kern_rwlock.c revision 1.15 1 1.15 ad /* $NetBSD: kern_rwlock.c,v 1.15 2008/01/04 21:54:49 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.2 ad * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Kernel reader/writer lock implementation, modeled after those
41 1.2 ad * found in Solaris, a description of which can be found in:
42 1.2 ad *
43 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 1.2 ad * Richard McDougall.
45 1.2 ad */
46 1.2 ad
47 1.10 dsl #include <sys/cdefs.h>
48 1.15 ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.15 2008/01/04 21:54:49 ad Exp $");
49 1.10 dsl
50 1.2 ad #include "opt_multiprocessor.h"
51 1.2 ad
52 1.2 ad #define __RWLOCK_PRIVATE
53 1.2 ad
54 1.2 ad #include <sys/param.h>
55 1.2 ad #include <sys/proc.h>
56 1.2 ad #include <sys/rwlock.h>
57 1.2 ad #include <sys/sched.h>
58 1.2 ad #include <sys/sleepq.h>
59 1.2 ad #include <sys/systm.h>
60 1.2 ad #include <sys/lockdebug.h>
61 1.11 ad #include <sys/cpu.h>
62 1.14 ad #include <sys/atomic.h>
63 1.15 ad #include <sys/lock.h>
64 1.2 ad
65 1.2 ad #include <dev/lockstat.h>
66 1.2 ad
67 1.2 ad /*
68 1.2 ad * LOCKDEBUG
69 1.2 ad */
70 1.2 ad
71 1.2 ad #if defined(LOCKDEBUG)
72 1.2 ad
73 1.2 ad #define RW_WANTLOCK(rw, op) \
74 1.12 yamt LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
75 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
76 1.2 ad #define RW_LOCKED(rw, op) \
77 1.12 yamt LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), \
78 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
79 1.2 ad #define RW_UNLOCKED(rw, op) \
80 1.12 yamt LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
81 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
82 1.2 ad #define RW_DASSERT(rw, cond) \
83 1.2 ad do { \
84 1.2 ad if (!(cond)) \
85 1.11 ad rw_abort(rw, __func__, "assertion failed: " #cond); \
86 1.2 ad } while (/* CONSTCOND */ 0);
87 1.2 ad
88 1.2 ad #else /* LOCKDEBUG */
89 1.2 ad
90 1.2 ad #define RW_WANTLOCK(rw, op) /* nothing */
91 1.2 ad #define RW_LOCKED(rw, op) /* nothing */
92 1.2 ad #define RW_UNLOCKED(rw, op) /* nothing */
93 1.2 ad #define RW_DASSERT(rw, cond) /* nothing */
94 1.2 ad
95 1.2 ad #endif /* LOCKDEBUG */
96 1.2 ad
97 1.2 ad /*
98 1.2 ad * DIAGNOSTIC
99 1.2 ad */
100 1.2 ad
101 1.2 ad #if defined(DIAGNOSTIC)
102 1.2 ad
103 1.2 ad #define RW_ASSERT(rw, cond) \
104 1.2 ad do { \
105 1.2 ad if (!(cond)) \
106 1.11 ad rw_abort(rw, __func__, "assertion failed: " #cond); \
107 1.2 ad } while (/* CONSTCOND */ 0)
108 1.2 ad
109 1.2 ad #else
110 1.2 ad
111 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
112 1.2 ad
113 1.2 ad #endif /* DIAGNOSTIC */
114 1.2 ad
115 1.2 ad /*
116 1.2 ad * For platforms that use 'simple' RW locks.
117 1.2 ad */
118 1.2 ad #ifdef __HAVE_SIMPLE_RW_LOCKS
119 1.12 yamt #define RW_ACQUIRE(rw, old, new) RW_CAS1(&(rw)->rw_owner, old, new)
120 1.12 yamt #define RW_RELEASE(rw, old, new) RW_CAS1(&(rw)->rw_owner, old, new)
121 1.12 yamt #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
122 1.12 yamt #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_DEBUG) != 0)
123 1.12 yamt #if defined(LOCKDEBUG)
124 1.12 yamt #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_DEBUG
125 1.12 yamt #else /* defined(LOCKDEBUG) */
126 1.12 yamt #define RW_INHERITDEBUG(new, old) /* nothing */
127 1.12 yamt #endif /* defined(LOCKDEBUG) */
128 1.12 yamt
129 1.12 yamt static inline int
130 1.12 yamt RW_CAS1(volatile uintptr_t *ptr, uintptr_t old, uintptr_t new)
131 1.12 yamt {
132 1.12 yamt
133 1.12 yamt RW_INHERITDEBUG(new, old);
134 1.12 yamt return RW_CAS(ptr, old, new);
135 1.12 yamt }
136 1.2 ad
137 1.2 ad static inline int
138 1.2 ad RW_SET_WAITERS(krwlock_t *rw, uintptr_t need, uintptr_t set)
139 1.2 ad {
140 1.2 ad uintptr_t old;
141 1.2 ad
142 1.2 ad if (((old = rw->rw_owner) & need) == 0)
143 1.2 ad return 0;
144 1.2 ad return RW_CAS(&rw->rw_owner, old, old | set);
145 1.2 ad }
146 1.2 ad #endif /* __HAVE_SIMPLE_RW_LOCKS */
147 1.2 ad
148 1.2 ad /*
149 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
150 1.2 ad */
151 1.2 ad #ifdef LOCKDEBUG
152 1.2 ad #undef __HAVE_RW_STUBS
153 1.2 ad #endif
154 1.2 ad
155 1.2 ad #ifndef __HAVE_RW_STUBS
156 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
157 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
158 1.2 ad #endif
159 1.2 ad
160 1.7 ad static void rw_dump(volatile void *);
161 1.7 ad static lwp_t *rw_owner(wchan_t);
162 1.2 ad
163 1.2 ad lockops_t rwlock_lockops = {
164 1.2 ad "Reader / writer lock",
165 1.2 ad 1,
166 1.2 ad rw_dump
167 1.2 ad };
168 1.2 ad
169 1.4 yamt syncobj_t rw_syncobj = {
170 1.4 yamt SOBJ_SLEEPQ_SORTED,
171 1.4 yamt turnstile_unsleep,
172 1.4 yamt turnstile_changepri,
173 1.4 yamt sleepq_lendpri,
174 1.4 yamt rw_owner,
175 1.4 yamt };
176 1.4 yamt
177 1.2 ad /*
178 1.2 ad * rw_dump:
179 1.2 ad *
180 1.2 ad * Dump the contents of a rwlock structure.
181 1.2 ad */
182 1.11 ad static void
183 1.2 ad rw_dump(volatile void *cookie)
184 1.2 ad {
185 1.2 ad volatile krwlock_t *rw = cookie;
186 1.2 ad
187 1.2 ad printf_nolog("owner/count : %#018lx flags : %#018x\n",
188 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
189 1.2 ad }
190 1.2 ad
191 1.2 ad /*
192 1.11 ad * rw_abort:
193 1.11 ad *
194 1.11 ad * Dump information about an error and panic the system. This
195 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
196 1.11 ad * we ask the compiler to not inline it.
197 1.11 ad */
198 1.11 ad #if __GNUC_PREREQ__(3, 0)
199 1.11 ad __attribute ((noinline))
200 1.11 ad #endif
201 1.11 ad static void
202 1.11 ad rw_abort(krwlock_t *rw, const char *func, const char *msg)
203 1.11 ad {
204 1.11 ad
205 1.11 ad if (panicstr != NULL)
206 1.11 ad return;
207 1.11 ad
208 1.12 yamt LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
209 1.11 ad }
210 1.11 ad
211 1.11 ad /*
212 1.2 ad * rw_init:
213 1.2 ad *
214 1.2 ad * Initialize a rwlock for use.
215 1.2 ad */
216 1.2 ad void
217 1.2 ad rw_init(krwlock_t *rw)
218 1.2 ad {
219 1.12 yamt bool dodebug;
220 1.2 ad
221 1.2 ad memset(rw, 0, sizeof(*rw));
222 1.2 ad
223 1.12 yamt dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
224 1.11 ad (uintptr_t)__builtin_return_address(0));
225 1.12 yamt RW_SETDEBUG(rw, dodebug);
226 1.2 ad }
227 1.2 ad
228 1.2 ad /*
229 1.2 ad * rw_destroy:
230 1.2 ad *
231 1.2 ad * Tear down a rwlock.
232 1.2 ad */
233 1.2 ad void
234 1.2 ad rw_destroy(krwlock_t *rw)
235 1.2 ad {
236 1.2 ad
237 1.12 yamt RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
238 1.12 yamt LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
239 1.2 ad }
240 1.2 ad
241 1.2 ad /*
242 1.2 ad * rw_vector_enter:
243 1.2 ad *
244 1.2 ad * Acquire a rwlock.
245 1.2 ad */
246 1.2 ad void
247 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
248 1.2 ad {
249 1.2 ad uintptr_t owner, incr, need_wait, set_wait, curthread;
250 1.2 ad turnstile_t *ts;
251 1.2 ad int queue;
252 1.7 ad lwp_t *l;
253 1.2 ad LOCKSTAT_TIMER(slptime);
254 1.2 ad LOCKSTAT_FLAG(lsflag);
255 1.2 ad
256 1.2 ad l = curlwp;
257 1.2 ad curthread = (uintptr_t)l;
258 1.2 ad
259 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
260 1.2 ad RW_ASSERT(rw, curthread != 0);
261 1.2 ad RW_WANTLOCK(rw, op);
262 1.2 ad
263 1.2 ad if (panicstr == NULL) {
264 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
265 1.2 ad }
266 1.2 ad
267 1.2 ad /*
268 1.2 ad * We play a slight trick here. If we're a reader, we want
269 1.2 ad * increment the read count. If we're a writer, we want to
270 1.2 ad * set the owner field and whe WRITE_LOCKED bit.
271 1.2 ad *
272 1.2 ad * In the latter case, we expect those bits to be zero,
273 1.2 ad * therefore we can use an add operation to set them, which
274 1.2 ad * means an add operation for both cases.
275 1.2 ad */
276 1.2 ad if (__predict_true(op == RW_READER)) {
277 1.2 ad incr = RW_READ_INCR;
278 1.2 ad set_wait = RW_HAS_WAITERS;
279 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
280 1.2 ad queue = TS_READER_Q;
281 1.2 ad } else {
282 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
283 1.2 ad incr = curthread | RW_WRITE_LOCKED;
284 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
285 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
286 1.2 ad queue = TS_WRITER_Q;
287 1.2 ad }
288 1.2 ad
289 1.2 ad LOCKSTAT_ENTER(lsflag);
290 1.2 ad
291 1.2 ad for (;;) {
292 1.2 ad /*
293 1.2 ad * Read the lock owner field. If the need-to-wait
294 1.2 ad * indicator is clear, then try to acquire the lock.
295 1.2 ad */
296 1.2 ad owner = rw->rw_owner;
297 1.2 ad if ((owner & need_wait) == 0) {
298 1.2 ad if (RW_ACQUIRE(rw, owner, owner + incr)) {
299 1.2 ad /* Got it! */
300 1.2 ad break;
301 1.2 ad }
302 1.2 ad
303 1.2 ad /*
304 1.2 ad * Didn't get it -- spin around again (we'll
305 1.2 ad * probably sleep on the next iteration).
306 1.2 ad */
307 1.2 ad continue;
308 1.2 ad }
309 1.2 ad
310 1.2 ad if (panicstr != NULL)
311 1.2 ad return;
312 1.2 ad if (RW_OWNER(rw) == curthread)
313 1.11 ad rw_abort(rw, __func__, "locking against myself");
314 1.2 ad
315 1.2 ad /*
316 1.2 ad * Grab the turnstile chain lock. Once we have that, we
317 1.2 ad * can adjust the waiter bits and sleep queue.
318 1.2 ad */
319 1.2 ad ts = turnstile_lookup(rw);
320 1.2 ad
321 1.2 ad /*
322 1.2 ad * Mark the rwlock as having waiters. If the set fails,
323 1.2 ad * then we may not need to sleep and should spin again.
324 1.2 ad */
325 1.2 ad if (!RW_SET_WAITERS(rw, need_wait, set_wait)) {
326 1.2 ad turnstile_exit(rw);
327 1.2 ad continue;
328 1.2 ad }
329 1.2 ad
330 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
331 1.2 ad
332 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
333 1.2 ad
334 1.2 ad /* If we wake up and arrive here, we've been handed the lock. */
335 1.2 ad RW_RECEIVE(rw);
336 1.2 ad
337 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
338 1.2 ad LOCKSTAT_EVENT(lsflag, rw,
339 1.2 ad LB_RWLOCK | (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2),
340 1.2 ad 1, slptime);
341 1.2 ad
342 1.2 ad break;
343 1.2 ad }
344 1.2 ad
345 1.2 ad LOCKSTAT_EXIT(lsflag);
346 1.2 ad
347 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
348 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
349 1.2 ad RW_LOCKED(rw, op);
350 1.2 ad }
351 1.2 ad
352 1.2 ad /*
353 1.2 ad * rw_vector_exit:
354 1.2 ad *
355 1.2 ad * Release a rwlock.
356 1.2 ad */
357 1.2 ad void
358 1.2 ad rw_vector_exit(krwlock_t *rw)
359 1.2 ad {
360 1.2 ad uintptr_t curthread, owner, decr, new;
361 1.2 ad turnstile_t *ts;
362 1.2 ad int rcnt, wcnt;
363 1.7 ad lwp_t *l;
364 1.2 ad
365 1.2 ad curthread = (uintptr_t)curlwp;
366 1.2 ad RW_ASSERT(rw, curthread != 0);
367 1.2 ad
368 1.11 ad if (panicstr != NULL)
369 1.2 ad return;
370 1.2 ad
371 1.2 ad /*
372 1.2 ad * Again, we use a trick. Since we used an add operation to
373 1.2 ad * set the required lock bits, we can use a subtract to clear
374 1.2 ad * them, which makes the read-release and write-release path
375 1.2 ad * the same.
376 1.2 ad */
377 1.2 ad owner = rw->rw_owner;
378 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
379 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
380 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
381 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
382 1.2 ad decr = curthread | RW_WRITE_LOCKED;
383 1.2 ad } else {
384 1.2 ad RW_UNLOCKED(rw, RW_READER);
385 1.2 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
386 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
387 1.2 ad decr = RW_READ_INCR;
388 1.2 ad }
389 1.2 ad
390 1.2 ad /*
391 1.2 ad * Compute what we expect the new value of the lock to be. Only
392 1.2 ad * proceed to do direct handoff if there are waiters, and if the
393 1.2 ad * lock would become unowned.
394 1.2 ad */
395 1.2 ad for (;; owner = rw->rw_owner) {
396 1.2 ad new = (owner - decr);
397 1.2 ad if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
398 1.2 ad break;
399 1.2 ad if (RW_RELEASE(rw, owner, new))
400 1.2 ad return;
401 1.2 ad }
402 1.2 ad
403 1.2 ad for (;;) {
404 1.2 ad /*
405 1.2 ad * Grab the turnstile chain lock. This gets the interlock
406 1.2 ad * on the sleep queue. Once we have that, we can adjust the
407 1.2 ad * waiter bits.
408 1.2 ad */
409 1.2 ad ts = turnstile_lookup(rw);
410 1.2 ad RW_DASSERT(rw, ts != NULL);
411 1.3 ad RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
412 1.2 ad
413 1.2 ad owner = rw->rw_owner;
414 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
415 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
416 1.2 ad
417 1.2 ad /*
418 1.2 ad * Give the lock away.
419 1.2 ad *
420 1.2 ad * If we are releasing a write lock, then wake all
421 1.2 ad * outstanding readers. If we are releasing a read
422 1.2 ad * lock, then wake one writer.
423 1.2 ad */
424 1.2 ad if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
425 1.2 ad RW_DASSERT(rw, wcnt != 0);
426 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
427 1.2 ad
428 1.2 ad /*
429 1.2 ad * Give the lock to the longest waiting
430 1.2 ad * writer.
431 1.2 ad */
432 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
433 1.2 ad new = (uintptr_t)l | RW_WRITE_LOCKED;
434 1.2 ad
435 1.2 ad if (wcnt > 1)
436 1.2 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
437 1.2 ad else if (rcnt != 0)
438 1.2 ad new |= RW_HAS_WAITERS;
439 1.2 ad
440 1.2 ad RW_GIVE(rw);
441 1.2 ad if (!RW_RELEASE(rw, owner, new)) {
442 1.2 ad /* Oops, try again. */
443 1.2 ad turnstile_exit(rw);
444 1.2 ad continue;
445 1.2 ad }
446 1.2 ad
447 1.2 ad /* Wake the writer. */
448 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
449 1.2 ad } else {
450 1.2 ad RW_DASSERT(rw, rcnt != 0);
451 1.2 ad
452 1.2 ad /*
453 1.3 ad * Give the lock to all blocked readers. If there
454 1.3 ad * is a writer waiting, new readers that arrive
455 1.3 ad * after the release will be blocked out.
456 1.2 ad */
457 1.2 ad new = rcnt << RW_READ_COUNT_SHIFT;
458 1.2 ad if (wcnt != 0)
459 1.2 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
460 1.12 yamt
461 1.2 ad RW_GIVE(rw);
462 1.2 ad if (!RW_RELEASE(rw, owner, new)) {
463 1.2 ad /* Oops, try again. */
464 1.2 ad turnstile_exit(rw);
465 1.2 ad continue;
466 1.2 ad }
467 1.2 ad
468 1.2 ad /* Wake up all sleeping readers. */
469 1.2 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
470 1.2 ad }
471 1.2 ad
472 1.2 ad break;
473 1.2 ad }
474 1.2 ad }
475 1.2 ad
476 1.2 ad /*
477 1.2 ad * rw_tryenter:
478 1.2 ad *
479 1.2 ad * Try to acquire a rwlock.
480 1.2 ad */
481 1.2 ad int
482 1.2 ad rw_tryenter(krwlock_t *rw, const krw_t op)
483 1.2 ad {
484 1.2 ad uintptr_t curthread, owner, incr, need_wait;
485 1.2 ad
486 1.2 ad curthread = (uintptr_t)curlwp;
487 1.2 ad
488 1.2 ad RW_ASSERT(rw, curthread != 0);
489 1.2 ad RW_WANTLOCK(rw, op);
490 1.2 ad
491 1.2 ad if (op == RW_READER) {
492 1.2 ad incr = RW_READ_INCR;
493 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
494 1.2 ad } else {
495 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
496 1.2 ad incr = curthread | RW_WRITE_LOCKED;
497 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
498 1.2 ad }
499 1.2 ad
500 1.2 ad for (;;) {
501 1.2 ad owner = rw->rw_owner;
502 1.2 ad if ((owner & need_wait) == 0) {
503 1.2 ad if (RW_ACQUIRE(rw, owner, owner + incr)) {
504 1.2 ad /* Got it! */
505 1.2 ad break;
506 1.2 ad }
507 1.2 ad continue;
508 1.2 ad }
509 1.2 ad return 0;
510 1.2 ad }
511 1.2 ad
512 1.2 ad RW_LOCKED(rw, op);
513 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
514 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
515 1.7 ad
516 1.2 ad return 1;
517 1.2 ad }
518 1.2 ad
519 1.2 ad /*
520 1.2 ad * rw_downgrade:
521 1.2 ad *
522 1.2 ad * Downgrade a write lock to a read lock.
523 1.2 ad */
524 1.2 ad void
525 1.2 ad rw_downgrade(krwlock_t *rw)
526 1.2 ad {
527 1.2 ad uintptr_t owner, curthread, new;
528 1.2 ad turnstile_t *ts;
529 1.2 ad int rcnt, wcnt;
530 1.2 ad
531 1.2 ad curthread = (uintptr_t)curlwp;
532 1.2 ad RW_ASSERT(rw, curthread != 0);
533 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
534 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
535 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
536 1.2 ad
537 1.2 ad owner = rw->rw_owner;
538 1.2 ad if ((owner & RW_HAS_WAITERS) == 0) {
539 1.2 ad /*
540 1.2 ad * There are no waiters, so we can do this the easy way.
541 1.2 ad * Try swapping us down to one read hold. If it fails, the
542 1.2 ad * lock condition has changed and we most likely now have
543 1.2 ad * waiters.
544 1.2 ad */
545 1.2 ad if (RW_RELEASE(rw, owner, RW_READ_INCR)) {
546 1.2 ad RW_LOCKED(rw, RW_READER);
547 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
548 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
549 1.2 ad return;
550 1.2 ad }
551 1.2 ad }
552 1.2 ad
553 1.2 ad /*
554 1.2 ad * Grab the turnstile chain lock. This gets the interlock
555 1.2 ad * on the sleep queue. Once we have that, we can adjust the
556 1.2 ad * waiter bits.
557 1.2 ad */
558 1.2 ad for (;;) {
559 1.2 ad ts = turnstile_lookup(rw);
560 1.2 ad RW_DASSERT(rw, ts != NULL);
561 1.2 ad
562 1.2 ad owner = rw->rw_owner;
563 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
564 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
565 1.2 ad
566 1.2 ad /*
567 1.2 ad * If there are no readers, just preserve the waiters
568 1.2 ad * bits, swap us down to one read hold and return.
569 1.2 ad */
570 1.2 ad if (rcnt == 0) {
571 1.2 ad RW_DASSERT(rw, wcnt != 0);
572 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
573 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
574 1.2 ad
575 1.2 ad new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
576 1.2 ad if (!RW_RELEASE(rw, owner, new)) {
577 1.2 ad /* Oops, try again. */
578 1.2 ad turnstile_exit(ts);
579 1.2 ad continue;
580 1.2 ad }
581 1.2 ad break;
582 1.2 ad }
583 1.2 ad
584 1.2 ad /*
585 1.2 ad * Give the lock to all blocked readers. We may
586 1.2 ad * retain one read hold if downgrading. If there
587 1.2 ad * is a writer waiting, new readers will be blocked
588 1.2 ad * out.
589 1.2 ad */
590 1.2 ad new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
591 1.2 ad if (wcnt != 0)
592 1.2 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
593 1.2 ad
594 1.2 ad RW_GIVE(rw);
595 1.2 ad if (!RW_RELEASE(rw, owner, new)) {
596 1.2 ad /* Oops, try again. */
597 1.2 ad turnstile_exit(rw);
598 1.2 ad continue;
599 1.2 ad }
600 1.2 ad
601 1.2 ad /* Wake up all sleeping readers. */
602 1.2 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
603 1.2 ad break;
604 1.2 ad }
605 1.2 ad
606 1.2 ad RW_LOCKED(rw, RW_READER);
607 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
608 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
609 1.2 ad }
610 1.2 ad
611 1.2 ad /*
612 1.2 ad * rw_tryupgrade:
613 1.2 ad *
614 1.2 ad * Try to upgrade a read lock to a write lock. We must be the
615 1.2 ad * only reader.
616 1.2 ad */
617 1.2 ad int
618 1.2 ad rw_tryupgrade(krwlock_t *rw)
619 1.2 ad {
620 1.2 ad uintptr_t owner, curthread, new;
621 1.2 ad
622 1.2 ad curthread = (uintptr_t)curlwp;
623 1.2 ad RW_ASSERT(rw, curthread != 0);
624 1.2 ad RW_WANTLOCK(rw, RW_WRITER);
625 1.2 ad
626 1.2 ad for (;;) {
627 1.2 ad owner = rw->rw_owner;
628 1.2 ad RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
629 1.2 ad if ((owner & RW_THREAD) != RW_READ_INCR) {
630 1.2 ad RW_ASSERT(rw, (owner & RW_THREAD) != 0);
631 1.2 ad return 0;
632 1.2 ad }
633 1.2 ad new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
634 1.2 ad if (RW_ACQUIRE(rw, owner, new))
635 1.2 ad break;
636 1.2 ad }
637 1.2 ad
638 1.2 ad RW_UNLOCKED(rw, RW_READER);
639 1.2 ad RW_LOCKED(rw, RW_WRITER);
640 1.2 ad RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
641 1.2 ad RW_DASSERT(rw, RW_OWNER(rw) == curthread);
642 1.2 ad
643 1.2 ad return 1;
644 1.2 ad }
645 1.2 ad
646 1.2 ad /*
647 1.2 ad * rw_read_held:
648 1.2 ad *
649 1.2 ad * Returns true if the rwlock is held for reading. Must only be
650 1.2 ad * used for diagnostic assertions, and never be used to make
651 1.2 ad * decisions about how to use a rwlock.
652 1.2 ad */
653 1.2 ad int
654 1.2 ad rw_read_held(krwlock_t *rw)
655 1.2 ad {
656 1.2 ad uintptr_t owner;
657 1.2 ad
658 1.2 ad if (panicstr != NULL)
659 1.2 ad return 1;
660 1.2 ad
661 1.2 ad owner = rw->rw_owner;
662 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
663 1.2 ad }
664 1.2 ad
665 1.2 ad /*
666 1.2 ad * rw_write_held:
667 1.2 ad *
668 1.2 ad * Returns true if the rwlock is held for writing. Must only be
669 1.2 ad * used for diagnostic assertions, and never be used to make
670 1.2 ad * decisions about how to use a rwlock.
671 1.2 ad */
672 1.2 ad int
673 1.2 ad rw_write_held(krwlock_t *rw)
674 1.2 ad {
675 1.2 ad
676 1.2 ad if (panicstr != NULL)
677 1.2 ad return 1;
678 1.2 ad
679 1.2 ad return (rw->rw_owner & RW_WRITE_LOCKED) != 0;
680 1.2 ad }
681 1.2 ad
682 1.2 ad /*
683 1.2 ad * rw_lock_held:
684 1.2 ad *
685 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
686 1.2 ad * only be used for diagnostic assertions, and never be used to make
687 1.2 ad * decisions about how to use a rwlock.
688 1.2 ad */
689 1.2 ad int
690 1.2 ad rw_lock_held(krwlock_t *rw)
691 1.2 ad {
692 1.2 ad
693 1.2 ad if (panicstr != NULL)
694 1.2 ad return 1;
695 1.2 ad
696 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
697 1.2 ad }
698 1.4 yamt
699 1.5 ad /*
700 1.5 ad * rw_owner:
701 1.5 ad *
702 1.5 ad * Return the current owner of an RW lock, but only if it is write
703 1.5 ad * held. Used for priority inheritance.
704 1.5 ad */
705 1.7 ad static lwp_t *
706 1.4 yamt rw_owner(wchan_t obj)
707 1.4 yamt {
708 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
709 1.4 yamt uintptr_t owner = rw->rw_owner;
710 1.4 yamt
711 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
712 1.4 yamt return NULL;
713 1.4 yamt
714 1.4 yamt return (void *)(owner & RW_THREAD);
715 1.4 yamt }
716