kern_rwlock.c revision 1.22 1 1.22 martin /* $NetBSD: kern_rwlock.c,v 1.22 2008/04/28 20:24:03 martin Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.16 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel reader/writer lock implementation, modeled after those
34 1.2 ad * found in Solaris, a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.10 dsl #include <sys/cdefs.h>
41 1.22 martin __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.22 2008/04/28 20:24:03 martin Exp $");
42 1.10 dsl
43 1.2 ad #include "opt_multiprocessor.h"
44 1.2 ad
45 1.2 ad #define __RWLOCK_PRIVATE
46 1.2 ad
47 1.2 ad #include <sys/param.h>
48 1.2 ad #include <sys/proc.h>
49 1.2 ad #include <sys/rwlock.h>
50 1.2 ad #include <sys/sched.h>
51 1.2 ad #include <sys/sleepq.h>
52 1.2 ad #include <sys/systm.h>
53 1.2 ad #include <sys/lockdebug.h>
54 1.11 ad #include <sys/cpu.h>
55 1.14 ad #include <sys/atomic.h>
56 1.15 ad #include <sys/lock.h>
57 1.2 ad
58 1.2 ad #include <dev/lockstat.h>
59 1.2 ad
60 1.2 ad /*
61 1.2 ad * LOCKDEBUG
62 1.2 ad */
63 1.2 ad
64 1.2 ad #if defined(LOCKDEBUG)
65 1.2 ad
66 1.2 ad #define RW_WANTLOCK(rw, op) \
67 1.12 yamt LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
68 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
69 1.2 ad #define RW_LOCKED(rw, op) \
70 1.12 yamt LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), \
71 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
72 1.2 ad #define RW_UNLOCKED(rw, op) \
73 1.12 yamt LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
74 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
75 1.2 ad #define RW_DASSERT(rw, cond) \
76 1.2 ad do { \
77 1.2 ad if (!(cond)) \
78 1.11 ad rw_abort(rw, __func__, "assertion failed: " #cond); \
79 1.2 ad } while (/* CONSTCOND */ 0);
80 1.2 ad
81 1.2 ad #else /* LOCKDEBUG */
82 1.2 ad
83 1.2 ad #define RW_WANTLOCK(rw, op) /* nothing */
84 1.2 ad #define RW_LOCKED(rw, op) /* nothing */
85 1.2 ad #define RW_UNLOCKED(rw, op) /* nothing */
86 1.2 ad #define RW_DASSERT(rw, cond) /* nothing */
87 1.2 ad
88 1.2 ad #endif /* LOCKDEBUG */
89 1.2 ad
90 1.2 ad /*
91 1.2 ad * DIAGNOSTIC
92 1.2 ad */
93 1.2 ad
94 1.2 ad #if defined(DIAGNOSTIC)
95 1.2 ad
96 1.2 ad #define RW_ASSERT(rw, cond) \
97 1.2 ad do { \
98 1.2 ad if (!(cond)) \
99 1.11 ad rw_abort(rw, __func__, "assertion failed: " #cond); \
100 1.2 ad } while (/* CONSTCOND */ 0)
101 1.2 ad
102 1.2 ad #else
103 1.2 ad
104 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
105 1.2 ad
106 1.2 ad #endif /* DIAGNOSTIC */
107 1.2 ad
108 1.12 yamt #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
109 1.12 yamt #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_DEBUG) != 0)
110 1.12 yamt #if defined(LOCKDEBUG)
111 1.12 yamt #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_DEBUG
112 1.12 yamt #else /* defined(LOCKDEBUG) */
113 1.12 yamt #define RW_INHERITDEBUG(new, old) /* nothing */
114 1.12 yamt #endif /* defined(LOCKDEBUG) */
115 1.12 yamt
116 1.20 ad static void rw_abort(krwlock_t *, const char *, const char *);
117 1.20 ad static void rw_dump(volatile void *);
118 1.20 ad static lwp_t *rw_owner(wchan_t);
119 1.20 ad
120 1.20 ad static inline uintptr_t
121 1.20 ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
122 1.12 yamt {
123 1.12 yamt
124 1.20 ad RW_INHERITDEBUG(n, o);
125 1.20 ad return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
126 1.20 ad (void *)o, (void *)n);
127 1.12 yamt }
128 1.2 ad
129 1.20 ad static inline void
130 1.20 ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
131 1.2 ad {
132 1.2 ad
133 1.20 ad RW_INHERITDEBUG(n, o);
134 1.20 ad n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
135 1.20 ad (void *)n);
136 1.20 ad RW_DASSERT(rw, n == o);
137 1.2 ad }
138 1.2 ad
139 1.2 ad /*
140 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
141 1.2 ad */
142 1.2 ad #ifdef LOCKDEBUG
143 1.2 ad #undef __HAVE_RW_STUBS
144 1.2 ad #endif
145 1.2 ad
146 1.2 ad #ifndef __HAVE_RW_STUBS
147 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
148 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
149 1.16 ad __strong_alias(rw_tryenter,rw_vector_tryenter);
150 1.2 ad #endif
151 1.2 ad
152 1.2 ad lockops_t rwlock_lockops = {
153 1.2 ad "Reader / writer lock",
154 1.2 ad 1,
155 1.2 ad rw_dump
156 1.2 ad };
157 1.2 ad
158 1.4 yamt syncobj_t rw_syncobj = {
159 1.4 yamt SOBJ_SLEEPQ_SORTED,
160 1.4 yamt turnstile_unsleep,
161 1.4 yamt turnstile_changepri,
162 1.4 yamt sleepq_lendpri,
163 1.4 yamt rw_owner,
164 1.4 yamt };
165 1.4 yamt
166 1.2 ad /*
167 1.2 ad * rw_dump:
168 1.2 ad *
169 1.2 ad * Dump the contents of a rwlock structure.
170 1.2 ad */
171 1.11 ad static void
172 1.2 ad rw_dump(volatile void *cookie)
173 1.2 ad {
174 1.2 ad volatile krwlock_t *rw = cookie;
175 1.2 ad
176 1.2 ad printf_nolog("owner/count : %#018lx flags : %#018x\n",
177 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
178 1.2 ad }
179 1.2 ad
180 1.2 ad /*
181 1.11 ad * rw_abort:
182 1.11 ad *
183 1.11 ad * Dump information about an error and panic the system. This
184 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
185 1.11 ad * we ask the compiler to not inline it.
186 1.11 ad */
187 1.11 ad #if __GNUC_PREREQ__(3, 0)
188 1.11 ad __attribute ((noinline))
189 1.11 ad #endif
190 1.11 ad static void
191 1.11 ad rw_abort(krwlock_t *rw, const char *func, const char *msg)
192 1.11 ad {
193 1.11 ad
194 1.11 ad if (panicstr != NULL)
195 1.11 ad return;
196 1.11 ad
197 1.12 yamt LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
198 1.11 ad }
199 1.11 ad
200 1.11 ad /*
201 1.2 ad * rw_init:
202 1.2 ad *
203 1.2 ad * Initialize a rwlock for use.
204 1.2 ad */
205 1.2 ad void
206 1.2 ad rw_init(krwlock_t *rw)
207 1.2 ad {
208 1.12 yamt bool dodebug;
209 1.2 ad
210 1.2 ad memset(rw, 0, sizeof(*rw));
211 1.2 ad
212 1.12 yamt dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
213 1.11 ad (uintptr_t)__builtin_return_address(0));
214 1.12 yamt RW_SETDEBUG(rw, dodebug);
215 1.2 ad }
216 1.2 ad
217 1.2 ad /*
218 1.2 ad * rw_destroy:
219 1.2 ad *
220 1.2 ad * Tear down a rwlock.
221 1.2 ad */
222 1.2 ad void
223 1.2 ad rw_destroy(krwlock_t *rw)
224 1.2 ad {
225 1.2 ad
226 1.12 yamt RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
227 1.12 yamt LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
228 1.2 ad }
229 1.2 ad
230 1.2 ad /*
231 1.20 ad * rw_onproc:
232 1.20 ad *
233 1.20 ad * Return true if an rwlock owner is running on a CPU in the system.
234 1.20 ad * If the target is waiting on the kernel big lock, then we must
235 1.20 ad * release it. This is necessary to avoid deadlock.
236 1.20 ad *
237 1.20 ad * Note that we can't use the rwlock owner field as an LWP pointer. We
238 1.20 ad * don't have full control over the timing of our execution, and so the
239 1.20 ad * pointer could be completely invalid by the time we dereference it.
240 1.20 ad */
241 1.20 ad static int
242 1.20 ad rw_onproc(uintptr_t owner, struct cpu_info **cip)
243 1.20 ad {
244 1.20 ad #ifdef MULTIPROCESSOR
245 1.20 ad CPU_INFO_ITERATOR cii;
246 1.20 ad struct cpu_info *ci;
247 1.20 ad lwp_t *l;
248 1.20 ad
249 1.20 ad if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
250 1.20 ad return 0;
251 1.20 ad l = (lwp_t *)(owner & RW_THREAD);
252 1.20 ad
253 1.20 ad /* See if the target is running on a CPU somewhere. */
254 1.20 ad if ((ci = *cip) != NULL && ci->ci_curlwp == l)
255 1.20 ad goto run;
256 1.20 ad for (CPU_INFO_FOREACH(cii, ci))
257 1.20 ad if (ci->ci_curlwp == l)
258 1.20 ad goto run;
259 1.20 ad
260 1.20 ad /* No: it may be safe to block now. */
261 1.20 ad *cip = NULL;
262 1.20 ad return 0;
263 1.20 ad
264 1.20 ad run:
265 1.20 ad /* Target is running; do we need to block? */
266 1.20 ad *cip = ci;
267 1.20 ad return ci->ci_biglock_wanted != l;
268 1.20 ad #else
269 1.20 ad return 0;
270 1.20 ad #endif /* MULTIPROCESSOR */
271 1.20 ad }
272 1.20 ad
273 1.20 ad /*
274 1.2 ad * rw_vector_enter:
275 1.2 ad *
276 1.2 ad * Acquire a rwlock.
277 1.2 ad */
278 1.2 ad void
279 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
280 1.2 ad {
281 1.20 ad uintptr_t owner, incr, need_wait, set_wait, curthread, next;
282 1.19 ad struct cpu_info *ci;
283 1.2 ad turnstile_t *ts;
284 1.2 ad int queue;
285 1.7 ad lwp_t *l;
286 1.2 ad LOCKSTAT_TIMER(slptime);
287 1.20 ad LOCKSTAT_TIMER(slpcnt);
288 1.19 ad LOCKSTAT_TIMER(spintime);
289 1.19 ad LOCKSTAT_COUNTER(spincnt);
290 1.2 ad LOCKSTAT_FLAG(lsflag);
291 1.2 ad
292 1.2 ad l = curlwp;
293 1.2 ad curthread = (uintptr_t)l;
294 1.2 ad
295 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
296 1.2 ad RW_ASSERT(rw, curthread != 0);
297 1.2 ad RW_WANTLOCK(rw, op);
298 1.2 ad
299 1.2 ad if (panicstr == NULL) {
300 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
301 1.2 ad }
302 1.2 ad
303 1.2 ad /*
304 1.2 ad * We play a slight trick here. If we're a reader, we want
305 1.2 ad * increment the read count. If we're a writer, we want to
306 1.2 ad * set the owner field and whe WRITE_LOCKED bit.
307 1.2 ad *
308 1.2 ad * In the latter case, we expect those bits to be zero,
309 1.2 ad * therefore we can use an add operation to set them, which
310 1.2 ad * means an add operation for both cases.
311 1.2 ad */
312 1.2 ad if (__predict_true(op == RW_READER)) {
313 1.2 ad incr = RW_READ_INCR;
314 1.2 ad set_wait = RW_HAS_WAITERS;
315 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
316 1.2 ad queue = TS_READER_Q;
317 1.2 ad } else {
318 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
319 1.2 ad incr = curthread | RW_WRITE_LOCKED;
320 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
321 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
322 1.2 ad queue = TS_WRITER_Q;
323 1.2 ad }
324 1.2 ad
325 1.2 ad LOCKSTAT_ENTER(lsflag);
326 1.2 ad
327 1.20 ad for (ci = NULL, owner = rw->rw_owner;;) {
328 1.2 ad /*
329 1.2 ad * Read the lock owner field. If the need-to-wait
330 1.2 ad * indicator is clear, then try to acquire the lock.
331 1.2 ad */
332 1.2 ad if ((owner & need_wait) == 0) {
333 1.20 ad next = rw_cas(rw, owner, (owner + incr) &
334 1.20 ad ~RW_WRITE_WANTED);
335 1.20 ad if (__predict_true(next == owner)) {
336 1.2 ad /* Got it! */
337 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
338 1.20 ad membar_enter();
339 1.20 ad #endif
340 1.2 ad break;
341 1.2 ad }
342 1.2 ad
343 1.2 ad /*
344 1.2 ad * Didn't get it -- spin around again (we'll
345 1.2 ad * probably sleep on the next iteration).
346 1.2 ad */
347 1.20 ad owner = next;
348 1.2 ad continue;
349 1.2 ad }
350 1.2 ad
351 1.20 ad if (__predict_false(panicstr != NULL))
352 1.2 ad return;
353 1.20 ad if (__predict_false(RW_OWNER(rw) == curthread))
354 1.11 ad rw_abort(rw, __func__, "locking against myself");
355 1.2 ad
356 1.19 ad /*
357 1.19 ad * If the lock owner is running on another CPU, and
358 1.19 ad * there are no existing waiters, then spin.
359 1.19 ad */
360 1.20 ad if (rw_onproc(owner, &ci)) {
361 1.19 ad LOCKSTAT_START_TIMER(lsflag, spintime);
362 1.19 ad u_int count = SPINLOCK_BACKOFF_MIN;
363 1.20 ad do {
364 1.20 ad SPINLOCK_BACKOFF(count);
365 1.19 ad owner = rw->rw_owner;
366 1.20 ad } while (rw_onproc(owner, &ci));
367 1.19 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
368 1.19 ad LOCKSTAT_COUNT(spincnt, 1);
369 1.19 ad if ((owner & need_wait) == 0)
370 1.19 ad continue;
371 1.19 ad }
372 1.19 ad
373 1.2 ad /*
374 1.2 ad * Grab the turnstile chain lock. Once we have that, we
375 1.2 ad * can adjust the waiter bits and sleep queue.
376 1.2 ad */
377 1.2 ad ts = turnstile_lookup(rw);
378 1.2 ad
379 1.2 ad /*
380 1.2 ad * Mark the rwlock as having waiters. If the set fails,
381 1.2 ad * then we may not need to sleep and should spin again.
382 1.20 ad * Reload rw_owner because turnstile_lookup() may have
383 1.20 ad * spun on the turnstile chain lock.
384 1.2 ad */
385 1.20 ad owner = rw->rw_owner;
386 1.20 ad if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
387 1.20 ad turnstile_exit(rw);
388 1.20 ad continue;
389 1.20 ad }
390 1.20 ad next = rw_cas(rw, owner, owner | set_wait);
391 1.20 ad if (__predict_false(next != owner)) {
392 1.2 ad turnstile_exit(rw);
393 1.20 ad owner = next;
394 1.2 ad continue;
395 1.2 ad }
396 1.2 ad
397 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
398 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
399 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
400 1.20 ad LOCKSTAT_COUNT(slpcnt, 1);
401 1.2 ad
402 1.20 ad /*
403 1.20 ad * No need for a memory barrier because of context switch.
404 1.20 ad * If not handed the lock, then spin again.
405 1.20 ad */
406 1.20 ad if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
407 1.20 ad break;
408 1.2 ad }
409 1.2 ad
410 1.20 ad LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
411 1.20 ad (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
412 1.19 ad LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
413 1.2 ad LOCKSTAT_EXIT(lsflag);
414 1.2 ad
415 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
416 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
417 1.2 ad RW_LOCKED(rw, op);
418 1.2 ad }
419 1.2 ad
420 1.2 ad /*
421 1.2 ad * rw_vector_exit:
422 1.2 ad *
423 1.2 ad * Release a rwlock.
424 1.2 ad */
425 1.2 ad void
426 1.2 ad rw_vector_exit(krwlock_t *rw)
427 1.2 ad {
428 1.20 ad uintptr_t curthread, owner, decr, new, next;
429 1.2 ad turnstile_t *ts;
430 1.2 ad int rcnt, wcnt;
431 1.7 ad lwp_t *l;
432 1.2 ad
433 1.2 ad curthread = (uintptr_t)curlwp;
434 1.2 ad RW_ASSERT(rw, curthread != 0);
435 1.2 ad
436 1.20 ad if (__predict_false(panicstr != NULL))
437 1.2 ad return;
438 1.2 ad
439 1.2 ad /*
440 1.2 ad * Again, we use a trick. Since we used an add operation to
441 1.2 ad * set the required lock bits, we can use a subtract to clear
442 1.2 ad * them, which makes the read-release and write-release path
443 1.2 ad * the same.
444 1.2 ad */
445 1.2 ad owner = rw->rw_owner;
446 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
447 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
448 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
449 1.2 ad decr = curthread | RW_WRITE_LOCKED;
450 1.2 ad } else {
451 1.2 ad RW_UNLOCKED(rw, RW_READER);
452 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
453 1.2 ad decr = RW_READ_INCR;
454 1.2 ad }
455 1.2 ad
456 1.2 ad /*
457 1.2 ad * Compute what we expect the new value of the lock to be. Only
458 1.2 ad * proceed to do direct handoff if there are waiters, and if the
459 1.2 ad * lock would become unowned.
460 1.2 ad */
461 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
462 1.20 ad membar_exit();
463 1.20 ad #endif
464 1.20 ad for (;;) {
465 1.2 ad new = (owner - decr);
466 1.2 ad if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
467 1.2 ad break;
468 1.20 ad next = rw_cas(rw, owner, new);
469 1.20 ad if (__predict_true(next == owner))
470 1.2 ad return;
471 1.20 ad owner = next;
472 1.2 ad }
473 1.2 ad
474 1.20 ad /*
475 1.20 ad * Grab the turnstile chain lock. This gets the interlock
476 1.20 ad * on the sleep queue. Once we have that, we can adjust the
477 1.20 ad * waiter bits.
478 1.20 ad */
479 1.20 ad ts = turnstile_lookup(rw);
480 1.20 ad owner = rw->rw_owner;
481 1.20 ad RW_DASSERT(rw, ts != NULL);
482 1.20 ad RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
483 1.2 ad
484 1.20 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
485 1.20 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
486 1.2 ad
487 1.20 ad /*
488 1.20 ad * Give the lock away.
489 1.20 ad *
490 1.20 ad * If we are releasing a write lock, then prefer to wake all
491 1.20 ad * outstanding readers. Otherwise, wake one writer if there
492 1.20 ad * are outstanding readers, or all writers if there are no
493 1.20 ad * pending readers. If waking one specific writer, the writer
494 1.20 ad * is handed the lock here. If waking multiple writers, we
495 1.20 ad * set WRITE_WANTED to block out new readers, and let them
496 1.20 ad * do the work of acquring the lock in rw_vector_enter().
497 1.20 ad */
498 1.20 ad if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
499 1.20 ad RW_DASSERT(rw, wcnt != 0);
500 1.20 ad RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
501 1.2 ad
502 1.20 ad if (rcnt != 0) {
503 1.20 ad /* Give the lock to the longest waiting writer. */
504 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
505 1.20 ad new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
506 1.20 ad if (wcnt != 0)
507 1.20 ad new |= RW_WRITE_WANTED;
508 1.20 ad rw_swap(rw, owner, new);
509 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
510 1.2 ad } else {
511 1.20 ad /* Wake all writers and let them fight it out. */
512 1.20 ad rw_swap(rw, owner, RW_WRITE_WANTED);
513 1.20 ad turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
514 1.20 ad }
515 1.20 ad } else {
516 1.20 ad RW_DASSERT(rw, rcnt != 0);
517 1.2 ad
518 1.20 ad /*
519 1.20 ad * Give the lock to all blocked readers. If there
520 1.20 ad * is a writer waiting, new readers that arrive
521 1.20 ad * after the release will be blocked out.
522 1.20 ad */
523 1.20 ad new = rcnt << RW_READ_COUNT_SHIFT;
524 1.20 ad if (wcnt != 0)
525 1.20 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
526 1.12 yamt
527 1.20 ad /* Wake up all sleeping readers. */
528 1.20 ad rw_swap(rw, owner, new);
529 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
530 1.2 ad }
531 1.2 ad }
532 1.2 ad
533 1.2 ad /*
534 1.16 ad * rw_vector_tryenter:
535 1.2 ad *
536 1.2 ad * Try to acquire a rwlock.
537 1.2 ad */
538 1.2 ad int
539 1.16 ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
540 1.2 ad {
541 1.20 ad uintptr_t curthread, owner, incr, need_wait, next;
542 1.2 ad
543 1.2 ad curthread = (uintptr_t)curlwp;
544 1.2 ad
545 1.2 ad RW_ASSERT(rw, curthread != 0);
546 1.2 ad
547 1.2 ad if (op == RW_READER) {
548 1.2 ad incr = RW_READ_INCR;
549 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
550 1.2 ad } else {
551 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
552 1.2 ad incr = curthread | RW_WRITE_LOCKED;
553 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
554 1.2 ad }
555 1.2 ad
556 1.20 ad for (owner = rw->rw_owner;; owner = next) {
557 1.2 ad owner = rw->rw_owner;
558 1.20 ad if (__predict_false((owner & need_wait) != 0))
559 1.20 ad return 0;
560 1.20 ad next = rw_cas(rw, owner, owner + incr);
561 1.20 ad if (__predict_true(next == owner)) {
562 1.20 ad /* Got it! */
563 1.20 ad break;
564 1.2 ad }
565 1.2 ad }
566 1.2 ad
567 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
568 1.20 ad membar_enter();
569 1.20 ad #endif
570 1.16 ad RW_WANTLOCK(rw, op);
571 1.2 ad RW_LOCKED(rw, op);
572 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
573 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
574 1.7 ad
575 1.2 ad return 1;
576 1.2 ad }
577 1.2 ad
578 1.2 ad /*
579 1.2 ad * rw_downgrade:
580 1.2 ad *
581 1.2 ad * Downgrade a write lock to a read lock.
582 1.2 ad */
583 1.2 ad void
584 1.2 ad rw_downgrade(krwlock_t *rw)
585 1.2 ad {
586 1.20 ad uintptr_t owner, curthread, new, next;
587 1.2 ad turnstile_t *ts;
588 1.2 ad int rcnt, wcnt;
589 1.2 ad
590 1.2 ad curthread = (uintptr_t)curlwp;
591 1.2 ad RW_ASSERT(rw, curthread != 0);
592 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
593 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
594 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
595 1.2 ad
596 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
597 1.20 ad membar_producer();
598 1.20 ad #endif
599 1.20 ad
600 1.2 ad owner = rw->rw_owner;
601 1.2 ad if ((owner & RW_HAS_WAITERS) == 0) {
602 1.2 ad /*
603 1.2 ad * There are no waiters, so we can do this the easy way.
604 1.2 ad * Try swapping us down to one read hold. If it fails, the
605 1.2 ad * lock condition has changed and we most likely now have
606 1.2 ad * waiters.
607 1.2 ad */
608 1.20 ad next = rw_cas(rw, owner, RW_READ_INCR);
609 1.20 ad if (__predict_true(next == owner)) {
610 1.2 ad RW_LOCKED(rw, RW_READER);
611 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
612 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
613 1.2 ad return;
614 1.2 ad }
615 1.20 ad owner = next;
616 1.2 ad }
617 1.2 ad
618 1.2 ad /*
619 1.2 ad * Grab the turnstile chain lock. This gets the interlock
620 1.2 ad * on the sleep queue. Once we have that, we can adjust the
621 1.2 ad * waiter bits.
622 1.2 ad */
623 1.20 ad for (;; owner = next) {
624 1.2 ad ts = turnstile_lookup(rw);
625 1.2 ad RW_DASSERT(rw, ts != NULL);
626 1.2 ad
627 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
628 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
629 1.2 ad
630 1.2 ad /*
631 1.2 ad * If there are no readers, just preserve the waiters
632 1.2 ad * bits, swap us down to one read hold and return.
633 1.2 ad */
634 1.2 ad if (rcnt == 0) {
635 1.2 ad RW_DASSERT(rw, wcnt != 0);
636 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
637 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
638 1.2 ad
639 1.2 ad new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
640 1.20 ad next = rw_cas(rw, owner, new);
641 1.20 ad turnstile_exit(ts);
642 1.20 ad if (__predict_true(next == owner))
643 1.20 ad break;
644 1.20 ad } else {
645 1.20 ad /*
646 1.20 ad * Give the lock to all blocked readers. We may
647 1.20 ad * retain one read hold if downgrading. If there
648 1.20 ad * is a writer waiting, new readers will be blocked
649 1.20 ad * out.
650 1.20 ad */
651 1.20 ad new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
652 1.20 ad if (wcnt != 0)
653 1.20 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
654 1.20 ad
655 1.20 ad next = rw_cas(rw, owner, new);
656 1.20 ad if (__predict_true(next == owner)) {
657 1.20 ad /* Wake up all sleeping readers. */
658 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
659 1.20 ad break;
660 1.2 ad }
661 1.20 ad turnstile_exit(ts);
662 1.2 ad }
663 1.2 ad }
664 1.2 ad
665 1.2 ad RW_LOCKED(rw, RW_READER);
666 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
667 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
668 1.2 ad }
669 1.2 ad
670 1.2 ad /*
671 1.2 ad * rw_tryupgrade:
672 1.2 ad *
673 1.2 ad * Try to upgrade a read lock to a write lock. We must be the
674 1.2 ad * only reader.
675 1.2 ad */
676 1.2 ad int
677 1.2 ad rw_tryupgrade(krwlock_t *rw)
678 1.2 ad {
679 1.20 ad uintptr_t owner, curthread, new, next;
680 1.2 ad
681 1.2 ad curthread = (uintptr_t)curlwp;
682 1.2 ad RW_ASSERT(rw, curthread != 0);
683 1.2 ad RW_WANTLOCK(rw, RW_WRITER);
684 1.2 ad
685 1.20 ad for (owner = rw->rw_owner;; owner = next) {
686 1.2 ad RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
687 1.20 ad if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
688 1.2 ad RW_ASSERT(rw, (owner & RW_THREAD) != 0);
689 1.2 ad return 0;
690 1.2 ad }
691 1.2 ad new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
692 1.20 ad next = rw_cas(rw, owner, new);
693 1.20 ad if (__predict_true(next == owner))
694 1.2 ad break;
695 1.2 ad }
696 1.2 ad
697 1.2 ad RW_UNLOCKED(rw, RW_READER);
698 1.2 ad RW_LOCKED(rw, RW_WRITER);
699 1.2 ad RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
700 1.2 ad RW_DASSERT(rw, RW_OWNER(rw) == curthread);
701 1.2 ad
702 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
703 1.20 ad membar_producer();
704 1.20 ad #endif
705 1.20 ad
706 1.2 ad return 1;
707 1.2 ad }
708 1.2 ad
709 1.2 ad /*
710 1.2 ad * rw_read_held:
711 1.2 ad *
712 1.2 ad * Returns true if the rwlock is held for reading. Must only be
713 1.2 ad * used for diagnostic assertions, and never be used to make
714 1.2 ad * decisions about how to use a rwlock.
715 1.2 ad */
716 1.2 ad int
717 1.2 ad rw_read_held(krwlock_t *rw)
718 1.2 ad {
719 1.2 ad uintptr_t owner;
720 1.2 ad
721 1.2 ad if (panicstr != NULL)
722 1.2 ad return 1;
723 1.21 ad if (rw == NULL)
724 1.21 ad return 0;
725 1.2 ad owner = rw->rw_owner;
726 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
727 1.2 ad }
728 1.2 ad
729 1.2 ad /*
730 1.2 ad * rw_write_held:
731 1.2 ad *
732 1.2 ad * Returns true if the rwlock is held for writing. Must only be
733 1.2 ad * used for diagnostic assertions, and never be used to make
734 1.2 ad * decisions about how to use a rwlock.
735 1.2 ad */
736 1.2 ad int
737 1.2 ad rw_write_held(krwlock_t *rw)
738 1.2 ad {
739 1.2 ad
740 1.2 ad if (panicstr != NULL)
741 1.2 ad return 1;
742 1.21 ad if (rw == NULL)
743 1.21 ad return 0;
744 1.17 ad return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
745 1.18 ad (RW_WRITE_LOCKED | (uintptr_t)curlwp);
746 1.2 ad }
747 1.2 ad
748 1.2 ad /*
749 1.2 ad * rw_lock_held:
750 1.2 ad *
751 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
752 1.2 ad * only be used for diagnostic assertions, and never be used to make
753 1.2 ad * decisions about how to use a rwlock.
754 1.2 ad */
755 1.2 ad int
756 1.2 ad rw_lock_held(krwlock_t *rw)
757 1.2 ad {
758 1.2 ad
759 1.2 ad if (panicstr != NULL)
760 1.2 ad return 1;
761 1.21 ad if (rw == NULL)
762 1.21 ad return 0;
763 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
764 1.2 ad }
765 1.4 yamt
766 1.5 ad /*
767 1.5 ad * rw_owner:
768 1.5 ad *
769 1.5 ad * Return the current owner of an RW lock, but only if it is write
770 1.5 ad * held. Used for priority inheritance.
771 1.5 ad */
772 1.7 ad static lwp_t *
773 1.4 yamt rw_owner(wchan_t obj)
774 1.4 yamt {
775 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
776 1.4 yamt uintptr_t owner = rw->rw_owner;
777 1.4 yamt
778 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
779 1.4 yamt return NULL;
780 1.4 yamt
781 1.4 yamt return (void *)(owner & RW_THREAD);
782 1.4 yamt }
783