Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.18.6.1
      1  1.18.6.1    mjf /*	$NetBSD: kern_rwlock.c,v 1.18.6.1 2008/06/02 13:24:09 mjf Exp $	*/
      2       1.2     ad 
      3       1.2     ad /*-
      4      1.16     ad  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2     ad  * All rights reserved.
      6       1.2     ad  *
      7       1.2     ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2     ad  * by Jason R. Thorpe and Andrew Doran.
      9       1.2     ad  *
     10       1.2     ad  * Redistribution and use in source and binary forms, with or without
     11       1.2     ad  * modification, are permitted provided that the following conditions
     12       1.2     ad  * are met:
     13       1.2     ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2     ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2     ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2     ad  *    documentation and/or other materials provided with the distribution.
     18       1.2     ad  *
     19       1.2     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2     ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2     ad  */
     31       1.2     ad 
     32       1.2     ad /*
     33       1.2     ad  * Kernel reader/writer lock implementation, modeled after those
     34       1.2     ad  * found in Solaris, a description of which can be found in:
     35       1.2     ad  *
     36       1.2     ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37       1.2     ad  *	    Richard McDougall.
     38       1.2     ad  */
     39       1.2     ad 
     40      1.10    dsl #include <sys/cdefs.h>
     41  1.18.6.1    mjf __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.18.6.1 2008/06/02 13:24:09 mjf Exp $");
     42       1.2     ad 
     43       1.2     ad #define	__RWLOCK_PRIVATE
     44       1.2     ad 
     45       1.2     ad #include <sys/param.h>
     46       1.2     ad #include <sys/proc.h>
     47       1.2     ad #include <sys/rwlock.h>
     48       1.2     ad #include <sys/sched.h>
     49       1.2     ad #include <sys/sleepq.h>
     50       1.2     ad #include <sys/systm.h>
     51       1.2     ad #include <sys/lockdebug.h>
     52      1.11     ad #include <sys/cpu.h>
     53      1.14     ad #include <sys/atomic.h>
     54      1.15     ad #include <sys/lock.h>
     55       1.2     ad 
     56       1.2     ad #include <dev/lockstat.h>
     57       1.2     ad 
     58       1.2     ad /*
     59       1.2     ad  * LOCKDEBUG
     60       1.2     ad  */
     61       1.2     ad 
     62       1.2     ad #if defined(LOCKDEBUG)
     63       1.2     ad 
     64  1.18.6.1    mjf #define	RW_WANTLOCK(rw, op, t)						\
     65      1.12   yamt 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     66  1.18.6.1    mjf 	    (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
     67       1.2     ad #define	RW_LOCKED(rw, op)						\
     68  1.18.6.1    mjf 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     69       1.2     ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     70       1.2     ad #define	RW_UNLOCKED(rw, op)						\
     71      1.12   yamt 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     72       1.2     ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73       1.2     ad #define	RW_DASSERT(rw, cond)						\
     74       1.2     ad do {									\
     75       1.2     ad 	if (!(cond))							\
     76      1.11     ad 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
     77       1.2     ad } while (/* CONSTCOND */ 0);
     78       1.2     ad 
     79       1.2     ad #else	/* LOCKDEBUG */
     80       1.2     ad 
     81  1.18.6.1    mjf #define	RW_WANTLOCK(rw, op, t)	/* nothing */
     82       1.2     ad #define	RW_LOCKED(rw, op)	/* nothing */
     83       1.2     ad #define	RW_UNLOCKED(rw, op)	/* nothing */
     84       1.2     ad #define	RW_DASSERT(rw, cond)	/* nothing */
     85       1.2     ad 
     86       1.2     ad #endif	/* LOCKDEBUG */
     87       1.2     ad 
     88       1.2     ad /*
     89       1.2     ad  * DIAGNOSTIC
     90       1.2     ad  */
     91       1.2     ad 
     92       1.2     ad #if defined(DIAGNOSTIC)
     93       1.2     ad 
     94       1.2     ad #define	RW_ASSERT(rw, cond)						\
     95       1.2     ad do {									\
     96       1.2     ad 	if (!(cond))							\
     97      1.11     ad 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
     98       1.2     ad } while (/* CONSTCOND */ 0)
     99       1.2     ad 
    100       1.2     ad #else
    101       1.2     ad 
    102       1.2     ad #define	RW_ASSERT(rw, cond)	/* nothing */
    103       1.2     ad 
    104       1.2     ad #endif	/* DIAGNOSTIC */
    105       1.2     ad 
    106      1.12   yamt #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
    107      1.12   yamt #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_DEBUG) != 0)
    108      1.12   yamt #if defined(LOCKDEBUG)
    109      1.12   yamt #define	RW_INHERITDEBUG(new, old)	(new) |= (old) & RW_DEBUG
    110      1.12   yamt #else /* defined(LOCKDEBUG) */
    111      1.12   yamt #define	RW_INHERITDEBUG(new, old)	/* nothing */
    112      1.12   yamt #endif /* defined(LOCKDEBUG) */
    113      1.12   yamt 
    114  1.18.6.1    mjf static void	rw_abort(krwlock_t *, const char *, const char *);
    115  1.18.6.1    mjf static void	rw_dump(volatile void *);
    116  1.18.6.1    mjf static lwp_t	*rw_owner(wchan_t);
    117  1.18.6.1    mjf 
    118  1.18.6.1    mjf static inline uintptr_t
    119  1.18.6.1    mjf rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    120      1.12   yamt {
    121      1.12   yamt 
    122  1.18.6.1    mjf 	RW_INHERITDEBUG(n, o);
    123  1.18.6.1    mjf 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    124  1.18.6.1    mjf 	    (void *)o, (void *)n);
    125      1.12   yamt }
    126       1.2     ad 
    127  1.18.6.1    mjf static inline void
    128  1.18.6.1    mjf rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    129       1.2     ad {
    130       1.2     ad 
    131  1.18.6.1    mjf 	RW_INHERITDEBUG(n, o);
    132  1.18.6.1    mjf 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    133  1.18.6.1    mjf 	    (void *)n);
    134  1.18.6.1    mjf 	RW_DASSERT(rw, n == o);
    135       1.2     ad }
    136       1.2     ad 
    137       1.2     ad /*
    138       1.2     ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    139       1.2     ad  */
    140       1.2     ad #ifdef LOCKDEBUG
    141       1.2     ad #undef	__HAVE_RW_STUBS
    142       1.2     ad #endif
    143       1.2     ad 
    144       1.2     ad #ifndef __HAVE_RW_STUBS
    145       1.6  itohy __strong_alias(rw_enter,rw_vector_enter);
    146       1.6  itohy __strong_alias(rw_exit,rw_vector_exit);
    147      1.16     ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    148       1.2     ad #endif
    149       1.2     ad 
    150       1.2     ad lockops_t rwlock_lockops = {
    151       1.2     ad 	"Reader / writer lock",
    152  1.18.6.1    mjf 	LOCKOPS_SLEEP,
    153       1.2     ad 	rw_dump
    154       1.2     ad };
    155       1.2     ad 
    156       1.4   yamt syncobj_t rw_syncobj = {
    157       1.4   yamt 	SOBJ_SLEEPQ_SORTED,
    158       1.4   yamt 	turnstile_unsleep,
    159       1.4   yamt 	turnstile_changepri,
    160       1.4   yamt 	sleepq_lendpri,
    161       1.4   yamt 	rw_owner,
    162       1.4   yamt };
    163       1.4   yamt 
    164       1.2     ad /*
    165       1.2     ad  * rw_dump:
    166       1.2     ad  *
    167       1.2     ad  *	Dump the contents of a rwlock structure.
    168       1.2     ad  */
    169      1.11     ad static void
    170       1.2     ad rw_dump(volatile void *cookie)
    171       1.2     ad {
    172       1.2     ad 	volatile krwlock_t *rw = cookie;
    173       1.2     ad 
    174       1.2     ad 	printf_nolog("owner/count  : %#018lx flags    : %#018x\n",
    175       1.2     ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    176       1.2     ad }
    177       1.2     ad 
    178       1.2     ad /*
    179      1.11     ad  * rw_abort:
    180      1.11     ad  *
    181      1.11     ad  *	Dump information about an error and panic the system.  This
    182      1.11     ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    183      1.11     ad  *	we ask the compiler to not inline it.
    184      1.11     ad  */
    185  1.18.6.1    mjf static void __noinline
    186      1.11     ad rw_abort(krwlock_t *rw, const char *func, const char *msg)
    187      1.11     ad {
    188      1.11     ad 
    189      1.11     ad 	if (panicstr != NULL)
    190      1.11     ad 		return;
    191      1.11     ad 
    192      1.12   yamt 	LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
    193      1.11     ad }
    194      1.11     ad 
    195      1.11     ad /*
    196       1.2     ad  * rw_init:
    197       1.2     ad  *
    198       1.2     ad  *	Initialize a rwlock for use.
    199       1.2     ad  */
    200       1.2     ad void
    201       1.2     ad rw_init(krwlock_t *rw)
    202       1.2     ad {
    203      1.12   yamt 	bool dodebug;
    204       1.2     ad 
    205       1.2     ad 	memset(rw, 0, sizeof(*rw));
    206       1.2     ad 
    207      1.12   yamt 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
    208      1.11     ad 	    (uintptr_t)__builtin_return_address(0));
    209      1.12   yamt 	RW_SETDEBUG(rw, dodebug);
    210       1.2     ad }
    211       1.2     ad 
    212       1.2     ad /*
    213       1.2     ad  * rw_destroy:
    214       1.2     ad  *
    215       1.2     ad  *	Tear down a rwlock.
    216       1.2     ad  */
    217       1.2     ad void
    218       1.2     ad rw_destroy(krwlock_t *rw)
    219       1.2     ad {
    220       1.2     ad 
    221      1.12   yamt 	RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
    222      1.12   yamt 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    223       1.2     ad }
    224       1.2     ad 
    225       1.2     ad /*
    226  1.18.6.1    mjf  * rw_onproc:
    227  1.18.6.1    mjf  *
    228  1.18.6.1    mjf  *	Return true if an rwlock owner is running on a CPU in the system.
    229  1.18.6.1    mjf  *	If the target is waiting on the kernel big lock, then we must
    230  1.18.6.1    mjf  *	release it.  This is necessary to avoid deadlock.
    231  1.18.6.1    mjf  *
    232  1.18.6.1    mjf  *	Note that we can't use the rwlock owner field as an LWP pointer.  We
    233  1.18.6.1    mjf  *	don't have full control over the timing of our execution, and so the
    234  1.18.6.1    mjf  *	pointer could be completely invalid by the time we dereference it.
    235  1.18.6.1    mjf  */
    236  1.18.6.1    mjf static int
    237  1.18.6.1    mjf rw_onproc(uintptr_t owner, struct cpu_info **cip)
    238  1.18.6.1    mjf {
    239  1.18.6.1    mjf #ifdef MULTIPROCESSOR
    240  1.18.6.1    mjf 	CPU_INFO_ITERATOR cii;
    241  1.18.6.1    mjf 	struct cpu_info *ci;
    242  1.18.6.1    mjf 	lwp_t *l;
    243  1.18.6.1    mjf 
    244  1.18.6.1    mjf 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
    245  1.18.6.1    mjf 		return 0;
    246  1.18.6.1    mjf 	l = (lwp_t *)(owner & RW_THREAD);
    247  1.18.6.1    mjf 
    248  1.18.6.1    mjf 	/* See if the target is running on a CPU somewhere. */
    249  1.18.6.1    mjf 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    250  1.18.6.1    mjf 		goto run;
    251  1.18.6.1    mjf 	for (CPU_INFO_FOREACH(cii, ci))
    252  1.18.6.1    mjf 		if (ci->ci_curlwp == l)
    253  1.18.6.1    mjf 			goto run;
    254  1.18.6.1    mjf 
    255  1.18.6.1    mjf 	/* No: it may be safe to block now. */
    256  1.18.6.1    mjf 	*cip = NULL;
    257  1.18.6.1    mjf 	return 0;
    258  1.18.6.1    mjf 
    259  1.18.6.1    mjf  run:
    260  1.18.6.1    mjf  	/* Target is running; do we need to block? */
    261  1.18.6.1    mjf  	*cip = ci;
    262  1.18.6.1    mjf 	return ci->ci_biglock_wanted != l;
    263  1.18.6.1    mjf #else
    264  1.18.6.1    mjf 	return 0;
    265  1.18.6.1    mjf #endif	/* MULTIPROCESSOR */
    266  1.18.6.1    mjf }
    267  1.18.6.1    mjf 
    268  1.18.6.1    mjf /*
    269       1.2     ad  * rw_vector_enter:
    270       1.2     ad  *
    271       1.2     ad  *	Acquire a rwlock.
    272       1.2     ad  */
    273       1.2     ad void
    274       1.2     ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    275       1.2     ad {
    276  1.18.6.1    mjf 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    277  1.18.6.1    mjf 	struct cpu_info *ci;
    278       1.2     ad 	turnstile_t *ts;
    279       1.2     ad 	int queue;
    280       1.7     ad 	lwp_t *l;
    281       1.2     ad 	LOCKSTAT_TIMER(slptime);
    282  1.18.6.1    mjf 	LOCKSTAT_TIMER(slpcnt);
    283  1.18.6.1    mjf 	LOCKSTAT_TIMER(spintime);
    284  1.18.6.1    mjf 	LOCKSTAT_COUNTER(spincnt);
    285       1.2     ad 	LOCKSTAT_FLAG(lsflag);
    286       1.2     ad 
    287       1.2     ad 	l = curlwp;
    288       1.2     ad 	curthread = (uintptr_t)l;
    289       1.2     ad 
    290      1.13     ad 	RW_ASSERT(rw, !cpu_intr_p());
    291       1.2     ad 	RW_ASSERT(rw, curthread != 0);
    292  1.18.6.1    mjf 	RW_WANTLOCK(rw, op, false);
    293       1.2     ad 
    294       1.2     ad 	if (panicstr == NULL) {
    295       1.2     ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    296       1.2     ad 	}
    297       1.2     ad 
    298       1.2     ad 	/*
    299       1.2     ad 	 * We play a slight trick here.  If we're a reader, we want
    300       1.2     ad 	 * increment the read count.  If we're a writer, we want to
    301       1.2     ad 	 * set the owner field and whe WRITE_LOCKED bit.
    302       1.2     ad 	 *
    303       1.2     ad 	 * In the latter case, we expect those bits to be zero,
    304       1.2     ad 	 * therefore we can use an add operation to set them, which
    305       1.2     ad 	 * means an add operation for both cases.
    306       1.2     ad 	 */
    307       1.2     ad 	if (__predict_true(op == RW_READER)) {
    308       1.2     ad 		incr = RW_READ_INCR;
    309       1.2     ad 		set_wait = RW_HAS_WAITERS;
    310       1.2     ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    311       1.2     ad 		queue = TS_READER_Q;
    312       1.2     ad 	} else {
    313       1.2     ad 		RW_DASSERT(rw, op == RW_WRITER);
    314       1.2     ad 		incr = curthread | RW_WRITE_LOCKED;
    315       1.2     ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    316       1.2     ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    317       1.2     ad 		queue = TS_WRITER_Q;
    318       1.2     ad 	}
    319       1.2     ad 
    320       1.2     ad 	LOCKSTAT_ENTER(lsflag);
    321       1.2     ad 
    322  1.18.6.1    mjf 	for (ci = NULL, owner = rw->rw_owner;;) {
    323       1.2     ad 		/*
    324       1.2     ad 		 * Read the lock owner field.  If the need-to-wait
    325       1.2     ad 		 * indicator is clear, then try to acquire the lock.
    326       1.2     ad 		 */
    327       1.2     ad 		if ((owner & need_wait) == 0) {
    328  1.18.6.1    mjf 			next = rw_cas(rw, owner, (owner + incr) &
    329  1.18.6.1    mjf 			    ~RW_WRITE_WANTED);
    330  1.18.6.1    mjf 			if (__predict_true(next == owner)) {
    331       1.2     ad 				/* Got it! */
    332  1.18.6.1    mjf #ifndef __HAVE_ATOMIC_AS_MEMBAR
    333  1.18.6.1    mjf 				membar_enter();
    334  1.18.6.1    mjf #endif
    335       1.2     ad 				break;
    336       1.2     ad 			}
    337       1.2     ad 
    338       1.2     ad 			/*
    339       1.2     ad 			 * Didn't get it -- spin around again (we'll
    340       1.2     ad 			 * probably sleep on the next iteration).
    341       1.2     ad 			 */
    342  1.18.6.1    mjf 			owner = next;
    343       1.2     ad 			continue;
    344       1.2     ad 		}
    345       1.2     ad 
    346  1.18.6.1    mjf 		if (__predict_false(panicstr != NULL))
    347       1.2     ad 			return;
    348  1.18.6.1    mjf 		if (__predict_false(RW_OWNER(rw) == curthread))
    349      1.11     ad 			rw_abort(rw, __func__, "locking against myself");
    350       1.2     ad 
    351       1.2     ad 		/*
    352  1.18.6.1    mjf 		 * If the lock owner is running on another CPU, and
    353  1.18.6.1    mjf 		 * there are no existing waiters, then spin.
    354  1.18.6.1    mjf 		 */
    355  1.18.6.1    mjf 		if (rw_onproc(owner, &ci)) {
    356  1.18.6.1    mjf 			LOCKSTAT_START_TIMER(lsflag, spintime);
    357  1.18.6.1    mjf 			u_int count = SPINLOCK_BACKOFF_MIN;
    358  1.18.6.1    mjf 			do {
    359  1.18.6.1    mjf 				SPINLOCK_BACKOFF(count);
    360  1.18.6.1    mjf 				owner = rw->rw_owner;
    361  1.18.6.1    mjf 			} while (rw_onproc(owner, &ci));
    362  1.18.6.1    mjf 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    363  1.18.6.1    mjf 			LOCKSTAT_COUNT(spincnt, 1);
    364  1.18.6.1    mjf 			if ((owner & need_wait) == 0)
    365  1.18.6.1    mjf 				continue;
    366  1.18.6.1    mjf 		}
    367  1.18.6.1    mjf 
    368  1.18.6.1    mjf 		/*
    369       1.2     ad 		 * Grab the turnstile chain lock.  Once we have that, we
    370       1.2     ad 		 * can adjust the waiter bits and sleep queue.
    371       1.2     ad 		 */
    372       1.2     ad 		ts = turnstile_lookup(rw);
    373       1.2     ad 
    374       1.2     ad 		/*
    375       1.2     ad 		 * Mark the rwlock as having waiters.  If the set fails,
    376       1.2     ad 		 * then we may not need to sleep and should spin again.
    377  1.18.6.1    mjf 		 * Reload rw_owner because turnstile_lookup() may have
    378  1.18.6.1    mjf 		 * spun on the turnstile chain lock.
    379       1.2     ad 		 */
    380  1.18.6.1    mjf 		owner = rw->rw_owner;
    381  1.18.6.1    mjf 		if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
    382  1.18.6.1    mjf 			turnstile_exit(rw);
    383  1.18.6.1    mjf 			continue;
    384  1.18.6.1    mjf 		}
    385  1.18.6.1    mjf 		next = rw_cas(rw, owner, owner | set_wait);
    386  1.18.6.1    mjf 		if (__predict_false(next != owner)) {
    387       1.2     ad 			turnstile_exit(rw);
    388  1.18.6.1    mjf 			owner = next;
    389       1.2     ad 			continue;
    390       1.2     ad 		}
    391       1.2     ad 
    392       1.2     ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    393       1.4   yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    394       1.2     ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    395  1.18.6.1    mjf 		LOCKSTAT_COUNT(slpcnt, 1);
    396       1.2     ad 
    397  1.18.6.1    mjf 		/*
    398  1.18.6.1    mjf 		 * No need for a memory barrier because of context switch.
    399  1.18.6.1    mjf 		 * If not handed the lock, then spin again.
    400  1.18.6.1    mjf 		 */
    401  1.18.6.1    mjf 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    402  1.18.6.1    mjf 			break;
    403       1.2     ad 	}
    404       1.2     ad 
    405  1.18.6.1    mjf 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    406  1.18.6.1    mjf 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    407  1.18.6.1    mjf 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    408       1.2     ad 	LOCKSTAT_EXIT(lsflag);
    409       1.2     ad 
    410       1.2     ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    411       1.2     ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    412       1.2     ad 	RW_LOCKED(rw, op);
    413       1.2     ad }
    414       1.2     ad 
    415       1.2     ad /*
    416       1.2     ad  * rw_vector_exit:
    417       1.2     ad  *
    418       1.2     ad  *	Release a rwlock.
    419       1.2     ad  */
    420       1.2     ad void
    421       1.2     ad rw_vector_exit(krwlock_t *rw)
    422       1.2     ad {
    423  1.18.6.1    mjf 	uintptr_t curthread, owner, decr, new, next;
    424       1.2     ad 	turnstile_t *ts;
    425       1.2     ad 	int rcnt, wcnt;
    426       1.7     ad 	lwp_t *l;
    427       1.2     ad 
    428       1.2     ad 	curthread = (uintptr_t)curlwp;
    429       1.2     ad 	RW_ASSERT(rw, curthread != 0);
    430       1.2     ad 
    431  1.18.6.1    mjf 	if (__predict_false(panicstr != NULL))
    432       1.2     ad 		return;
    433       1.2     ad 
    434       1.2     ad 	/*
    435       1.2     ad 	 * Again, we use a trick.  Since we used an add operation to
    436       1.2     ad 	 * set the required lock bits, we can use a subtract to clear
    437       1.2     ad 	 * them, which makes the read-release and write-release path
    438       1.2     ad 	 * the same.
    439       1.2     ad 	 */
    440       1.2     ad 	owner = rw->rw_owner;
    441       1.2     ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    442       1.2     ad 		RW_UNLOCKED(rw, RW_WRITER);
    443       1.2     ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    444       1.2     ad 		decr = curthread | RW_WRITE_LOCKED;
    445       1.2     ad 	} else {
    446       1.2     ad 		RW_UNLOCKED(rw, RW_READER);
    447       1.2     ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    448       1.2     ad 		decr = RW_READ_INCR;
    449       1.2     ad 	}
    450       1.2     ad 
    451       1.2     ad 	/*
    452       1.2     ad 	 * Compute what we expect the new value of the lock to be. Only
    453       1.2     ad 	 * proceed to do direct handoff if there are waiters, and if the
    454       1.2     ad 	 * lock would become unowned.
    455       1.2     ad 	 */
    456  1.18.6.1    mjf #ifndef __HAVE_ATOMIC_AS_MEMBAR
    457  1.18.6.1    mjf 	membar_exit();
    458  1.18.6.1    mjf #endif
    459  1.18.6.1    mjf 	for (;;) {
    460       1.2     ad 		new = (owner - decr);
    461       1.2     ad 		if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    462       1.2     ad 			break;
    463  1.18.6.1    mjf 		next = rw_cas(rw, owner, new);
    464  1.18.6.1    mjf 		if (__predict_true(next == owner))
    465       1.2     ad 			return;
    466  1.18.6.1    mjf 		owner = next;
    467       1.2     ad 	}
    468       1.2     ad 
    469  1.18.6.1    mjf 	/*
    470  1.18.6.1    mjf 	 * Grab the turnstile chain lock.  This gets the interlock
    471  1.18.6.1    mjf 	 * on the sleep queue.  Once we have that, we can adjust the
    472  1.18.6.1    mjf 	 * waiter bits.
    473  1.18.6.1    mjf 	 */
    474  1.18.6.1    mjf 	ts = turnstile_lookup(rw);
    475  1.18.6.1    mjf 	owner = rw->rw_owner;
    476  1.18.6.1    mjf 	RW_DASSERT(rw, ts != NULL);
    477  1.18.6.1    mjf 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    478       1.2     ad 
    479  1.18.6.1    mjf 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    480  1.18.6.1    mjf 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    481       1.2     ad 
    482  1.18.6.1    mjf 	/*
    483  1.18.6.1    mjf 	 * Give the lock away.
    484  1.18.6.1    mjf 	 *
    485  1.18.6.1    mjf 	 * If we are releasing a write lock, then prefer to wake all
    486  1.18.6.1    mjf 	 * outstanding readers.  Otherwise, wake one writer if there
    487  1.18.6.1    mjf 	 * are outstanding readers, or all writers if there are no
    488  1.18.6.1    mjf 	 * pending readers.  If waking one specific writer, the writer
    489  1.18.6.1    mjf 	 * is handed the lock here.  If waking multiple writers, we
    490  1.18.6.1    mjf 	 * set WRITE_WANTED to block out new readers, and let them
    491  1.18.6.1    mjf 	 * do the work of acquring the lock in rw_vector_enter().
    492  1.18.6.1    mjf 	 */
    493  1.18.6.1    mjf 	if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
    494  1.18.6.1    mjf 		RW_DASSERT(rw, wcnt != 0);
    495  1.18.6.1    mjf 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    496       1.2     ad 
    497  1.18.6.1    mjf 		if (rcnt != 0) {
    498  1.18.6.1    mjf 			/* Give the lock to the longest waiting writer. */
    499       1.2     ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    500  1.18.6.1    mjf 			new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    501  1.18.6.1    mjf 			if (wcnt != 0)
    502  1.18.6.1    mjf 				new |= RW_WRITE_WANTED;
    503  1.18.6.1    mjf 			rw_swap(rw, owner, new);
    504       1.7     ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    505       1.2     ad 		} else {
    506  1.18.6.1    mjf 			/* Wake all writers and let them fight it out. */
    507  1.18.6.1    mjf 			rw_swap(rw, owner, RW_WRITE_WANTED);
    508  1.18.6.1    mjf 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    509       1.2     ad 		}
    510  1.18.6.1    mjf 	} else {
    511  1.18.6.1    mjf 		RW_DASSERT(rw, rcnt != 0);
    512       1.2     ad 
    513  1.18.6.1    mjf 		/*
    514  1.18.6.1    mjf 		 * Give the lock to all blocked readers.  If there
    515  1.18.6.1    mjf 		 * is a writer waiting, new readers that arrive
    516  1.18.6.1    mjf 		 * after the release will be blocked out.
    517  1.18.6.1    mjf 		 */
    518  1.18.6.1    mjf 		new = rcnt << RW_READ_COUNT_SHIFT;
    519  1.18.6.1    mjf 		if (wcnt != 0)
    520  1.18.6.1    mjf 			new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    521  1.18.6.1    mjf 
    522  1.18.6.1    mjf 		/* Wake up all sleeping readers. */
    523  1.18.6.1    mjf 		rw_swap(rw, owner, new);
    524  1.18.6.1    mjf 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    525       1.2     ad 	}
    526       1.2     ad }
    527       1.2     ad 
    528       1.2     ad /*
    529      1.16     ad  * rw_vector_tryenter:
    530       1.2     ad  *
    531       1.2     ad  *	Try to acquire a rwlock.
    532       1.2     ad  */
    533       1.2     ad int
    534      1.16     ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    535       1.2     ad {
    536  1.18.6.1    mjf 	uintptr_t curthread, owner, incr, need_wait, next;
    537       1.2     ad 
    538       1.2     ad 	curthread = (uintptr_t)curlwp;
    539       1.2     ad 
    540       1.2     ad 	RW_ASSERT(rw, curthread != 0);
    541       1.2     ad 
    542       1.2     ad 	if (op == RW_READER) {
    543       1.2     ad 		incr = RW_READ_INCR;
    544       1.2     ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    545       1.2     ad 	} else {
    546       1.2     ad 		RW_DASSERT(rw, op == RW_WRITER);
    547       1.2     ad 		incr = curthread | RW_WRITE_LOCKED;
    548       1.2     ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    549       1.2     ad 	}
    550       1.2     ad 
    551  1.18.6.1    mjf 	for (owner = rw->rw_owner;; owner = next) {
    552       1.2     ad 		owner = rw->rw_owner;
    553  1.18.6.1    mjf 		if (__predict_false((owner & need_wait) != 0))
    554  1.18.6.1    mjf 			return 0;
    555  1.18.6.1    mjf 		next = rw_cas(rw, owner, owner + incr);
    556  1.18.6.1    mjf 		if (__predict_true(next == owner)) {
    557  1.18.6.1    mjf 			/* Got it! */
    558  1.18.6.1    mjf 			break;
    559       1.2     ad 		}
    560       1.2     ad 	}
    561       1.2     ad 
    562  1.18.6.1    mjf #ifndef __HAVE_ATOMIC_AS_MEMBAR
    563  1.18.6.1    mjf 	membar_enter();
    564  1.18.6.1    mjf #endif
    565  1.18.6.1    mjf 	RW_WANTLOCK(rw, op, true);
    566       1.2     ad 	RW_LOCKED(rw, op);
    567       1.2     ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    568       1.2     ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    569       1.7     ad 
    570       1.2     ad 	return 1;
    571       1.2     ad }
    572       1.2     ad 
    573       1.2     ad /*
    574       1.2     ad  * rw_downgrade:
    575       1.2     ad  *
    576       1.2     ad  *	Downgrade a write lock to a read lock.
    577       1.2     ad  */
    578       1.2     ad void
    579       1.2     ad rw_downgrade(krwlock_t *rw)
    580       1.2     ad {
    581  1.18.6.1    mjf 	uintptr_t owner, curthread, new, next;
    582       1.2     ad 	turnstile_t *ts;
    583       1.2     ad 	int rcnt, wcnt;
    584       1.2     ad 
    585       1.2     ad 	curthread = (uintptr_t)curlwp;
    586       1.2     ad 	RW_ASSERT(rw, curthread != 0);
    587       1.2     ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    588       1.2     ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    589       1.2     ad 	RW_UNLOCKED(rw, RW_WRITER);
    590       1.2     ad 
    591  1.18.6.1    mjf #ifndef __HAVE_ATOMIC_AS_MEMBAR
    592  1.18.6.1    mjf 	membar_producer();
    593  1.18.6.1    mjf #endif
    594  1.18.6.1    mjf 
    595       1.2     ad 	owner = rw->rw_owner;
    596       1.2     ad 	if ((owner & RW_HAS_WAITERS) == 0) {
    597       1.2     ad 		/*
    598       1.2     ad 		 * There are no waiters, so we can do this the easy way.
    599       1.2     ad 		 * Try swapping us down to one read hold.  If it fails, the
    600       1.2     ad 		 * lock condition has changed and we most likely now have
    601       1.2     ad 		 * waiters.
    602       1.2     ad 		 */
    603  1.18.6.1    mjf 		next = rw_cas(rw, owner, RW_READ_INCR);
    604  1.18.6.1    mjf 		if (__predict_true(next == owner)) {
    605       1.2     ad 			RW_LOCKED(rw, RW_READER);
    606       1.2     ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    607       1.2     ad 			RW_DASSERT(rw, RW_COUNT(rw) != 0);
    608       1.2     ad 			return;
    609       1.2     ad 		}
    610  1.18.6.1    mjf 		owner = next;
    611       1.2     ad 	}
    612       1.2     ad 
    613       1.2     ad 	/*
    614       1.2     ad 	 * Grab the turnstile chain lock.  This gets the interlock
    615       1.2     ad 	 * on the sleep queue.  Once we have that, we can adjust the
    616       1.2     ad 	 * waiter bits.
    617       1.2     ad 	 */
    618  1.18.6.1    mjf 	for (;; owner = next) {
    619       1.2     ad 		ts = turnstile_lookup(rw);
    620       1.2     ad 		RW_DASSERT(rw, ts != NULL);
    621       1.2     ad 
    622       1.2     ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    623       1.2     ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    624       1.2     ad 
    625       1.2     ad 		/*
    626       1.2     ad 		 * If there are no readers, just preserve the waiters
    627       1.2     ad 		 * bits, swap us down to one read hold and return.
    628       1.2     ad 		 */
    629       1.2     ad 		if (rcnt == 0) {
    630       1.2     ad 			RW_DASSERT(rw, wcnt != 0);
    631       1.2     ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    632       1.2     ad 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    633       1.2     ad 
    634       1.2     ad 			new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    635  1.18.6.1    mjf 			next = rw_cas(rw, owner, new);
    636  1.18.6.1    mjf 			turnstile_exit(ts);
    637  1.18.6.1    mjf 			if (__predict_true(next == owner))
    638  1.18.6.1    mjf 				break;
    639  1.18.6.1    mjf 		} else {
    640  1.18.6.1    mjf 			/*
    641  1.18.6.1    mjf 			 * Give the lock to all blocked readers.  We may
    642  1.18.6.1    mjf 			 * retain one read hold if downgrading.  If there
    643  1.18.6.1    mjf 			 * is a writer waiting, new readers will be blocked
    644  1.18.6.1    mjf 			 * out.
    645  1.18.6.1    mjf 			 */
    646  1.18.6.1    mjf 			new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    647  1.18.6.1    mjf 			if (wcnt != 0)
    648  1.18.6.1    mjf 				new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    649       1.2     ad 
    650  1.18.6.1    mjf 			next = rw_cas(rw, owner, new);
    651  1.18.6.1    mjf 			if (__predict_true(next == owner)) {
    652  1.18.6.1    mjf 				/* Wake up all sleeping readers. */
    653  1.18.6.1    mjf 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    654  1.18.6.1    mjf 				break;
    655  1.18.6.1    mjf 			}
    656  1.18.6.1    mjf 			turnstile_exit(ts);
    657       1.2     ad 		}
    658       1.2     ad 	}
    659       1.2     ad 
    660       1.2     ad 	RW_LOCKED(rw, RW_READER);
    661       1.2     ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    662       1.2     ad 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    663       1.2     ad }
    664       1.2     ad 
    665       1.2     ad /*
    666       1.2     ad  * rw_tryupgrade:
    667       1.2     ad  *
    668       1.2     ad  *	Try to upgrade a read lock to a write lock.  We must be the
    669       1.2     ad  *	only reader.
    670       1.2     ad  */
    671       1.2     ad int
    672       1.2     ad rw_tryupgrade(krwlock_t *rw)
    673       1.2     ad {
    674  1.18.6.1    mjf 	uintptr_t owner, curthread, new, next;
    675       1.2     ad 
    676       1.2     ad 	curthread = (uintptr_t)curlwp;
    677       1.2     ad 	RW_ASSERT(rw, curthread != 0);
    678  1.18.6.1    mjf 	RW_WANTLOCK(rw, RW_WRITER, true);
    679       1.2     ad 
    680  1.18.6.1    mjf 	for (owner = rw->rw_owner;; owner = next) {
    681       1.2     ad 		RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
    682  1.18.6.1    mjf 		if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
    683       1.2     ad 			RW_ASSERT(rw, (owner & RW_THREAD) != 0);
    684       1.2     ad 			return 0;
    685       1.2     ad 		}
    686       1.2     ad 		new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    687  1.18.6.1    mjf 		next = rw_cas(rw, owner, new);
    688  1.18.6.1    mjf 		if (__predict_true(next == owner))
    689       1.2     ad 			break;
    690       1.2     ad 	}
    691       1.2     ad 
    692       1.2     ad 	RW_UNLOCKED(rw, RW_READER);
    693       1.2     ad 	RW_LOCKED(rw, RW_WRITER);
    694       1.2     ad 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    695       1.2     ad 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    696       1.2     ad 
    697  1.18.6.1    mjf #ifndef __HAVE_ATOMIC_AS_MEMBAR
    698  1.18.6.1    mjf 	membar_producer();
    699  1.18.6.1    mjf #endif
    700  1.18.6.1    mjf 
    701       1.2     ad 	return 1;
    702       1.2     ad }
    703       1.2     ad 
    704       1.2     ad /*
    705       1.2     ad  * rw_read_held:
    706       1.2     ad  *
    707       1.2     ad  *	Returns true if the rwlock is held for reading.  Must only be
    708       1.2     ad  *	used for diagnostic assertions, and never be used to make
    709       1.2     ad  * 	decisions about how to use a rwlock.
    710       1.2     ad  */
    711       1.2     ad int
    712       1.2     ad rw_read_held(krwlock_t *rw)
    713       1.2     ad {
    714       1.2     ad 	uintptr_t owner;
    715       1.2     ad 
    716       1.2     ad 	if (panicstr != NULL)
    717       1.2     ad 		return 1;
    718  1.18.6.1    mjf 	if (rw == NULL)
    719  1.18.6.1    mjf 		return 0;
    720       1.2     ad 	owner = rw->rw_owner;
    721       1.2     ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    722       1.2     ad }
    723       1.2     ad 
    724       1.2     ad /*
    725       1.2     ad  * rw_write_held:
    726       1.2     ad  *
    727       1.2     ad  *	Returns true if the rwlock is held for writing.  Must only be
    728       1.2     ad  *	used for diagnostic assertions, and never be used to make
    729       1.2     ad  *	decisions about how to use a rwlock.
    730       1.2     ad  */
    731       1.2     ad int
    732       1.2     ad rw_write_held(krwlock_t *rw)
    733       1.2     ad {
    734       1.2     ad 
    735       1.2     ad 	if (panicstr != NULL)
    736       1.2     ad 		return 1;
    737  1.18.6.1    mjf 	if (rw == NULL)
    738  1.18.6.1    mjf 		return 0;
    739      1.17     ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    740      1.18     ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    741       1.2     ad }
    742       1.2     ad 
    743       1.2     ad /*
    744       1.2     ad  * rw_lock_held:
    745       1.2     ad  *
    746       1.2     ad  *	Returns true if the rwlock is held for reading or writing.  Must
    747       1.2     ad  *	only be used for diagnostic assertions, and never be used to make
    748       1.2     ad  *	decisions about how to use a rwlock.
    749       1.2     ad  */
    750       1.2     ad int
    751       1.2     ad rw_lock_held(krwlock_t *rw)
    752       1.2     ad {
    753       1.2     ad 
    754       1.2     ad 	if (panicstr != NULL)
    755       1.2     ad 		return 1;
    756  1.18.6.1    mjf 	if (rw == NULL)
    757  1.18.6.1    mjf 		return 0;
    758       1.2     ad 	return (rw->rw_owner & RW_THREAD) != 0;
    759       1.2     ad }
    760       1.4   yamt 
    761       1.5     ad /*
    762       1.5     ad  * rw_owner:
    763       1.5     ad  *
    764       1.5     ad  *	Return the current owner of an RW lock, but only if it is write
    765       1.5     ad  *	held.  Used for priority inheritance.
    766       1.5     ad  */
    767       1.7     ad static lwp_t *
    768       1.4   yamt rw_owner(wchan_t obj)
    769       1.4   yamt {
    770       1.4   yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    771       1.4   yamt 	uintptr_t owner = rw->rw_owner;
    772       1.4   yamt 
    773       1.4   yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    774       1.4   yamt 		return NULL;
    775       1.4   yamt 
    776       1.4   yamt 	return (void *)(owner & RW_THREAD);
    777       1.4   yamt }
    778