kern_rwlock.c revision 1.14 1 1.14 ad /* $NetBSD: kern_rwlock.c,v 1.14 2008/01/04 21:52:48 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.2 ad * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Kernel reader/writer lock implementation, modeled after those
41 1.2 ad * found in Solaris, a description of which can be found in:
42 1.2 ad *
43 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 1.2 ad * Richard McDougall.
45 1.2 ad */
46 1.2 ad
47 1.10 dsl #include <sys/cdefs.h>
48 1.14 ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.14 2008/01/04 21:52:48 ad Exp $");
49 1.10 dsl
50 1.2 ad #include "opt_multiprocessor.h"
51 1.2 ad
52 1.2 ad #define __RWLOCK_PRIVATE
53 1.2 ad
54 1.2 ad #include <sys/param.h>
55 1.2 ad #include <sys/proc.h>
56 1.2 ad #include <sys/rwlock.h>
57 1.2 ad #include <sys/sched.h>
58 1.2 ad #include <sys/sleepq.h>
59 1.2 ad #include <sys/systm.h>
60 1.2 ad #include <sys/lockdebug.h>
61 1.11 ad #include <sys/cpu.h>
62 1.14 ad #include <sys/atomic.h>
63 1.2 ad
64 1.2 ad #include <dev/lockstat.h>
65 1.2 ad
66 1.2 ad /*
67 1.2 ad * LOCKDEBUG
68 1.2 ad */
69 1.2 ad
70 1.2 ad #if defined(LOCKDEBUG)
71 1.2 ad
72 1.2 ad #define RW_WANTLOCK(rw, op) \
73 1.12 yamt LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
74 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
75 1.2 ad #define RW_LOCKED(rw, op) \
76 1.12 yamt LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), \
77 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
78 1.2 ad #define RW_UNLOCKED(rw, op) \
79 1.12 yamt LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
80 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
81 1.2 ad #define RW_DASSERT(rw, cond) \
82 1.2 ad do { \
83 1.2 ad if (!(cond)) \
84 1.11 ad rw_abort(rw, __func__, "assertion failed: " #cond); \
85 1.2 ad } while (/* CONSTCOND */ 0);
86 1.2 ad
87 1.2 ad #else /* LOCKDEBUG */
88 1.2 ad
89 1.2 ad #define RW_WANTLOCK(rw, op) /* nothing */
90 1.2 ad #define RW_LOCKED(rw, op) /* nothing */
91 1.2 ad #define RW_UNLOCKED(rw, op) /* nothing */
92 1.2 ad #define RW_DASSERT(rw, cond) /* nothing */
93 1.2 ad
94 1.2 ad #endif /* LOCKDEBUG */
95 1.2 ad
96 1.2 ad /*
97 1.2 ad * DIAGNOSTIC
98 1.2 ad */
99 1.2 ad
100 1.2 ad #if defined(DIAGNOSTIC)
101 1.2 ad
102 1.2 ad #define RW_ASSERT(rw, cond) \
103 1.2 ad do { \
104 1.2 ad if (!(cond)) \
105 1.11 ad rw_abort(rw, __func__, "assertion failed: " #cond); \
106 1.2 ad } while (/* CONSTCOND */ 0)
107 1.2 ad
108 1.2 ad #else
109 1.2 ad
110 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
111 1.2 ad
112 1.2 ad #endif /* DIAGNOSTIC */
113 1.2 ad
114 1.2 ad /*
115 1.2 ad * For platforms that use 'simple' RW locks.
116 1.2 ad */
117 1.2 ad #ifdef __HAVE_SIMPLE_RW_LOCKS
118 1.12 yamt #define RW_ACQUIRE(rw, old, new) RW_CAS1(&(rw)->rw_owner, old, new)
119 1.12 yamt #define RW_RELEASE(rw, old, new) RW_CAS1(&(rw)->rw_owner, old, new)
120 1.12 yamt #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
121 1.12 yamt #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_DEBUG) != 0)
122 1.12 yamt #if defined(LOCKDEBUG)
123 1.12 yamt #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_DEBUG
124 1.12 yamt #else /* defined(LOCKDEBUG) */
125 1.12 yamt #define RW_INHERITDEBUG(new, old) /* nothing */
126 1.12 yamt #endif /* defined(LOCKDEBUG) */
127 1.12 yamt
128 1.12 yamt static inline int
129 1.12 yamt RW_CAS1(volatile uintptr_t *ptr, uintptr_t old, uintptr_t new)
130 1.12 yamt {
131 1.12 yamt
132 1.12 yamt RW_INHERITDEBUG(new, old);
133 1.12 yamt return RW_CAS(ptr, old, new);
134 1.12 yamt }
135 1.2 ad
136 1.2 ad static inline int
137 1.2 ad RW_SET_WAITERS(krwlock_t *rw, uintptr_t need, uintptr_t set)
138 1.2 ad {
139 1.2 ad uintptr_t old;
140 1.2 ad
141 1.2 ad if (((old = rw->rw_owner) & need) == 0)
142 1.2 ad return 0;
143 1.2 ad return RW_CAS(&rw->rw_owner, old, old | set);
144 1.2 ad }
145 1.2 ad #endif /* __HAVE_SIMPLE_RW_LOCKS */
146 1.2 ad
147 1.2 ad /*
148 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
149 1.2 ad */
150 1.2 ad #ifdef LOCKDEBUG
151 1.2 ad #undef __HAVE_RW_STUBS
152 1.2 ad #endif
153 1.2 ad
154 1.2 ad #ifndef __HAVE_RW_STUBS
155 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
156 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
157 1.2 ad #endif
158 1.2 ad
159 1.7 ad static void rw_dump(volatile void *);
160 1.7 ad static lwp_t *rw_owner(wchan_t);
161 1.2 ad
162 1.2 ad lockops_t rwlock_lockops = {
163 1.2 ad "Reader / writer lock",
164 1.2 ad 1,
165 1.2 ad rw_dump
166 1.2 ad };
167 1.2 ad
168 1.4 yamt syncobj_t rw_syncobj = {
169 1.4 yamt SOBJ_SLEEPQ_SORTED,
170 1.4 yamt turnstile_unsleep,
171 1.4 yamt turnstile_changepri,
172 1.4 yamt sleepq_lendpri,
173 1.4 yamt rw_owner,
174 1.4 yamt };
175 1.4 yamt
176 1.2 ad /*
177 1.2 ad * rw_dump:
178 1.2 ad *
179 1.2 ad * Dump the contents of a rwlock structure.
180 1.2 ad */
181 1.11 ad static void
182 1.2 ad rw_dump(volatile void *cookie)
183 1.2 ad {
184 1.2 ad volatile krwlock_t *rw = cookie;
185 1.2 ad
186 1.2 ad printf_nolog("owner/count : %#018lx flags : %#018x\n",
187 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
188 1.2 ad }
189 1.2 ad
190 1.2 ad /*
191 1.11 ad * rw_abort:
192 1.11 ad *
193 1.11 ad * Dump information about an error and panic the system. This
194 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
195 1.11 ad * we ask the compiler to not inline it.
196 1.11 ad */
197 1.11 ad #if __GNUC_PREREQ__(3, 0)
198 1.11 ad __attribute ((noinline))
199 1.11 ad #endif
200 1.11 ad static void
201 1.11 ad rw_abort(krwlock_t *rw, const char *func, const char *msg)
202 1.11 ad {
203 1.11 ad
204 1.11 ad if (panicstr != NULL)
205 1.11 ad return;
206 1.11 ad
207 1.12 yamt LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
208 1.11 ad }
209 1.11 ad
210 1.11 ad /*
211 1.2 ad * rw_init:
212 1.2 ad *
213 1.2 ad * Initialize a rwlock for use.
214 1.2 ad */
215 1.2 ad void
216 1.2 ad rw_init(krwlock_t *rw)
217 1.2 ad {
218 1.12 yamt bool dodebug;
219 1.2 ad
220 1.2 ad memset(rw, 0, sizeof(*rw));
221 1.2 ad
222 1.12 yamt dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
223 1.11 ad (uintptr_t)__builtin_return_address(0));
224 1.12 yamt RW_SETDEBUG(rw, dodebug);
225 1.2 ad }
226 1.2 ad
227 1.2 ad /*
228 1.2 ad * rw_destroy:
229 1.2 ad *
230 1.2 ad * Tear down a rwlock.
231 1.2 ad */
232 1.2 ad void
233 1.2 ad rw_destroy(krwlock_t *rw)
234 1.2 ad {
235 1.2 ad
236 1.12 yamt RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
237 1.12 yamt LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
238 1.2 ad }
239 1.2 ad
240 1.2 ad /*
241 1.2 ad * rw_vector_enter:
242 1.2 ad *
243 1.2 ad * Acquire a rwlock.
244 1.2 ad */
245 1.2 ad void
246 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
247 1.2 ad {
248 1.2 ad uintptr_t owner, incr, need_wait, set_wait, curthread;
249 1.2 ad turnstile_t *ts;
250 1.2 ad int queue;
251 1.7 ad lwp_t *l;
252 1.2 ad LOCKSTAT_TIMER(slptime);
253 1.2 ad LOCKSTAT_FLAG(lsflag);
254 1.2 ad
255 1.2 ad l = curlwp;
256 1.2 ad curthread = (uintptr_t)l;
257 1.2 ad
258 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
259 1.2 ad RW_ASSERT(rw, curthread != 0);
260 1.2 ad RW_WANTLOCK(rw, op);
261 1.2 ad
262 1.2 ad if (panicstr == NULL) {
263 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
264 1.2 ad }
265 1.2 ad
266 1.2 ad /*
267 1.2 ad * We play a slight trick here. If we're a reader, we want
268 1.2 ad * increment the read count. If we're a writer, we want to
269 1.2 ad * set the owner field and whe WRITE_LOCKED bit.
270 1.2 ad *
271 1.2 ad * In the latter case, we expect those bits to be zero,
272 1.2 ad * therefore we can use an add operation to set them, which
273 1.2 ad * means an add operation for both cases.
274 1.2 ad */
275 1.2 ad if (__predict_true(op == RW_READER)) {
276 1.2 ad incr = RW_READ_INCR;
277 1.2 ad set_wait = RW_HAS_WAITERS;
278 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
279 1.2 ad queue = TS_READER_Q;
280 1.2 ad } else {
281 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
282 1.2 ad incr = curthread | RW_WRITE_LOCKED;
283 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
284 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
285 1.2 ad queue = TS_WRITER_Q;
286 1.2 ad }
287 1.2 ad
288 1.2 ad LOCKSTAT_ENTER(lsflag);
289 1.2 ad
290 1.2 ad for (;;) {
291 1.2 ad /*
292 1.2 ad * Read the lock owner field. If the need-to-wait
293 1.2 ad * indicator is clear, then try to acquire the lock.
294 1.2 ad */
295 1.2 ad owner = rw->rw_owner;
296 1.2 ad if ((owner & need_wait) == 0) {
297 1.2 ad if (RW_ACQUIRE(rw, owner, owner + incr)) {
298 1.2 ad /* Got it! */
299 1.2 ad break;
300 1.2 ad }
301 1.2 ad
302 1.2 ad /*
303 1.2 ad * Didn't get it -- spin around again (we'll
304 1.2 ad * probably sleep on the next iteration).
305 1.2 ad */
306 1.2 ad continue;
307 1.2 ad }
308 1.2 ad
309 1.2 ad if (panicstr != NULL)
310 1.2 ad return;
311 1.2 ad if (RW_OWNER(rw) == curthread)
312 1.11 ad rw_abort(rw, __func__, "locking against myself");
313 1.2 ad
314 1.2 ad /*
315 1.2 ad * Grab the turnstile chain lock. Once we have that, we
316 1.2 ad * can adjust the waiter bits and sleep queue.
317 1.2 ad */
318 1.2 ad ts = turnstile_lookup(rw);
319 1.2 ad
320 1.2 ad /*
321 1.2 ad * Mark the rwlock as having waiters. If the set fails,
322 1.2 ad * then we may not need to sleep and should spin again.
323 1.2 ad */
324 1.2 ad if (!RW_SET_WAITERS(rw, need_wait, set_wait)) {
325 1.2 ad turnstile_exit(rw);
326 1.2 ad continue;
327 1.2 ad }
328 1.2 ad
329 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
330 1.2 ad
331 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
332 1.2 ad
333 1.2 ad /* If we wake up and arrive here, we've been handed the lock. */
334 1.2 ad RW_RECEIVE(rw);
335 1.2 ad
336 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
337 1.2 ad LOCKSTAT_EVENT(lsflag, rw,
338 1.2 ad LB_RWLOCK | (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2),
339 1.2 ad 1, slptime);
340 1.2 ad
341 1.2 ad break;
342 1.2 ad }
343 1.2 ad
344 1.2 ad LOCKSTAT_EXIT(lsflag);
345 1.2 ad
346 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
347 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
348 1.2 ad RW_LOCKED(rw, op);
349 1.2 ad }
350 1.2 ad
351 1.2 ad /*
352 1.2 ad * rw_vector_exit:
353 1.2 ad *
354 1.2 ad * Release a rwlock.
355 1.2 ad */
356 1.2 ad void
357 1.2 ad rw_vector_exit(krwlock_t *rw)
358 1.2 ad {
359 1.2 ad uintptr_t curthread, owner, decr, new;
360 1.2 ad turnstile_t *ts;
361 1.2 ad int rcnt, wcnt;
362 1.7 ad lwp_t *l;
363 1.2 ad
364 1.2 ad curthread = (uintptr_t)curlwp;
365 1.2 ad RW_ASSERT(rw, curthread != 0);
366 1.2 ad
367 1.11 ad if (panicstr != NULL)
368 1.2 ad return;
369 1.2 ad
370 1.2 ad /*
371 1.2 ad * Again, we use a trick. Since we used an add operation to
372 1.2 ad * set the required lock bits, we can use a subtract to clear
373 1.2 ad * them, which makes the read-release and write-release path
374 1.2 ad * the same.
375 1.2 ad */
376 1.2 ad owner = rw->rw_owner;
377 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
378 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
379 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
380 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
381 1.2 ad decr = curthread | RW_WRITE_LOCKED;
382 1.2 ad } else {
383 1.2 ad RW_UNLOCKED(rw, RW_READER);
384 1.2 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
385 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
386 1.2 ad decr = RW_READ_INCR;
387 1.2 ad }
388 1.2 ad
389 1.2 ad /*
390 1.2 ad * Compute what we expect the new value of the lock to be. Only
391 1.2 ad * proceed to do direct handoff if there are waiters, and if the
392 1.2 ad * lock would become unowned.
393 1.2 ad */
394 1.2 ad for (;; owner = rw->rw_owner) {
395 1.2 ad new = (owner - decr);
396 1.2 ad if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
397 1.2 ad break;
398 1.2 ad if (RW_RELEASE(rw, owner, new))
399 1.2 ad return;
400 1.2 ad }
401 1.2 ad
402 1.2 ad for (;;) {
403 1.2 ad /*
404 1.2 ad * Grab the turnstile chain lock. This gets the interlock
405 1.2 ad * on the sleep queue. Once we have that, we can adjust the
406 1.2 ad * waiter bits.
407 1.2 ad */
408 1.2 ad ts = turnstile_lookup(rw);
409 1.2 ad RW_DASSERT(rw, ts != NULL);
410 1.3 ad RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
411 1.2 ad
412 1.2 ad owner = rw->rw_owner;
413 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
414 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
415 1.2 ad
416 1.2 ad /*
417 1.2 ad * Give the lock away.
418 1.2 ad *
419 1.2 ad * If we are releasing a write lock, then wake all
420 1.2 ad * outstanding readers. If we are releasing a read
421 1.2 ad * lock, then wake one writer.
422 1.2 ad */
423 1.2 ad if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
424 1.2 ad RW_DASSERT(rw, wcnt != 0);
425 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
426 1.2 ad
427 1.2 ad /*
428 1.2 ad * Give the lock to the longest waiting
429 1.2 ad * writer.
430 1.2 ad */
431 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
432 1.2 ad new = (uintptr_t)l | RW_WRITE_LOCKED;
433 1.2 ad
434 1.2 ad if (wcnt > 1)
435 1.2 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
436 1.2 ad else if (rcnt != 0)
437 1.2 ad new |= RW_HAS_WAITERS;
438 1.2 ad
439 1.2 ad RW_GIVE(rw);
440 1.2 ad if (!RW_RELEASE(rw, owner, new)) {
441 1.2 ad /* Oops, try again. */
442 1.2 ad turnstile_exit(rw);
443 1.2 ad continue;
444 1.2 ad }
445 1.2 ad
446 1.2 ad /* Wake the writer. */
447 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
448 1.2 ad } else {
449 1.2 ad RW_DASSERT(rw, rcnt != 0);
450 1.2 ad
451 1.2 ad /*
452 1.3 ad * Give the lock to all blocked readers. If there
453 1.3 ad * is a writer waiting, new readers that arrive
454 1.3 ad * after the release will be blocked out.
455 1.2 ad */
456 1.2 ad new = rcnt << RW_READ_COUNT_SHIFT;
457 1.2 ad if (wcnt != 0)
458 1.2 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
459 1.12 yamt
460 1.2 ad RW_GIVE(rw);
461 1.2 ad if (!RW_RELEASE(rw, owner, new)) {
462 1.2 ad /* Oops, try again. */
463 1.2 ad turnstile_exit(rw);
464 1.2 ad continue;
465 1.2 ad }
466 1.2 ad
467 1.2 ad /* Wake up all sleeping readers. */
468 1.2 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
469 1.2 ad }
470 1.2 ad
471 1.2 ad break;
472 1.2 ad }
473 1.2 ad }
474 1.2 ad
475 1.2 ad /*
476 1.2 ad * rw_tryenter:
477 1.2 ad *
478 1.2 ad * Try to acquire a rwlock.
479 1.2 ad */
480 1.2 ad int
481 1.2 ad rw_tryenter(krwlock_t *rw, const krw_t op)
482 1.2 ad {
483 1.2 ad uintptr_t curthread, owner, incr, need_wait;
484 1.2 ad
485 1.2 ad curthread = (uintptr_t)curlwp;
486 1.2 ad
487 1.2 ad RW_ASSERT(rw, curthread != 0);
488 1.2 ad RW_WANTLOCK(rw, op);
489 1.2 ad
490 1.2 ad if (op == RW_READER) {
491 1.2 ad incr = RW_READ_INCR;
492 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
493 1.2 ad } else {
494 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
495 1.2 ad incr = curthread | RW_WRITE_LOCKED;
496 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
497 1.2 ad }
498 1.2 ad
499 1.2 ad for (;;) {
500 1.2 ad owner = rw->rw_owner;
501 1.2 ad if ((owner & need_wait) == 0) {
502 1.2 ad if (RW_ACQUIRE(rw, owner, owner + incr)) {
503 1.2 ad /* Got it! */
504 1.2 ad break;
505 1.2 ad }
506 1.2 ad continue;
507 1.2 ad }
508 1.2 ad return 0;
509 1.2 ad }
510 1.2 ad
511 1.2 ad RW_LOCKED(rw, op);
512 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
513 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
514 1.7 ad
515 1.2 ad return 1;
516 1.2 ad }
517 1.2 ad
518 1.2 ad /*
519 1.2 ad * rw_downgrade:
520 1.2 ad *
521 1.2 ad * Downgrade a write lock to a read lock.
522 1.2 ad */
523 1.2 ad void
524 1.2 ad rw_downgrade(krwlock_t *rw)
525 1.2 ad {
526 1.2 ad uintptr_t owner, curthread, new;
527 1.2 ad turnstile_t *ts;
528 1.2 ad int rcnt, wcnt;
529 1.2 ad
530 1.2 ad curthread = (uintptr_t)curlwp;
531 1.2 ad RW_ASSERT(rw, curthread != 0);
532 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
533 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
534 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
535 1.2 ad
536 1.2 ad owner = rw->rw_owner;
537 1.2 ad if ((owner & RW_HAS_WAITERS) == 0) {
538 1.2 ad /*
539 1.2 ad * There are no waiters, so we can do this the easy way.
540 1.2 ad * Try swapping us down to one read hold. If it fails, the
541 1.2 ad * lock condition has changed and we most likely now have
542 1.2 ad * waiters.
543 1.2 ad */
544 1.2 ad if (RW_RELEASE(rw, owner, RW_READ_INCR)) {
545 1.2 ad RW_LOCKED(rw, RW_READER);
546 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
547 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
548 1.2 ad return;
549 1.2 ad }
550 1.2 ad }
551 1.2 ad
552 1.2 ad /*
553 1.2 ad * Grab the turnstile chain lock. This gets the interlock
554 1.2 ad * on the sleep queue. Once we have that, we can adjust the
555 1.2 ad * waiter bits.
556 1.2 ad */
557 1.2 ad for (;;) {
558 1.2 ad ts = turnstile_lookup(rw);
559 1.2 ad RW_DASSERT(rw, ts != NULL);
560 1.2 ad
561 1.2 ad owner = rw->rw_owner;
562 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
563 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
564 1.2 ad
565 1.2 ad /*
566 1.2 ad * If there are no readers, just preserve the waiters
567 1.2 ad * bits, swap us down to one read hold and return.
568 1.2 ad */
569 1.2 ad if (rcnt == 0) {
570 1.2 ad RW_DASSERT(rw, wcnt != 0);
571 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
572 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
573 1.2 ad
574 1.2 ad new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
575 1.2 ad if (!RW_RELEASE(rw, owner, new)) {
576 1.2 ad /* Oops, try again. */
577 1.2 ad turnstile_exit(ts);
578 1.2 ad continue;
579 1.2 ad }
580 1.2 ad break;
581 1.2 ad }
582 1.2 ad
583 1.2 ad /*
584 1.2 ad * Give the lock to all blocked readers. We may
585 1.2 ad * retain one read hold if downgrading. If there
586 1.2 ad * is a writer waiting, new readers will be blocked
587 1.2 ad * out.
588 1.2 ad */
589 1.2 ad new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
590 1.2 ad if (wcnt != 0)
591 1.2 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
592 1.2 ad
593 1.2 ad RW_GIVE(rw);
594 1.2 ad if (!RW_RELEASE(rw, owner, new)) {
595 1.2 ad /* Oops, try again. */
596 1.2 ad turnstile_exit(rw);
597 1.2 ad continue;
598 1.2 ad }
599 1.2 ad
600 1.2 ad /* Wake up all sleeping readers. */
601 1.2 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
602 1.2 ad break;
603 1.2 ad }
604 1.2 ad
605 1.2 ad RW_LOCKED(rw, RW_READER);
606 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
607 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
608 1.2 ad }
609 1.2 ad
610 1.2 ad /*
611 1.2 ad * rw_tryupgrade:
612 1.2 ad *
613 1.2 ad * Try to upgrade a read lock to a write lock. We must be the
614 1.2 ad * only reader.
615 1.2 ad */
616 1.2 ad int
617 1.2 ad rw_tryupgrade(krwlock_t *rw)
618 1.2 ad {
619 1.2 ad uintptr_t owner, curthread, new;
620 1.2 ad
621 1.2 ad curthread = (uintptr_t)curlwp;
622 1.2 ad RW_ASSERT(rw, curthread != 0);
623 1.2 ad RW_WANTLOCK(rw, RW_WRITER);
624 1.2 ad
625 1.2 ad for (;;) {
626 1.2 ad owner = rw->rw_owner;
627 1.2 ad RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
628 1.2 ad if ((owner & RW_THREAD) != RW_READ_INCR) {
629 1.2 ad RW_ASSERT(rw, (owner & RW_THREAD) != 0);
630 1.2 ad return 0;
631 1.2 ad }
632 1.2 ad new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
633 1.2 ad if (RW_ACQUIRE(rw, owner, new))
634 1.2 ad break;
635 1.2 ad }
636 1.2 ad
637 1.2 ad RW_UNLOCKED(rw, RW_READER);
638 1.2 ad RW_LOCKED(rw, RW_WRITER);
639 1.2 ad RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
640 1.2 ad RW_DASSERT(rw, RW_OWNER(rw) == curthread);
641 1.2 ad
642 1.2 ad return 1;
643 1.2 ad }
644 1.2 ad
645 1.2 ad /*
646 1.2 ad * rw_read_held:
647 1.2 ad *
648 1.2 ad * Returns true if the rwlock is held for reading. Must only be
649 1.2 ad * used for diagnostic assertions, and never be used to make
650 1.2 ad * decisions about how to use a rwlock.
651 1.2 ad */
652 1.2 ad int
653 1.2 ad rw_read_held(krwlock_t *rw)
654 1.2 ad {
655 1.2 ad uintptr_t owner;
656 1.2 ad
657 1.2 ad if (panicstr != NULL)
658 1.2 ad return 1;
659 1.2 ad
660 1.2 ad owner = rw->rw_owner;
661 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
662 1.2 ad }
663 1.2 ad
664 1.2 ad /*
665 1.2 ad * rw_write_held:
666 1.2 ad *
667 1.2 ad * Returns true if the rwlock is held for writing. Must only be
668 1.2 ad * used for diagnostic assertions, and never be used to make
669 1.2 ad * decisions about how to use a rwlock.
670 1.2 ad */
671 1.2 ad int
672 1.2 ad rw_write_held(krwlock_t *rw)
673 1.2 ad {
674 1.2 ad
675 1.2 ad if (panicstr != NULL)
676 1.2 ad return 1;
677 1.2 ad
678 1.2 ad return (rw->rw_owner & RW_WRITE_LOCKED) != 0;
679 1.2 ad }
680 1.2 ad
681 1.2 ad /*
682 1.2 ad * rw_lock_held:
683 1.2 ad *
684 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
685 1.2 ad * only be used for diagnostic assertions, and never be used to make
686 1.2 ad * decisions about how to use a rwlock.
687 1.2 ad */
688 1.2 ad int
689 1.2 ad rw_lock_held(krwlock_t *rw)
690 1.2 ad {
691 1.2 ad
692 1.2 ad if (panicstr != NULL)
693 1.2 ad return 1;
694 1.2 ad
695 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
696 1.2 ad }
697 1.4 yamt
698 1.5 ad /*
699 1.5 ad * rw_owner:
700 1.5 ad *
701 1.5 ad * Return the current owner of an RW lock, but only if it is write
702 1.5 ad * held. Used for priority inheritance.
703 1.5 ad */
704 1.7 ad static lwp_t *
705 1.4 yamt rw_owner(wchan_t obj)
706 1.4 yamt {
707 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
708 1.4 yamt uintptr_t owner = rw->rw_owner;
709 1.4 yamt
710 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
711 1.4 yamt return NULL;
712 1.4 yamt
713 1.4 yamt return (void *)(owner & RW_THREAD);
714 1.4 yamt }
715