
913 {
914 struct uidinfo *uip;
915 int s;
916
917 if (diff == 0)
918 return 0;
919
920 uip = uid_find(uid);
921 UILOCK(uip, s);
922 uip->ui_proccnt += diff;
923 KASSERT(uip->ui_proccnt >= 0);
924 UIUNLOCK(uip, s);
925 return uip->ui_proccnt;
926 }
927
928 int
929 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
930 {
931 rlim_t nsb;
932 int s;
933
934 UILOCK(uip, s);
935 nsb = uip->ui_sbsize + to - *hiwat;
936 if (to > *hiwat && nsb > xmax) {
937 UIUNLOCK(uip, s);
938 splx(s);
939 return 0;
940 }
941 *hiwat = to;
942 uip->ui_sbsize = nsb;
943 KASSERT(uip->ui_sbsize >= 0);
944 UIUNLOCK(uip, s);
945 return 1;
946 }
947