Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.28.10.1
      1  1.28.10.1      snj /*	$NetBSD: kern_rwlock.c,v 1.28.10.1 2009/05/13 00:24:48 snj Exp $	*/
      2        1.2       ad 
      3        1.2       ad /*-
      4       1.16       ad  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5        1.2       ad  * All rights reserved.
      6        1.2       ad  *
      7        1.2       ad  * This code is derived from software contributed to The NetBSD Foundation
      8        1.2       ad  * by Jason R. Thorpe and Andrew Doran.
      9        1.2       ad  *
     10        1.2       ad  * Redistribution and use in source and binary forms, with or without
     11        1.2       ad  * modification, are permitted provided that the following conditions
     12        1.2       ad  * are met:
     13        1.2       ad  * 1. Redistributions of source code must retain the above copyright
     14        1.2       ad  *    notice, this list of conditions and the following disclaimer.
     15        1.2       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.2       ad  *    notice, this list of conditions and the following disclaimer in the
     17        1.2       ad  *    documentation and/or other materials provided with the distribution.
     18        1.2       ad  *
     19        1.2       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.2       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.2       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.2       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.2       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.2       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.2       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.2       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.2       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.2       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.2       ad  * POSSIBILITY OF SUCH DAMAGE.
     30        1.2       ad  */
     31        1.2       ad 
     32        1.2       ad /*
     33        1.2       ad  * Kernel reader/writer lock implementation, modeled after those
     34        1.2       ad  * found in Solaris, a description of which can be found in:
     35        1.2       ad  *
     36        1.2       ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37        1.2       ad  *	    Richard McDougall.
     38        1.2       ad  */
     39        1.2       ad 
     40       1.10      dsl #include <sys/cdefs.h>
     41  1.28.10.1      snj __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.28.10.1 2009/05/13 00:24:48 snj Exp $");
     42        1.2       ad 
     43        1.2       ad #define	__RWLOCK_PRIVATE
     44        1.2       ad 
     45        1.2       ad #include <sys/param.h>
     46        1.2       ad #include <sys/proc.h>
     47        1.2       ad #include <sys/rwlock.h>
     48        1.2       ad #include <sys/sched.h>
     49        1.2       ad #include <sys/sleepq.h>
     50        1.2       ad #include <sys/systm.h>
     51        1.2       ad #include <sys/lockdebug.h>
     52       1.11       ad #include <sys/cpu.h>
     53       1.14       ad #include <sys/atomic.h>
     54       1.15       ad #include <sys/lock.h>
     55        1.2       ad 
     56        1.2       ad #include <dev/lockstat.h>
     57        1.2       ad 
     58        1.2       ad /*
     59        1.2       ad  * LOCKDEBUG
     60        1.2       ad  */
     61        1.2       ad 
     62        1.2       ad #if defined(LOCKDEBUG)
     63        1.2       ad 
     64       1.23       ad #define	RW_WANTLOCK(rw, op, t)						\
     65       1.12     yamt 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     66       1.23       ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
     67        1.2       ad #define	RW_LOCKED(rw, op)						\
     68       1.25       ad 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     69        1.2       ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     70        1.2       ad #define	RW_UNLOCKED(rw, op)						\
     71       1.12     yamt 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     72        1.2       ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73        1.2       ad #define	RW_DASSERT(rw, cond)						\
     74        1.2       ad do {									\
     75        1.2       ad 	if (!(cond))							\
     76       1.11       ad 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
     77        1.2       ad } while (/* CONSTCOND */ 0);
     78        1.2       ad 
     79        1.2       ad #else	/* LOCKDEBUG */
     80        1.2       ad 
     81       1.23       ad #define	RW_WANTLOCK(rw, op, t)	/* nothing */
     82        1.2       ad #define	RW_LOCKED(rw, op)	/* nothing */
     83        1.2       ad #define	RW_UNLOCKED(rw, op)	/* nothing */
     84        1.2       ad #define	RW_DASSERT(rw, cond)	/* nothing */
     85        1.2       ad 
     86        1.2       ad #endif	/* LOCKDEBUG */
     87        1.2       ad 
     88        1.2       ad /*
     89        1.2       ad  * DIAGNOSTIC
     90        1.2       ad  */
     91        1.2       ad 
     92        1.2       ad #if defined(DIAGNOSTIC)
     93        1.2       ad 
     94        1.2       ad #define	RW_ASSERT(rw, cond)						\
     95        1.2       ad do {									\
     96        1.2       ad 	if (!(cond))							\
     97       1.11       ad 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
     98        1.2       ad } while (/* CONSTCOND */ 0)
     99        1.2       ad 
    100        1.2       ad #else
    101        1.2       ad 
    102        1.2       ad #define	RW_ASSERT(rw, cond)	/* nothing */
    103        1.2       ad 
    104        1.2       ad #endif	/* DIAGNOSTIC */
    105        1.2       ad 
    106       1.12     yamt #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
    107       1.12     yamt #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_DEBUG) != 0)
    108       1.12     yamt #if defined(LOCKDEBUG)
    109       1.12     yamt #define	RW_INHERITDEBUG(new, old)	(new) |= (old) & RW_DEBUG
    110       1.12     yamt #else /* defined(LOCKDEBUG) */
    111       1.12     yamt #define	RW_INHERITDEBUG(new, old)	/* nothing */
    112       1.12     yamt #endif /* defined(LOCKDEBUG) */
    113       1.12     yamt 
    114       1.20       ad static void	rw_abort(krwlock_t *, const char *, const char *);
    115       1.20       ad static void	rw_dump(volatile void *);
    116       1.20       ad static lwp_t	*rw_owner(wchan_t);
    117       1.20       ad 
    118       1.20       ad static inline uintptr_t
    119       1.20       ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    120       1.12     yamt {
    121       1.12     yamt 
    122       1.20       ad 	RW_INHERITDEBUG(n, o);
    123       1.20       ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    124       1.20       ad 	    (void *)o, (void *)n);
    125       1.12     yamt }
    126        1.2       ad 
    127       1.20       ad static inline void
    128       1.20       ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    129        1.2       ad {
    130        1.2       ad 
    131       1.20       ad 	RW_INHERITDEBUG(n, o);
    132       1.20       ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    133       1.20       ad 	    (void *)n);
    134       1.20       ad 	RW_DASSERT(rw, n == o);
    135        1.2       ad }
    136        1.2       ad 
    137        1.2       ad /*
    138        1.2       ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    139        1.2       ad  */
    140        1.2       ad #ifdef LOCKDEBUG
    141        1.2       ad #undef	__HAVE_RW_STUBS
    142        1.2       ad #endif
    143        1.2       ad 
    144        1.2       ad #ifndef __HAVE_RW_STUBS
    145        1.6    itohy __strong_alias(rw_enter,rw_vector_enter);
    146        1.6    itohy __strong_alias(rw_exit,rw_vector_exit);
    147       1.16       ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    148        1.2       ad #endif
    149        1.2       ad 
    150        1.2       ad lockops_t rwlock_lockops = {
    151        1.2       ad 	"Reader / writer lock",
    152       1.25       ad 	LOCKOPS_SLEEP,
    153        1.2       ad 	rw_dump
    154        1.2       ad };
    155        1.2       ad 
    156        1.4     yamt syncobj_t rw_syncobj = {
    157        1.4     yamt 	SOBJ_SLEEPQ_SORTED,
    158        1.4     yamt 	turnstile_unsleep,
    159        1.4     yamt 	turnstile_changepri,
    160        1.4     yamt 	sleepq_lendpri,
    161        1.4     yamt 	rw_owner,
    162        1.4     yamt };
    163        1.4     yamt 
    164        1.2       ad /*
    165        1.2       ad  * rw_dump:
    166        1.2       ad  *
    167        1.2       ad  *	Dump the contents of a rwlock structure.
    168        1.2       ad  */
    169       1.11       ad static void
    170        1.2       ad rw_dump(volatile void *cookie)
    171        1.2       ad {
    172        1.2       ad 	volatile krwlock_t *rw = cookie;
    173        1.2       ad 
    174        1.2       ad 	printf_nolog("owner/count  : %#018lx flags    : %#018x\n",
    175        1.2       ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    176        1.2       ad }
    177        1.2       ad 
    178        1.2       ad /*
    179       1.11       ad  * rw_abort:
    180       1.11       ad  *
    181       1.11       ad  *	Dump information about an error and panic the system.  This
    182       1.11       ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    183       1.11       ad  *	we ask the compiler to not inline it.
    184       1.11       ad  */
    185       1.26       ad static void __noinline
    186       1.11       ad rw_abort(krwlock_t *rw, const char *func, const char *msg)
    187       1.11       ad {
    188       1.11       ad 
    189       1.11       ad 	if (panicstr != NULL)
    190       1.11       ad 		return;
    191       1.11       ad 
    192       1.12     yamt 	LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
    193       1.11       ad }
    194       1.11       ad 
    195       1.11       ad /*
    196        1.2       ad  * rw_init:
    197        1.2       ad  *
    198        1.2       ad  *	Initialize a rwlock for use.
    199        1.2       ad  */
    200        1.2       ad void
    201        1.2       ad rw_init(krwlock_t *rw)
    202        1.2       ad {
    203       1.12     yamt 	bool dodebug;
    204        1.2       ad 
    205        1.2       ad 	memset(rw, 0, sizeof(*rw));
    206        1.2       ad 
    207       1.12     yamt 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
    208       1.11       ad 	    (uintptr_t)__builtin_return_address(0));
    209       1.12     yamt 	RW_SETDEBUG(rw, dodebug);
    210        1.2       ad }
    211        1.2       ad 
    212        1.2       ad /*
    213        1.2       ad  * rw_destroy:
    214        1.2       ad  *
    215        1.2       ad  *	Tear down a rwlock.
    216        1.2       ad  */
    217        1.2       ad void
    218        1.2       ad rw_destroy(krwlock_t *rw)
    219        1.2       ad {
    220        1.2       ad 
    221       1.12     yamt 	RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
    222       1.12     yamt 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    223        1.2       ad }
    224        1.2       ad 
    225        1.2       ad /*
    226       1.20       ad  * rw_onproc:
    227       1.20       ad  *
    228       1.20       ad  *	Return true if an rwlock owner is running on a CPU in the system.
    229       1.20       ad  *	If the target is waiting on the kernel big lock, then we must
    230       1.20       ad  *	release it.  This is necessary to avoid deadlock.
    231       1.20       ad  *
    232       1.20       ad  *	Note that we can't use the rwlock owner field as an LWP pointer.  We
    233       1.20       ad  *	don't have full control over the timing of our execution, and so the
    234       1.20       ad  *	pointer could be completely invalid by the time we dereference it.
    235       1.20       ad  */
    236       1.20       ad static int
    237       1.20       ad rw_onproc(uintptr_t owner, struct cpu_info **cip)
    238       1.20       ad {
    239       1.20       ad #ifdef MULTIPROCESSOR
    240       1.20       ad 	CPU_INFO_ITERATOR cii;
    241       1.20       ad 	struct cpu_info *ci;
    242       1.20       ad 	lwp_t *l;
    243       1.20       ad 
    244       1.20       ad 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
    245       1.20       ad 		return 0;
    246       1.20       ad 	l = (lwp_t *)(owner & RW_THREAD);
    247       1.20       ad 
    248       1.20       ad 	/* See if the target is running on a CPU somewhere. */
    249       1.20       ad 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    250       1.20       ad 		goto run;
    251       1.20       ad 	for (CPU_INFO_FOREACH(cii, ci))
    252       1.20       ad 		if (ci->ci_curlwp == l)
    253       1.20       ad 			goto run;
    254       1.20       ad 
    255       1.20       ad 	/* No: it may be safe to block now. */
    256       1.20       ad 	*cip = NULL;
    257       1.20       ad 	return 0;
    258       1.20       ad 
    259       1.20       ad  run:
    260       1.20       ad  	/* Target is running; do we need to block? */
    261       1.20       ad  	*cip = ci;
    262       1.20       ad 	return ci->ci_biglock_wanted != l;
    263       1.20       ad #else
    264       1.20       ad 	return 0;
    265       1.20       ad #endif	/* MULTIPROCESSOR */
    266       1.20       ad }
    267       1.20       ad 
    268       1.20       ad /*
    269        1.2       ad  * rw_vector_enter:
    270        1.2       ad  *
    271        1.2       ad  *	Acquire a rwlock.
    272        1.2       ad  */
    273        1.2       ad void
    274        1.2       ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    275        1.2       ad {
    276       1.20       ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    277       1.19       ad 	struct cpu_info *ci;
    278        1.2       ad 	turnstile_t *ts;
    279        1.2       ad 	int queue;
    280        1.7       ad 	lwp_t *l;
    281        1.2       ad 	LOCKSTAT_TIMER(slptime);
    282       1.20       ad 	LOCKSTAT_TIMER(slpcnt);
    283       1.19       ad 	LOCKSTAT_TIMER(spintime);
    284       1.19       ad 	LOCKSTAT_COUNTER(spincnt);
    285        1.2       ad 	LOCKSTAT_FLAG(lsflag);
    286        1.2       ad 
    287        1.2       ad 	l = curlwp;
    288        1.2       ad 	curthread = (uintptr_t)l;
    289        1.2       ad 
    290       1.13       ad 	RW_ASSERT(rw, !cpu_intr_p());
    291        1.2       ad 	RW_ASSERT(rw, curthread != 0);
    292       1.23       ad 	RW_WANTLOCK(rw, op, false);
    293        1.2       ad 
    294        1.2       ad 	if (panicstr == NULL) {
    295        1.2       ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    296        1.2       ad 	}
    297        1.2       ad 
    298        1.2       ad 	/*
    299        1.2       ad 	 * We play a slight trick here.  If we're a reader, we want
    300        1.2       ad 	 * increment the read count.  If we're a writer, we want to
    301        1.2       ad 	 * set the owner field and whe WRITE_LOCKED bit.
    302        1.2       ad 	 *
    303        1.2       ad 	 * In the latter case, we expect those bits to be zero,
    304        1.2       ad 	 * therefore we can use an add operation to set them, which
    305        1.2       ad 	 * means an add operation for both cases.
    306        1.2       ad 	 */
    307        1.2       ad 	if (__predict_true(op == RW_READER)) {
    308        1.2       ad 		incr = RW_READ_INCR;
    309        1.2       ad 		set_wait = RW_HAS_WAITERS;
    310        1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    311        1.2       ad 		queue = TS_READER_Q;
    312        1.2       ad 	} else {
    313        1.2       ad 		RW_DASSERT(rw, op == RW_WRITER);
    314        1.2       ad 		incr = curthread | RW_WRITE_LOCKED;
    315        1.2       ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    316        1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    317        1.2       ad 		queue = TS_WRITER_Q;
    318        1.2       ad 	}
    319        1.2       ad 
    320        1.2       ad 	LOCKSTAT_ENTER(lsflag);
    321        1.2       ad 
    322       1.20       ad 	for (ci = NULL, owner = rw->rw_owner;;) {
    323        1.2       ad 		/*
    324        1.2       ad 		 * Read the lock owner field.  If the need-to-wait
    325        1.2       ad 		 * indicator is clear, then try to acquire the lock.
    326        1.2       ad 		 */
    327        1.2       ad 		if ((owner & need_wait) == 0) {
    328       1.20       ad 			next = rw_cas(rw, owner, (owner + incr) &
    329       1.20       ad 			    ~RW_WRITE_WANTED);
    330       1.20       ad 			if (__predict_true(next == owner)) {
    331        1.2       ad 				/* Got it! */
    332       1.20       ad 				membar_enter();
    333        1.2       ad 				break;
    334        1.2       ad 			}
    335        1.2       ad 
    336        1.2       ad 			/*
    337        1.2       ad 			 * Didn't get it -- spin around again (we'll
    338        1.2       ad 			 * probably sleep on the next iteration).
    339        1.2       ad 			 */
    340       1.20       ad 			owner = next;
    341        1.2       ad 			continue;
    342        1.2       ad 		}
    343        1.2       ad 
    344       1.20       ad 		if (__predict_false(panicstr != NULL))
    345        1.2       ad 			return;
    346       1.20       ad 		if (__predict_false(RW_OWNER(rw) == curthread))
    347       1.11       ad 			rw_abort(rw, __func__, "locking against myself");
    348        1.2       ad 
    349       1.19       ad 		/*
    350       1.19       ad 		 * If the lock owner is running on another CPU, and
    351       1.19       ad 		 * there are no existing waiters, then spin.
    352       1.19       ad 		 */
    353       1.20       ad 		if (rw_onproc(owner, &ci)) {
    354       1.19       ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    355       1.19       ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    356       1.20       ad 			do {
    357       1.20       ad 				SPINLOCK_BACKOFF(count);
    358       1.19       ad 				owner = rw->rw_owner;
    359       1.20       ad 			} while (rw_onproc(owner, &ci));
    360       1.19       ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    361       1.19       ad 			LOCKSTAT_COUNT(spincnt, 1);
    362       1.19       ad 			if ((owner & need_wait) == 0)
    363       1.19       ad 				continue;
    364       1.19       ad 		}
    365       1.19       ad 
    366        1.2       ad 		/*
    367        1.2       ad 		 * Grab the turnstile chain lock.  Once we have that, we
    368        1.2       ad 		 * can adjust the waiter bits and sleep queue.
    369        1.2       ad 		 */
    370        1.2       ad 		ts = turnstile_lookup(rw);
    371        1.2       ad 
    372        1.2       ad 		/*
    373        1.2       ad 		 * Mark the rwlock as having waiters.  If the set fails,
    374        1.2       ad 		 * then we may not need to sleep and should spin again.
    375       1.20       ad 		 * Reload rw_owner because turnstile_lookup() may have
    376       1.20       ad 		 * spun on the turnstile chain lock.
    377        1.2       ad 		 */
    378       1.20       ad 		owner = rw->rw_owner;
    379       1.20       ad 		if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
    380       1.20       ad 			turnstile_exit(rw);
    381       1.20       ad 			continue;
    382       1.20       ad 		}
    383       1.20       ad 		next = rw_cas(rw, owner, owner | set_wait);
    384       1.20       ad 		if (__predict_false(next != owner)) {
    385        1.2       ad 			turnstile_exit(rw);
    386       1.20       ad 			owner = next;
    387        1.2       ad 			continue;
    388        1.2       ad 		}
    389        1.2       ad 
    390        1.2       ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    391        1.4     yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    392        1.2       ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    393       1.20       ad 		LOCKSTAT_COUNT(slpcnt, 1);
    394        1.2       ad 
    395       1.20       ad 		/*
    396       1.20       ad 		 * No need for a memory barrier because of context switch.
    397       1.20       ad 		 * If not handed the lock, then spin again.
    398       1.20       ad 		 */
    399       1.20       ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    400       1.20       ad 			break;
    401        1.2       ad 	}
    402        1.2       ad 
    403       1.20       ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    404       1.20       ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    405       1.19       ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    406        1.2       ad 	LOCKSTAT_EXIT(lsflag);
    407        1.2       ad 
    408        1.2       ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    409        1.2       ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    410        1.2       ad 	RW_LOCKED(rw, op);
    411        1.2       ad }
    412        1.2       ad 
    413        1.2       ad /*
    414        1.2       ad  * rw_vector_exit:
    415        1.2       ad  *
    416        1.2       ad  *	Release a rwlock.
    417        1.2       ad  */
    418        1.2       ad void
    419        1.2       ad rw_vector_exit(krwlock_t *rw)
    420        1.2       ad {
    421       1.20       ad 	uintptr_t curthread, owner, decr, new, next;
    422        1.2       ad 	turnstile_t *ts;
    423        1.2       ad 	int rcnt, wcnt;
    424        1.7       ad 	lwp_t *l;
    425        1.2       ad 
    426        1.2       ad 	curthread = (uintptr_t)curlwp;
    427        1.2       ad 	RW_ASSERT(rw, curthread != 0);
    428        1.2       ad 
    429       1.20       ad 	if (__predict_false(panicstr != NULL))
    430        1.2       ad 		return;
    431        1.2       ad 
    432        1.2       ad 	/*
    433        1.2       ad 	 * Again, we use a trick.  Since we used an add operation to
    434        1.2       ad 	 * set the required lock bits, we can use a subtract to clear
    435        1.2       ad 	 * them, which makes the read-release and write-release path
    436        1.2       ad 	 * the same.
    437        1.2       ad 	 */
    438        1.2       ad 	owner = rw->rw_owner;
    439        1.2       ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    440        1.2       ad 		RW_UNLOCKED(rw, RW_WRITER);
    441        1.2       ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    442        1.2       ad 		decr = curthread | RW_WRITE_LOCKED;
    443        1.2       ad 	} else {
    444        1.2       ad 		RW_UNLOCKED(rw, RW_READER);
    445        1.2       ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    446        1.2       ad 		decr = RW_READ_INCR;
    447        1.2       ad 	}
    448        1.2       ad 
    449        1.2       ad 	/*
    450        1.2       ad 	 * Compute what we expect the new value of the lock to be. Only
    451        1.2       ad 	 * proceed to do direct handoff if there are waiters, and if the
    452        1.2       ad 	 * lock would become unowned.
    453        1.2       ad 	 */
    454       1.20       ad 	membar_exit();
    455       1.20       ad 	for (;;) {
    456        1.2       ad 		new = (owner - decr);
    457        1.2       ad 		if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    458        1.2       ad 			break;
    459       1.20       ad 		next = rw_cas(rw, owner, new);
    460       1.20       ad 		if (__predict_true(next == owner))
    461        1.2       ad 			return;
    462       1.20       ad 		owner = next;
    463        1.2       ad 	}
    464        1.2       ad 
    465       1.20       ad 	/*
    466       1.20       ad 	 * Grab the turnstile chain lock.  This gets the interlock
    467       1.20       ad 	 * on the sleep queue.  Once we have that, we can adjust the
    468       1.20       ad 	 * waiter bits.
    469       1.20       ad 	 */
    470       1.20       ad 	ts = turnstile_lookup(rw);
    471       1.20       ad 	owner = rw->rw_owner;
    472       1.20       ad 	RW_DASSERT(rw, ts != NULL);
    473       1.20       ad 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    474        1.2       ad 
    475       1.20       ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    476       1.20       ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    477        1.2       ad 
    478       1.20       ad 	/*
    479       1.20       ad 	 * Give the lock away.
    480       1.20       ad 	 *
    481       1.20       ad 	 * If we are releasing a write lock, then prefer to wake all
    482       1.20       ad 	 * outstanding readers.  Otherwise, wake one writer if there
    483       1.20       ad 	 * are outstanding readers, or all writers if there are no
    484       1.20       ad 	 * pending readers.  If waking one specific writer, the writer
    485       1.20       ad 	 * is handed the lock here.  If waking multiple writers, we
    486       1.20       ad 	 * set WRITE_WANTED to block out new readers, and let them
    487       1.20       ad 	 * do the work of acquring the lock in rw_vector_enter().
    488       1.20       ad 	 */
    489       1.20       ad 	if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
    490       1.20       ad 		RW_DASSERT(rw, wcnt != 0);
    491       1.20       ad 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    492        1.2       ad 
    493       1.20       ad 		if (rcnt != 0) {
    494       1.20       ad 			/* Give the lock to the longest waiting writer. */
    495        1.2       ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    496       1.20       ad 			new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    497       1.28  thorpej 			if (wcnt > 1)
    498       1.20       ad 				new |= RW_WRITE_WANTED;
    499       1.20       ad 			rw_swap(rw, owner, new);
    500        1.7       ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    501        1.2       ad 		} else {
    502       1.20       ad 			/* Wake all writers and let them fight it out. */
    503       1.20       ad 			rw_swap(rw, owner, RW_WRITE_WANTED);
    504       1.20       ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    505       1.20       ad 		}
    506       1.20       ad 	} else {
    507       1.20       ad 		RW_DASSERT(rw, rcnt != 0);
    508        1.2       ad 
    509       1.20       ad 		/*
    510       1.20       ad 		 * Give the lock to all blocked readers.  If there
    511       1.20       ad 		 * is a writer waiting, new readers that arrive
    512       1.20       ad 		 * after the release will be blocked out.
    513       1.20       ad 		 */
    514       1.20       ad 		new = rcnt << RW_READ_COUNT_SHIFT;
    515       1.20       ad 		if (wcnt != 0)
    516       1.20       ad 			new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    517       1.12     yamt 
    518       1.20       ad 		/* Wake up all sleeping readers. */
    519       1.20       ad 		rw_swap(rw, owner, new);
    520       1.20       ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    521        1.2       ad 	}
    522        1.2       ad }
    523        1.2       ad 
    524        1.2       ad /*
    525       1.16       ad  * rw_vector_tryenter:
    526        1.2       ad  *
    527        1.2       ad  *	Try to acquire a rwlock.
    528        1.2       ad  */
    529        1.2       ad int
    530       1.16       ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    531        1.2       ad {
    532       1.20       ad 	uintptr_t curthread, owner, incr, need_wait, next;
    533        1.2       ad 
    534        1.2       ad 	curthread = (uintptr_t)curlwp;
    535        1.2       ad 
    536        1.2       ad 	RW_ASSERT(rw, curthread != 0);
    537        1.2       ad 
    538        1.2       ad 	if (op == RW_READER) {
    539        1.2       ad 		incr = RW_READ_INCR;
    540        1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    541        1.2       ad 	} else {
    542        1.2       ad 		RW_DASSERT(rw, op == RW_WRITER);
    543        1.2       ad 		incr = curthread | RW_WRITE_LOCKED;
    544        1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    545        1.2       ad 	}
    546        1.2       ad 
    547       1.20       ad 	for (owner = rw->rw_owner;; owner = next) {
    548        1.2       ad 		owner = rw->rw_owner;
    549       1.20       ad 		if (__predict_false((owner & need_wait) != 0))
    550       1.20       ad 			return 0;
    551       1.20       ad 		next = rw_cas(rw, owner, owner + incr);
    552       1.20       ad 		if (__predict_true(next == owner)) {
    553       1.20       ad 			/* Got it! */
    554  1.28.10.1      snj 			membar_enter();
    555       1.20       ad 			break;
    556        1.2       ad 		}
    557        1.2       ad 	}
    558        1.2       ad 
    559       1.23       ad 	RW_WANTLOCK(rw, op, true);
    560        1.2       ad 	RW_LOCKED(rw, op);
    561        1.2       ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    562        1.2       ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    563        1.7       ad 
    564        1.2       ad 	return 1;
    565        1.2       ad }
    566        1.2       ad 
    567        1.2       ad /*
    568        1.2       ad  * rw_downgrade:
    569        1.2       ad  *
    570        1.2       ad  *	Downgrade a write lock to a read lock.
    571        1.2       ad  */
    572        1.2       ad void
    573        1.2       ad rw_downgrade(krwlock_t *rw)
    574        1.2       ad {
    575       1.20       ad 	uintptr_t owner, curthread, new, next;
    576        1.2       ad 	turnstile_t *ts;
    577        1.2       ad 	int rcnt, wcnt;
    578        1.2       ad 
    579        1.2       ad 	curthread = (uintptr_t)curlwp;
    580        1.2       ad 	RW_ASSERT(rw, curthread != 0);
    581        1.2       ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    582        1.2       ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    583        1.2       ad 	RW_UNLOCKED(rw, RW_WRITER);
    584        1.2       ad 
    585       1.20       ad 	membar_producer();
    586        1.2       ad 	owner = rw->rw_owner;
    587        1.2       ad 	if ((owner & RW_HAS_WAITERS) == 0) {
    588        1.2       ad 		/*
    589        1.2       ad 		 * There are no waiters, so we can do this the easy way.
    590        1.2       ad 		 * Try swapping us down to one read hold.  If it fails, the
    591        1.2       ad 		 * lock condition has changed and we most likely now have
    592        1.2       ad 		 * waiters.
    593        1.2       ad 		 */
    594       1.20       ad 		next = rw_cas(rw, owner, RW_READ_INCR);
    595       1.20       ad 		if (__predict_true(next == owner)) {
    596        1.2       ad 			RW_LOCKED(rw, RW_READER);
    597        1.2       ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    598        1.2       ad 			RW_DASSERT(rw, RW_COUNT(rw) != 0);
    599        1.2       ad 			return;
    600        1.2       ad 		}
    601       1.20       ad 		owner = next;
    602        1.2       ad 	}
    603        1.2       ad 
    604        1.2       ad 	/*
    605        1.2       ad 	 * Grab the turnstile chain lock.  This gets the interlock
    606        1.2       ad 	 * on the sleep queue.  Once we have that, we can adjust the
    607        1.2       ad 	 * waiter bits.
    608        1.2       ad 	 */
    609       1.20       ad 	for (;; owner = next) {
    610        1.2       ad 		ts = turnstile_lookup(rw);
    611        1.2       ad 		RW_DASSERT(rw, ts != NULL);
    612        1.2       ad 
    613        1.2       ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    614        1.2       ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    615        1.2       ad 
    616        1.2       ad 		/*
    617        1.2       ad 		 * If there are no readers, just preserve the waiters
    618        1.2       ad 		 * bits, swap us down to one read hold and return.
    619        1.2       ad 		 */
    620        1.2       ad 		if (rcnt == 0) {
    621        1.2       ad 			RW_DASSERT(rw, wcnt != 0);
    622        1.2       ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    623        1.2       ad 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    624        1.2       ad 
    625        1.2       ad 			new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    626       1.20       ad 			next = rw_cas(rw, owner, new);
    627       1.27    rmind 			turnstile_exit(rw);
    628       1.20       ad 			if (__predict_true(next == owner))
    629       1.20       ad 				break;
    630       1.20       ad 		} else {
    631       1.20       ad 			/*
    632       1.20       ad 			 * Give the lock to all blocked readers.  We may
    633       1.20       ad 			 * retain one read hold if downgrading.  If there
    634       1.20       ad 			 * is a writer waiting, new readers will be blocked
    635       1.20       ad 			 * out.
    636       1.20       ad 			 */
    637       1.20       ad 			new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    638       1.20       ad 			if (wcnt != 0)
    639       1.20       ad 				new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    640       1.20       ad 
    641       1.20       ad 			next = rw_cas(rw, owner, new);
    642       1.20       ad 			if (__predict_true(next == owner)) {
    643       1.20       ad 				/* Wake up all sleeping readers. */
    644       1.20       ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    645       1.20       ad 				break;
    646        1.2       ad 			}
    647       1.27    rmind 			turnstile_exit(rw);
    648        1.2       ad 		}
    649        1.2       ad 	}
    650        1.2       ad 
    651        1.2       ad 	RW_LOCKED(rw, RW_READER);
    652        1.2       ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    653        1.2       ad 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    654        1.2       ad }
    655        1.2       ad 
    656        1.2       ad /*
    657        1.2       ad  * rw_tryupgrade:
    658        1.2       ad  *
    659        1.2       ad  *	Try to upgrade a read lock to a write lock.  We must be the
    660        1.2       ad  *	only reader.
    661        1.2       ad  */
    662        1.2       ad int
    663        1.2       ad rw_tryupgrade(krwlock_t *rw)
    664        1.2       ad {
    665       1.20       ad 	uintptr_t owner, curthread, new, next;
    666        1.2       ad 
    667        1.2       ad 	curthread = (uintptr_t)curlwp;
    668        1.2       ad 	RW_ASSERT(rw, curthread != 0);
    669       1.23       ad 	RW_WANTLOCK(rw, RW_WRITER, true);
    670        1.2       ad 
    671       1.20       ad 	for (owner = rw->rw_owner;; owner = next) {
    672        1.2       ad 		RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
    673       1.20       ad 		if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
    674        1.2       ad 			RW_ASSERT(rw, (owner & RW_THREAD) != 0);
    675        1.2       ad 			return 0;
    676        1.2       ad 		}
    677        1.2       ad 		new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    678       1.20       ad 		next = rw_cas(rw, owner, new);
    679  1.28.10.1      snj 		if (__predict_true(next == owner)) {
    680  1.28.10.1      snj 			membar_producer();
    681        1.2       ad 			break;
    682  1.28.10.1      snj 		}
    683        1.2       ad 	}
    684        1.2       ad 
    685        1.2       ad 	RW_UNLOCKED(rw, RW_READER);
    686        1.2       ad 	RW_LOCKED(rw, RW_WRITER);
    687        1.2       ad 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    688        1.2       ad 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    689        1.2       ad 
    690        1.2       ad 	return 1;
    691        1.2       ad }
    692        1.2       ad 
    693        1.2       ad /*
    694        1.2       ad  * rw_read_held:
    695        1.2       ad  *
    696        1.2       ad  *	Returns true if the rwlock is held for reading.  Must only be
    697        1.2       ad  *	used for diagnostic assertions, and never be used to make
    698        1.2       ad  * 	decisions about how to use a rwlock.
    699        1.2       ad  */
    700        1.2       ad int
    701        1.2       ad rw_read_held(krwlock_t *rw)
    702        1.2       ad {
    703        1.2       ad 	uintptr_t owner;
    704        1.2       ad 
    705        1.2       ad 	if (panicstr != NULL)
    706        1.2       ad 		return 1;
    707       1.21       ad 	if (rw == NULL)
    708       1.21       ad 		return 0;
    709        1.2       ad 	owner = rw->rw_owner;
    710        1.2       ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    711        1.2       ad }
    712        1.2       ad 
    713        1.2       ad /*
    714        1.2       ad  * rw_write_held:
    715        1.2       ad  *
    716        1.2       ad  *	Returns true if the rwlock is held for writing.  Must only be
    717        1.2       ad  *	used for diagnostic assertions, and never be used to make
    718        1.2       ad  *	decisions about how to use a rwlock.
    719        1.2       ad  */
    720        1.2       ad int
    721        1.2       ad rw_write_held(krwlock_t *rw)
    722        1.2       ad {
    723        1.2       ad 
    724        1.2       ad 	if (panicstr != NULL)
    725        1.2       ad 		return 1;
    726       1.21       ad 	if (rw == NULL)
    727       1.21       ad 		return 0;
    728       1.17       ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    729       1.18       ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    730        1.2       ad }
    731        1.2       ad 
    732        1.2       ad /*
    733        1.2       ad  * rw_lock_held:
    734        1.2       ad  *
    735        1.2       ad  *	Returns true if the rwlock is held for reading or writing.  Must
    736        1.2       ad  *	only be used for diagnostic assertions, and never be used to make
    737        1.2       ad  *	decisions about how to use a rwlock.
    738        1.2       ad  */
    739        1.2       ad int
    740        1.2       ad rw_lock_held(krwlock_t *rw)
    741        1.2       ad {
    742        1.2       ad 
    743        1.2       ad 	if (panicstr != NULL)
    744        1.2       ad 		return 1;
    745       1.21       ad 	if (rw == NULL)
    746       1.21       ad 		return 0;
    747        1.2       ad 	return (rw->rw_owner & RW_THREAD) != 0;
    748        1.2       ad }
    749        1.4     yamt 
    750        1.5       ad /*
    751        1.5       ad  * rw_owner:
    752        1.5       ad  *
    753        1.5       ad  *	Return the current owner of an RW lock, but only if it is write
    754        1.5       ad  *	held.  Used for priority inheritance.
    755        1.5       ad  */
    756        1.7       ad static lwp_t *
    757        1.4     yamt rw_owner(wchan_t obj)
    758        1.4     yamt {
    759        1.4     yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    760        1.4     yamt 	uintptr_t owner = rw->rw_owner;
    761        1.4     yamt 
    762        1.4     yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    763        1.4     yamt 		return NULL;
    764        1.4     yamt 
    765        1.4     yamt 	return (void *)(owner & RW_THREAD);
    766        1.4     yamt }
    767