Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.28.8.1
      1  1.28.8.1      jym /*	$NetBSD: kern_rwlock.c,v 1.28.8.1 2009/05/13 17:21:56 jym Exp $	*/
      2       1.2       ad 
      3       1.2       ad /*-
      4  1.28.8.1      jym  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.2       ad  * All rights reserved.
      6       1.2       ad  *
      7       1.2       ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2       ad  * by Jason R. Thorpe and Andrew Doran.
      9       1.2       ad  *
     10       1.2       ad  * Redistribution and use in source and binary forms, with or without
     11       1.2       ad  * modification, are permitted provided that the following conditions
     12       1.2       ad  * are met:
     13       1.2       ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2       ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2       ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2       ad  *    documentation and/or other materials provided with the distribution.
     18       1.2       ad  *
     19       1.2       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2       ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2       ad  */
     31       1.2       ad 
     32       1.2       ad /*
     33       1.2       ad  * Kernel reader/writer lock implementation, modeled after those
     34       1.2       ad  * found in Solaris, a description of which can be found in:
     35       1.2       ad  *
     36       1.2       ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37       1.2       ad  *	    Richard McDougall.
     38       1.2       ad  */
     39       1.2       ad 
     40      1.10      dsl #include <sys/cdefs.h>
     41  1.28.8.1      jym __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.28.8.1 2009/05/13 17:21:56 jym Exp $");
     42       1.2       ad 
     43       1.2       ad #define	__RWLOCK_PRIVATE
     44       1.2       ad 
     45       1.2       ad #include <sys/param.h>
     46       1.2       ad #include <sys/proc.h>
     47       1.2       ad #include <sys/rwlock.h>
     48       1.2       ad #include <sys/sched.h>
     49       1.2       ad #include <sys/sleepq.h>
     50       1.2       ad #include <sys/systm.h>
     51       1.2       ad #include <sys/lockdebug.h>
     52      1.11       ad #include <sys/cpu.h>
     53      1.14       ad #include <sys/atomic.h>
     54      1.15       ad #include <sys/lock.h>
     55       1.2       ad 
     56       1.2       ad #include <dev/lockstat.h>
     57       1.2       ad 
     58       1.2       ad /*
     59       1.2       ad  * LOCKDEBUG
     60       1.2       ad  */
     61       1.2       ad 
     62       1.2       ad #if defined(LOCKDEBUG)
     63       1.2       ad 
     64      1.23       ad #define	RW_WANTLOCK(rw, op, t)						\
     65      1.12     yamt 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     66      1.23       ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
     67       1.2       ad #define	RW_LOCKED(rw, op)						\
     68      1.25       ad 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     69       1.2       ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     70       1.2       ad #define	RW_UNLOCKED(rw, op)						\
     71      1.12     yamt 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     72       1.2       ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73       1.2       ad #define	RW_DASSERT(rw, cond)						\
     74       1.2       ad do {									\
     75       1.2       ad 	if (!(cond))							\
     76      1.11       ad 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
     77       1.2       ad } while (/* CONSTCOND */ 0);
     78       1.2       ad 
     79       1.2       ad #else	/* LOCKDEBUG */
     80       1.2       ad 
     81      1.23       ad #define	RW_WANTLOCK(rw, op, t)	/* nothing */
     82       1.2       ad #define	RW_LOCKED(rw, op)	/* nothing */
     83       1.2       ad #define	RW_UNLOCKED(rw, op)	/* nothing */
     84       1.2       ad #define	RW_DASSERT(rw, cond)	/* nothing */
     85       1.2       ad 
     86       1.2       ad #endif	/* LOCKDEBUG */
     87       1.2       ad 
     88       1.2       ad /*
     89       1.2       ad  * DIAGNOSTIC
     90       1.2       ad  */
     91       1.2       ad 
     92       1.2       ad #if defined(DIAGNOSTIC)
     93       1.2       ad 
     94       1.2       ad #define	RW_ASSERT(rw, cond)						\
     95       1.2       ad do {									\
     96       1.2       ad 	if (!(cond))							\
     97      1.11       ad 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
     98       1.2       ad } while (/* CONSTCOND */ 0)
     99       1.2       ad 
    100       1.2       ad #else
    101       1.2       ad 
    102       1.2       ad #define	RW_ASSERT(rw, cond)	/* nothing */
    103       1.2       ad 
    104       1.2       ad #endif	/* DIAGNOSTIC */
    105       1.2       ad 
    106      1.12     yamt #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
    107      1.12     yamt #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_DEBUG) != 0)
    108      1.12     yamt #if defined(LOCKDEBUG)
    109      1.12     yamt #define	RW_INHERITDEBUG(new, old)	(new) |= (old) & RW_DEBUG
    110      1.12     yamt #else /* defined(LOCKDEBUG) */
    111      1.12     yamt #define	RW_INHERITDEBUG(new, old)	/* nothing */
    112      1.12     yamt #endif /* defined(LOCKDEBUG) */
    113      1.12     yamt 
    114      1.20       ad static void	rw_abort(krwlock_t *, const char *, const char *);
    115      1.20       ad static void	rw_dump(volatile void *);
    116      1.20       ad static lwp_t	*rw_owner(wchan_t);
    117      1.20       ad 
    118      1.20       ad static inline uintptr_t
    119      1.20       ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    120      1.12     yamt {
    121      1.12     yamt 
    122      1.20       ad 	RW_INHERITDEBUG(n, o);
    123      1.20       ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    124      1.20       ad 	    (void *)o, (void *)n);
    125      1.12     yamt }
    126       1.2       ad 
    127      1.20       ad static inline void
    128      1.20       ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    129       1.2       ad {
    130       1.2       ad 
    131      1.20       ad 	RW_INHERITDEBUG(n, o);
    132      1.20       ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    133      1.20       ad 	    (void *)n);
    134      1.20       ad 	RW_DASSERT(rw, n == o);
    135       1.2       ad }
    136       1.2       ad 
    137       1.2       ad /*
    138       1.2       ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    139       1.2       ad  */
    140       1.2       ad #ifdef LOCKDEBUG
    141       1.2       ad #undef	__HAVE_RW_STUBS
    142       1.2       ad #endif
    143       1.2       ad 
    144       1.2       ad #ifndef __HAVE_RW_STUBS
    145       1.6    itohy __strong_alias(rw_enter,rw_vector_enter);
    146       1.6    itohy __strong_alias(rw_exit,rw_vector_exit);
    147      1.16       ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    148       1.2       ad #endif
    149       1.2       ad 
    150       1.2       ad lockops_t rwlock_lockops = {
    151       1.2       ad 	"Reader / writer lock",
    152      1.25       ad 	LOCKOPS_SLEEP,
    153       1.2       ad 	rw_dump
    154       1.2       ad };
    155       1.2       ad 
    156       1.4     yamt syncobj_t rw_syncobj = {
    157       1.4     yamt 	SOBJ_SLEEPQ_SORTED,
    158       1.4     yamt 	turnstile_unsleep,
    159       1.4     yamt 	turnstile_changepri,
    160       1.4     yamt 	sleepq_lendpri,
    161       1.4     yamt 	rw_owner,
    162       1.4     yamt };
    163       1.4     yamt 
    164  1.28.8.1      jym /* Mutex cache */
    165  1.28.8.1      jym #define	RW_OBJ_MAGIC	0x85d3c85d
    166  1.28.8.1      jym struct krwobj {
    167  1.28.8.1      jym 	krwlock_t	ro_lock;
    168  1.28.8.1      jym 	u_int		ro_magic;
    169  1.28.8.1      jym 	u_int		ro_refcnt;
    170  1.28.8.1      jym };
    171  1.28.8.1      jym 
    172  1.28.8.1      jym static int	rw_obj_ctor(void *, void *, int);
    173  1.28.8.1      jym 
    174  1.28.8.1      jym static pool_cache_t	rw_obj_cache;
    175  1.28.8.1      jym 
    176       1.2       ad /*
    177       1.2       ad  * rw_dump:
    178       1.2       ad  *
    179       1.2       ad  *	Dump the contents of a rwlock structure.
    180       1.2       ad  */
    181      1.11       ad static void
    182       1.2       ad rw_dump(volatile void *cookie)
    183       1.2       ad {
    184       1.2       ad 	volatile krwlock_t *rw = cookie;
    185       1.2       ad 
    186       1.2       ad 	printf_nolog("owner/count  : %#018lx flags    : %#018x\n",
    187       1.2       ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    188       1.2       ad }
    189       1.2       ad 
    190       1.2       ad /*
    191      1.11       ad  * rw_abort:
    192      1.11       ad  *
    193      1.11       ad  *	Dump information about an error and panic the system.  This
    194      1.11       ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    195      1.11       ad  *	we ask the compiler to not inline it.
    196      1.11       ad  */
    197      1.26       ad static void __noinline
    198      1.11       ad rw_abort(krwlock_t *rw, const char *func, const char *msg)
    199      1.11       ad {
    200      1.11       ad 
    201      1.11       ad 	if (panicstr != NULL)
    202      1.11       ad 		return;
    203      1.11       ad 
    204      1.12     yamt 	LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
    205      1.11       ad }
    206      1.11       ad 
    207      1.11       ad /*
    208       1.2       ad  * rw_init:
    209       1.2       ad  *
    210       1.2       ad  *	Initialize a rwlock for use.
    211       1.2       ad  */
    212       1.2       ad void
    213       1.2       ad rw_init(krwlock_t *rw)
    214       1.2       ad {
    215      1.12     yamt 	bool dodebug;
    216       1.2       ad 
    217       1.2       ad 	memset(rw, 0, sizeof(*rw));
    218       1.2       ad 
    219      1.12     yamt 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
    220      1.11       ad 	    (uintptr_t)__builtin_return_address(0));
    221      1.12     yamt 	RW_SETDEBUG(rw, dodebug);
    222       1.2       ad }
    223       1.2       ad 
    224       1.2       ad /*
    225       1.2       ad  * rw_destroy:
    226       1.2       ad  *
    227       1.2       ad  *	Tear down a rwlock.
    228       1.2       ad  */
    229       1.2       ad void
    230       1.2       ad rw_destroy(krwlock_t *rw)
    231       1.2       ad {
    232       1.2       ad 
    233      1.12     yamt 	RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
    234      1.12     yamt 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    235       1.2       ad }
    236       1.2       ad 
    237       1.2       ad /*
    238      1.20       ad  * rw_onproc:
    239      1.20       ad  *
    240      1.20       ad  *	Return true if an rwlock owner is running on a CPU in the system.
    241      1.20       ad  *	If the target is waiting on the kernel big lock, then we must
    242      1.20       ad  *	release it.  This is necessary to avoid deadlock.
    243      1.20       ad  *
    244      1.20       ad  *	Note that we can't use the rwlock owner field as an LWP pointer.  We
    245      1.20       ad  *	don't have full control over the timing of our execution, and so the
    246      1.20       ad  *	pointer could be completely invalid by the time we dereference it.
    247      1.20       ad  */
    248      1.20       ad static int
    249      1.20       ad rw_onproc(uintptr_t owner, struct cpu_info **cip)
    250      1.20       ad {
    251      1.20       ad #ifdef MULTIPROCESSOR
    252      1.20       ad 	CPU_INFO_ITERATOR cii;
    253      1.20       ad 	struct cpu_info *ci;
    254      1.20       ad 	lwp_t *l;
    255      1.20       ad 
    256      1.20       ad 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
    257      1.20       ad 		return 0;
    258      1.20       ad 	l = (lwp_t *)(owner & RW_THREAD);
    259      1.20       ad 
    260      1.20       ad 	/* See if the target is running on a CPU somewhere. */
    261      1.20       ad 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    262      1.20       ad 		goto run;
    263      1.20       ad 	for (CPU_INFO_FOREACH(cii, ci))
    264      1.20       ad 		if (ci->ci_curlwp == l)
    265      1.20       ad 			goto run;
    266      1.20       ad 
    267      1.20       ad 	/* No: it may be safe to block now. */
    268      1.20       ad 	*cip = NULL;
    269      1.20       ad 	return 0;
    270      1.20       ad 
    271      1.20       ad  run:
    272      1.20       ad  	/* Target is running; do we need to block? */
    273      1.20       ad  	*cip = ci;
    274      1.20       ad 	return ci->ci_biglock_wanted != l;
    275      1.20       ad #else
    276      1.20       ad 	return 0;
    277      1.20       ad #endif	/* MULTIPROCESSOR */
    278      1.20       ad }
    279      1.20       ad 
    280      1.20       ad /*
    281       1.2       ad  * rw_vector_enter:
    282       1.2       ad  *
    283       1.2       ad  *	Acquire a rwlock.
    284       1.2       ad  */
    285       1.2       ad void
    286       1.2       ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    287       1.2       ad {
    288      1.20       ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    289      1.19       ad 	struct cpu_info *ci;
    290       1.2       ad 	turnstile_t *ts;
    291       1.2       ad 	int queue;
    292       1.7       ad 	lwp_t *l;
    293       1.2       ad 	LOCKSTAT_TIMER(slptime);
    294      1.20       ad 	LOCKSTAT_TIMER(slpcnt);
    295      1.19       ad 	LOCKSTAT_TIMER(spintime);
    296      1.19       ad 	LOCKSTAT_COUNTER(spincnt);
    297       1.2       ad 	LOCKSTAT_FLAG(lsflag);
    298       1.2       ad 
    299       1.2       ad 	l = curlwp;
    300       1.2       ad 	curthread = (uintptr_t)l;
    301       1.2       ad 
    302      1.13       ad 	RW_ASSERT(rw, !cpu_intr_p());
    303       1.2       ad 	RW_ASSERT(rw, curthread != 0);
    304      1.23       ad 	RW_WANTLOCK(rw, op, false);
    305       1.2       ad 
    306       1.2       ad 	if (panicstr == NULL) {
    307       1.2       ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    308       1.2       ad 	}
    309       1.2       ad 
    310       1.2       ad 	/*
    311       1.2       ad 	 * We play a slight trick here.  If we're a reader, we want
    312       1.2       ad 	 * increment the read count.  If we're a writer, we want to
    313       1.2       ad 	 * set the owner field and whe WRITE_LOCKED bit.
    314       1.2       ad 	 *
    315       1.2       ad 	 * In the latter case, we expect those bits to be zero,
    316       1.2       ad 	 * therefore we can use an add operation to set them, which
    317       1.2       ad 	 * means an add operation for both cases.
    318       1.2       ad 	 */
    319       1.2       ad 	if (__predict_true(op == RW_READER)) {
    320       1.2       ad 		incr = RW_READ_INCR;
    321       1.2       ad 		set_wait = RW_HAS_WAITERS;
    322       1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    323       1.2       ad 		queue = TS_READER_Q;
    324       1.2       ad 	} else {
    325       1.2       ad 		RW_DASSERT(rw, op == RW_WRITER);
    326       1.2       ad 		incr = curthread | RW_WRITE_LOCKED;
    327       1.2       ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    328       1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    329       1.2       ad 		queue = TS_WRITER_Q;
    330       1.2       ad 	}
    331       1.2       ad 
    332       1.2       ad 	LOCKSTAT_ENTER(lsflag);
    333       1.2       ad 
    334      1.20       ad 	for (ci = NULL, owner = rw->rw_owner;;) {
    335       1.2       ad 		/*
    336       1.2       ad 		 * Read the lock owner field.  If the need-to-wait
    337       1.2       ad 		 * indicator is clear, then try to acquire the lock.
    338       1.2       ad 		 */
    339       1.2       ad 		if ((owner & need_wait) == 0) {
    340      1.20       ad 			next = rw_cas(rw, owner, (owner + incr) &
    341      1.20       ad 			    ~RW_WRITE_WANTED);
    342      1.20       ad 			if (__predict_true(next == owner)) {
    343       1.2       ad 				/* Got it! */
    344      1.20       ad 				membar_enter();
    345       1.2       ad 				break;
    346       1.2       ad 			}
    347       1.2       ad 
    348       1.2       ad 			/*
    349       1.2       ad 			 * Didn't get it -- spin around again (we'll
    350       1.2       ad 			 * probably sleep on the next iteration).
    351       1.2       ad 			 */
    352      1.20       ad 			owner = next;
    353       1.2       ad 			continue;
    354       1.2       ad 		}
    355       1.2       ad 
    356      1.20       ad 		if (__predict_false(panicstr != NULL))
    357       1.2       ad 			return;
    358      1.20       ad 		if (__predict_false(RW_OWNER(rw) == curthread))
    359      1.11       ad 			rw_abort(rw, __func__, "locking against myself");
    360       1.2       ad 
    361      1.19       ad 		/*
    362      1.19       ad 		 * If the lock owner is running on another CPU, and
    363      1.19       ad 		 * there are no existing waiters, then spin.
    364      1.19       ad 		 */
    365      1.20       ad 		if (rw_onproc(owner, &ci)) {
    366      1.19       ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    367      1.19       ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    368      1.20       ad 			do {
    369      1.20       ad 				SPINLOCK_BACKOFF(count);
    370      1.19       ad 				owner = rw->rw_owner;
    371      1.20       ad 			} while (rw_onproc(owner, &ci));
    372      1.19       ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    373      1.19       ad 			LOCKSTAT_COUNT(spincnt, 1);
    374      1.19       ad 			if ((owner & need_wait) == 0)
    375      1.19       ad 				continue;
    376      1.19       ad 		}
    377      1.19       ad 
    378       1.2       ad 		/*
    379       1.2       ad 		 * Grab the turnstile chain lock.  Once we have that, we
    380       1.2       ad 		 * can adjust the waiter bits and sleep queue.
    381       1.2       ad 		 */
    382       1.2       ad 		ts = turnstile_lookup(rw);
    383       1.2       ad 
    384       1.2       ad 		/*
    385       1.2       ad 		 * Mark the rwlock as having waiters.  If the set fails,
    386       1.2       ad 		 * then we may not need to sleep and should spin again.
    387      1.20       ad 		 * Reload rw_owner because turnstile_lookup() may have
    388      1.20       ad 		 * spun on the turnstile chain lock.
    389       1.2       ad 		 */
    390      1.20       ad 		owner = rw->rw_owner;
    391      1.20       ad 		if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
    392      1.20       ad 			turnstile_exit(rw);
    393      1.20       ad 			continue;
    394      1.20       ad 		}
    395      1.20       ad 		next = rw_cas(rw, owner, owner | set_wait);
    396      1.20       ad 		if (__predict_false(next != owner)) {
    397       1.2       ad 			turnstile_exit(rw);
    398      1.20       ad 			owner = next;
    399       1.2       ad 			continue;
    400       1.2       ad 		}
    401       1.2       ad 
    402       1.2       ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    403       1.4     yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    404       1.2       ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    405      1.20       ad 		LOCKSTAT_COUNT(slpcnt, 1);
    406       1.2       ad 
    407      1.20       ad 		/*
    408      1.20       ad 		 * No need for a memory barrier because of context switch.
    409      1.20       ad 		 * If not handed the lock, then spin again.
    410      1.20       ad 		 */
    411      1.20       ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    412      1.20       ad 			break;
    413       1.2       ad 	}
    414       1.2       ad 
    415      1.20       ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    416      1.20       ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    417      1.19       ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    418       1.2       ad 	LOCKSTAT_EXIT(lsflag);
    419       1.2       ad 
    420       1.2       ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    421       1.2       ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    422       1.2       ad 	RW_LOCKED(rw, op);
    423       1.2       ad }
    424       1.2       ad 
    425       1.2       ad /*
    426       1.2       ad  * rw_vector_exit:
    427       1.2       ad  *
    428       1.2       ad  *	Release a rwlock.
    429       1.2       ad  */
    430       1.2       ad void
    431       1.2       ad rw_vector_exit(krwlock_t *rw)
    432       1.2       ad {
    433      1.20       ad 	uintptr_t curthread, owner, decr, new, next;
    434       1.2       ad 	turnstile_t *ts;
    435       1.2       ad 	int rcnt, wcnt;
    436       1.7       ad 	lwp_t *l;
    437       1.2       ad 
    438       1.2       ad 	curthread = (uintptr_t)curlwp;
    439       1.2       ad 	RW_ASSERT(rw, curthread != 0);
    440       1.2       ad 
    441      1.20       ad 	if (__predict_false(panicstr != NULL))
    442       1.2       ad 		return;
    443       1.2       ad 
    444       1.2       ad 	/*
    445       1.2       ad 	 * Again, we use a trick.  Since we used an add operation to
    446       1.2       ad 	 * set the required lock bits, we can use a subtract to clear
    447       1.2       ad 	 * them, which makes the read-release and write-release path
    448       1.2       ad 	 * the same.
    449       1.2       ad 	 */
    450       1.2       ad 	owner = rw->rw_owner;
    451       1.2       ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    452       1.2       ad 		RW_UNLOCKED(rw, RW_WRITER);
    453       1.2       ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    454       1.2       ad 		decr = curthread | RW_WRITE_LOCKED;
    455       1.2       ad 	} else {
    456       1.2       ad 		RW_UNLOCKED(rw, RW_READER);
    457       1.2       ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    458       1.2       ad 		decr = RW_READ_INCR;
    459       1.2       ad 	}
    460       1.2       ad 
    461       1.2       ad 	/*
    462       1.2       ad 	 * Compute what we expect the new value of the lock to be. Only
    463       1.2       ad 	 * proceed to do direct handoff if there are waiters, and if the
    464       1.2       ad 	 * lock would become unowned.
    465       1.2       ad 	 */
    466      1.20       ad 	membar_exit();
    467      1.20       ad 	for (;;) {
    468       1.2       ad 		new = (owner - decr);
    469       1.2       ad 		if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    470       1.2       ad 			break;
    471      1.20       ad 		next = rw_cas(rw, owner, new);
    472      1.20       ad 		if (__predict_true(next == owner))
    473       1.2       ad 			return;
    474      1.20       ad 		owner = next;
    475       1.2       ad 	}
    476       1.2       ad 
    477      1.20       ad 	/*
    478      1.20       ad 	 * Grab the turnstile chain lock.  This gets the interlock
    479      1.20       ad 	 * on the sleep queue.  Once we have that, we can adjust the
    480      1.20       ad 	 * waiter bits.
    481      1.20       ad 	 */
    482      1.20       ad 	ts = turnstile_lookup(rw);
    483      1.20       ad 	owner = rw->rw_owner;
    484      1.20       ad 	RW_DASSERT(rw, ts != NULL);
    485      1.20       ad 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    486       1.2       ad 
    487      1.20       ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    488      1.20       ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    489       1.2       ad 
    490      1.20       ad 	/*
    491      1.20       ad 	 * Give the lock away.
    492      1.20       ad 	 *
    493      1.20       ad 	 * If we are releasing a write lock, then prefer to wake all
    494      1.20       ad 	 * outstanding readers.  Otherwise, wake one writer if there
    495      1.20       ad 	 * are outstanding readers, or all writers if there are no
    496      1.20       ad 	 * pending readers.  If waking one specific writer, the writer
    497      1.20       ad 	 * is handed the lock here.  If waking multiple writers, we
    498      1.20       ad 	 * set WRITE_WANTED to block out new readers, and let them
    499      1.20       ad 	 * do the work of acquring the lock in rw_vector_enter().
    500      1.20       ad 	 */
    501      1.20       ad 	if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
    502      1.20       ad 		RW_DASSERT(rw, wcnt != 0);
    503      1.20       ad 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    504       1.2       ad 
    505      1.20       ad 		if (rcnt != 0) {
    506      1.20       ad 			/* Give the lock to the longest waiting writer. */
    507       1.2       ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    508      1.20       ad 			new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    509      1.28  thorpej 			if (wcnt > 1)
    510      1.20       ad 				new |= RW_WRITE_WANTED;
    511      1.20       ad 			rw_swap(rw, owner, new);
    512       1.7       ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    513       1.2       ad 		} else {
    514      1.20       ad 			/* Wake all writers and let them fight it out. */
    515      1.20       ad 			rw_swap(rw, owner, RW_WRITE_WANTED);
    516      1.20       ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    517      1.20       ad 		}
    518      1.20       ad 	} else {
    519      1.20       ad 		RW_DASSERT(rw, rcnt != 0);
    520       1.2       ad 
    521      1.20       ad 		/*
    522      1.20       ad 		 * Give the lock to all blocked readers.  If there
    523      1.20       ad 		 * is a writer waiting, new readers that arrive
    524      1.20       ad 		 * after the release will be blocked out.
    525      1.20       ad 		 */
    526      1.20       ad 		new = rcnt << RW_READ_COUNT_SHIFT;
    527      1.20       ad 		if (wcnt != 0)
    528      1.20       ad 			new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    529      1.12     yamt 
    530      1.20       ad 		/* Wake up all sleeping readers. */
    531      1.20       ad 		rw_swap(rw, owner, new);
    532      1.20       ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    533       1.2       ad 	}
    534       1.2       ad }
    535       1.2       ad 
    536       1.2       ad /*
    537      1.16       ad  * rw_vector_tryenter:
    538       1.2       ad  *
    539       1.2       ad  *	Try to acquire a rwlock.
    540       1.2       ad  */
    541       1.2       ad int
    542      1.16       ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    543       1.2       ad {
    544      1.20       ad 	uintptr_t curthread, owner, incr, need_wait, next;
    545       1.2       ad 
    546       1.2       ad 	curthread = (uintptr_t)curlwp;
    547       1.2       ad 
    548       1.2       ad 	RW_ASSERT(rw, curthread != 0);
    549       1.2       ad 
    550       1.2       ad 	if (op == RW_READER) {
    551       1.2       ad 		incr = RW_READ_INCR;
    552       1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    553       1.2       ad 	} else {
    554       1.2       ad 		RW_DASSERT(rw, op == RW_WRITER);
    555       1.2       ad 		incr = curthread | RW_WRITE_LOCKED;
    556       1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    557       1.2       ad 	}
    558       1.2       ad 
    559      1.20       ad 	for (owner = rw->rw_owner;; owner = next) {
    560       1.2       ad 		owner = rw->rw_owner;
    561      1.20       ad 		if (__predict_false((owner & need_wait) != 0))
    562      1.20       ad 			return 0;
    563      1.20       ad 		next = rw_cas(rw, owner, owner + incr);
    564      1.20       ad 		if (__predict_true(next == owner)) {
    565      1.20       ad 			/* Got it! */
    566  1.28.8.1      jym 			membar_enter();
    567      1.20       ad 			break;
    568       1.2       ad 		}
    569       1.2       ad 	}
    570       1.2       ad 
    571      1.23       ad 	RW_WANTLOCK(rw, op, true);
    572       1.2       ad 	RW_LOCKED(rw, op);
    573       1.2       ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    574       1.2       ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    575       1.7       ad 
    576       1.2       ad 	return 1;
    577       1.2       ad }
    578       1.2       ad 
    579       1.2       ad /*
    580       1.2       ad  * rw_downgrade:
    581       1.2       ad  *
    582       1.2       ad  *	Downgrade a write lock to a read lock.
    583       1.2       ad  */
    584       1.2       ad void
    585       1.2       ad rw_downgrade(krwlock_t *rw)
    586       1.2       ad {
    587      1.20       ad 	uintptr_t owner, curthread, new, next;
    588       1.2       ad 	turnstile_t *ts;
    589       1.2       ad 	int rcnt, wcnt;
    590       1.2       ad 
    591       1.2       ad 	curthread = (uintptr_t)curlwp;
    592       1.2       ad 	RW_ASSERT(rw, curthread != 0);
    593       1.2       ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    594       1.2       ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    595       1.2       ad 	RW_UNLOCKED(rw, RW_WRITER);
    596       1.2       ad 
    597      1.20       ad 	membar_producer();
    598       1.2       ad 	owner = rw->rw_owner;
    599       1.2       ad 	if ((owner & RW_HAS_WAITERS) == 0) {
    600       1.2       ad 		/*
    601       1.2       ad 		 * There are no waiters, so we can do this the easy way.
    602       1.2       ad 		 * Try swapping us down to one read hold.  If it fails, the
    603       1.2       ad 		 * lock condition has changed and we most likely now have
    604       1.2       ad 		 * waiters.
    605       1.2       ad 		 */
    606      1.20       ad 		next = rw_cas(rw, owner, RW_READ_INCR);
    607      1.20       ad 		if (__predict_true(next == owner)) {
    608       1.2       ad 			RW_LOCKED(rw, RW_READER);
    609       1.2       ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    610       1.2       ad 			RW_DASSERT(rw, RW_COUNT(rw) != 0);
    611       1.2       ad 			return;
    612       1.2       ad 		}
    613      1.20       ad 		owner = next;
    614       1.2       ad 	}
    615       1.2       ad 
    616       1.2       ad 	/*
    617       1.2       ad 	 * Grab the turnstile chain lock.  This gets the interlock
    618       1.2       ad 	 * on the sleep queue.  Once we have that, we can adjust the
    619       1.2       ad 	 * waiter bits.
    620       1.2       ad 	 */
    621      1.20       ad 	for (;; owner = next) {
    622       1.2       ad 		ts = turnstile_lookup(rw);
    623       1.2       ad 		RW_DASSERT(rw, ts != NULL);
    624       1.2       ad 
    625       1.2       ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    626       1.2       ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    627       1.2       ad 
    628       1.2       ad 		/*
    629       1.2       ad 		 * If there are no readers, just preserve the waiters
    630       1.2       ad 		 * bits, swap us down to one read hold and return.
    631       1.2       ad 		 */
    632       1.2       ad 		if (rcnt == 0) {
    633       1.2       ad 			RW_DASSERT(rw, wcnt != 0);
    634       1.2       ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    635       1.2       ad 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    636       1.2       ad 
    637       1.2       ad 			new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    638      1.20       ad 			next = rw_cas(rw, owner, new);
    639      1.27    rmind 			turnstile_exit(rw);
    640      1.20       ad 			if (__predict_true(next == owner))
    641      1.20       ad 				break;
    642      1.20       ad 		} else {
    643      1.20       ad 			/*
    644      1.20       ad 			 * Give the lock to all blocked readers.  We may
    645      1.20       ad 			 * retain one read hold if downgrading.  If there
    646      1.20       ad 			 * is a writer waiting, new readers will be blocked
    647      1.20       ad 			 * out.
    648      1.20       ad 			 */
    649      1.20       ad 			new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    650      1.20       ad 			if (wcnt != 0)
    651      1.20       ad 				new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    652      1.20       ad 
    653      1.20       ad 			next = rw_cas(rw, owner, new);
    654      1.20       ad 			if (__predict_true(next == owner)) {
    655      1.20       ad 				/* Wake up all sleeping readers. */
    656      1.20       ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    657      1.20       ad 				break;
    658       1.2       ad 			}
    659      1.27    rmind 			turnstile_exit(rw);
    660       1.2       ad 		}
    661       1.2       ad 	}
    662       1.2       ad 
    663  1.28.8.1      jym 	RW_WANTLOCK(rw, RW_READER, false);
    664       1.2       ad 	RW_LOCKED(rw, RW_READER);
    665       1.2       ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    666       1.2       ad 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    667       1.2       ad }
    668       1.2       ad 
    669       1.2       ad /*
    670       1.2       ad  * rw_tryupgrade:
    671       1.2       ad  *
    672       1.2       ad  *	Try to upgrade a read lock to a write lock.  We must be the
    673       1.2       ad  *	only reader.
    674       1.2       ad  */
    675       1.2       ad int
    676       1.2       ad rw_tryupgrade(krwlock_t *rw)
    677       1.2       ad {
    678      1.20       ad 	uintptr_t owner, curthread, new, next;
    679       1.2       ad 
    680       1.2       ad 	curthread = (uintptr_t)curlwp;
    681       1.2       ad 	RW_ASSERT(rw, curthread != 0);
    682  1.28.8.1      jym 	RW_ASSERT(rw, rw_read_held(rw));
    683       1.2       ad 
    684      1.20       ad 	for (owner = rw->rw_owner;; owner = next) {
    685       1.2       ad 		RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
    686      1.20       ad 		if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
    687       1.2       ad 			RW_ASSERT(rw, (owner & RW_THREAD) != 0);
    688       1.2       ad 			return 0;
    689       1.2       ad 		}
    690       1.2       ad 		new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    691      1.20       ad 		next = rw_cas(rw, owner, new);
    692  1.28.8.1      jym 		if (__predict_true(next == owner)) {
    693  1.28.8.1      jym 			membar_producer();
    694       1.2       ad 			break;
    695  1.28.8.1      jym 		}
    696       1.2       ad 	}
    697       1.2       ad 
    698       1.2       ad 	RW_UNLOCKED(rw, RW_READER);
    699  1.28.8.1      jym 	RW_WANTLOCK(rw, RW_WRITER, true);
    700       1.2       ad 	RW_LOCKED(rw, RW_WRITER);
    701       1.2       ad 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    702       1.2       ad 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    703       1.2       ad 
    704       1.2       ad 	return 1;
    705       1.2       ad }
    706       1.2       ad 
    707       1.2       ad /*
    708       1.2       ad  * rw_read_held:
    709       1.2       ad  *
    710       1.2       ad  *	Returns true if the rwlock is held for reading.  Must only be
    711       1.2       ad  *	used for diagnostic assertions, and never be used to make
    712       1.2       ad  * 	decisions about how to use a rwlock.
    713       1.2       ad  */
    714       1.2       ad int
    715       1.2       ad rw_read_held(krwlock_t *rw)
    716       1.2       ad {
    717       1.2       ad 	uintptr_t owner;
    718       1.2       ad 
    719       1.2       ad 	if (panicstr != NULL)
    720       1.2       ad 		return 1;
    721      1.21       ad 	if (rw == NULL)
    722      1.21       ad 		return 0;
    723       1.2       ad 	owner = rw->rw_owner;
    724       1.2       ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    725       1.2       ad }
    726       1.2       ad 
    727       1.2       ad /*
    728       1.2       ad  * rw_write_held:
    729       1.2       ad  *
    730       1.2       ad  *	Returns true if the rwlock is held for writing.  Must only be
    731       1.2       ad  *	used for diagnostic assertions, and never be used to make
    732       1.2       ad  *	decisions about how to use a rwlock.
    733       1.2       ad  */
    734       1.2       ad int
    735       1.2       ad rw_write_held(krwlock_t *rw)
    736       1.2       ad {
    737       1.2       ad 
    738       1.2       ad 	if (panicstr != NULL)
    739       1.2       ad 		return 1;
    740      1.21       ad 	if (rw == NULL)
    741      1.21       ad 		return 0;
    742      1.17       ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    743      1.18       ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    744       1.2       ad }
    745       1.2       ad 
    746       1.2       ad /*
    747       1.2       ad  * rw_lock_held:
    748       1.2       ad  *
    749       1.2       ad  *	Returns true if the rwlock is held for reading or writing.  Must
    750       1.2       ad  *	only be used for diagnostic assertions, and never be used to make
    751       1.2       ad  *	decisions about how to use a rwlock.
    752       1.2       ad  */
    753       1.2       ad int
    754       1.2       ad rw_lock_held(krwlock_t *rw)
    755       1.2       ad {
    756       1.2       ad 
    757       1.2       ad 	if (panicstr != NULL)
    758       1.2       ad 		return 1;
    759      1.21       ad 	if (rw == NULL)
    760      1.21       ad 		return 0;
    761       1.2       ad 	return (rw->rw_owner & RW_THREAD) != 0;
    762       1.2       ad }
    763       1.4     yamt 
    764       1.5       ad /*
    765       1.5       ad  * rw_owner:
    766       1.5       ad  *
    767       1.5       ad  *	Return the current owner of an RW lock, but only if it is write
    768       1.5       ad  *	held.  Used for priority inheritance.
    769       1.5       ad  */
    770       1.7       ad static lwp_t *
    771       1.4     yamt rw_owner(wchan_t obj)
    772       1.4     yamt {
    773       1.4     yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    774       1.4     yamt 	uintptr_t owner = rw->rw_owner;
    775       1.4     yamt 
    776       1.4     yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    777       1.4     yamt 		return NULL;
    778       1.4     yamt 
    779       1.4     yamt 	return (void *)(owner & RW_THREAD);
    780       1.4     yamt }
    781  1.28.8.1      jym 
    782  1.28.8.1      jym /*
    783  1.28.8.1      jym  * rw_obj_init:
    784  1.28.8.1      jym  *
    785  1.28.8.1      jym  *	Initialize the rw object store.
    786  1.28.8.1      jym  */
    787  1.28.8.1      jym void
    788  1.28.8.1      jym rw_obj_init(void)
    789  1.28.8.1      jym {
    790  1.28.8.1      jym 
    791  1.28.8.1      jym 	rw_obj_cache = pool_cache_init(sizeof(struct krwobj),
    792  1.28.8.1      jym 	    coherency_unit, 0, 0, "rwlock", NULL, IPL_NONE, rw_obj_ctor,
    793  1.28.8.1      jym 	    NULL, NULL);
    794  1.28.8.1      jym }
    795  1.28.8.1      jym 
    796  1.28.8.1      jym /*
    797  1.28.8.1      jym  * rw_obj_ctor:
    798  1.28.8.1      jym  *
    799  1.28.8.1      jym  *	Initialize a new lock for the cache.
    800  1.28.8.1      jym  */
    801  1.28.8.1      jym static int
    802  1.28.8.1      jym rw_obj_ctor(void *arg, void *obj, int flags)
    803  1.28.8.1      jym {
    804  1.28.8.1      jym 	struct krwobj * ro = obj;
    805  1.28.8.1      jym 
    806  1.28.8.1      jym 	ro->ro_magic = RW_OBJ_MAGIC;
    807  1.28.8.1      jym 
    808  1.28.8.1      jym 	return 0;
    809  1.28.8.1      jym }
    810  1.28.8.1      jym 
    811  1.28.8.1      jym /*
    812  1.28.8.1      jym  * rw_obj_alloc:
    813  1.28.8.1      jym  *
    814  1.28.8.1      jym  *	Allocate a single lock object.
    815  1.28.8.1      jym  */
    816  1.28.8.1      jym krwlock_t *
    817  1.28.8.1      jym rw_obj_alloc(void)
    818  1.28.8.1      jym {
    819  1.28.8.1      jym 	struct krwobj *ro;
    820  1.28.8.1      jym 
    821  1.28.8.1      jym 	ro = pool_cache_get(rw_obj_cache, PR_WAITOK);
    822  1.28.8.1      jym 	rw_init(&ro->ro_lock);
    823  1.28.8.1      jym 	ro->ro_refcnt = 1;
    824  1.28.8.1      jym 
    825  1.28.8.1      jym 	return (krwlock_t *)ro;
    826  1.28.8.1      jym }
    827  1.28.8.1      jym 
    828  1.28.8.1      jym /*
    829  1.28.8.1      jym  * rw_obj_hold:
    830  1.28.8.1      jym  *
    831  1.28.8.1      jym  *	Add a single reference to a lock object.  A reference to the object
    832  1.28.8.1      jym  *	must already be held, and must be held across this call.
    833  1.28.8.1      jym  */
    834  1.28.8.1      jym void
    835  1.28.8.1      jym rw_obj_hold(krwlock_t *lock)
    836  1.28.8.1      jym {
    837  1.28.8.1      jym 	struct krwobj *ro = (struct krwobj *)lock;
    838  1.28.8.1      jym 
    839  1.28.8.1      jym 	KASSERT(ro->ro_magic == RW_OBJ_MAGIC);
    840  1.28.8.1      jym 	KASSERT(ro->ro_refcnt > 0);
    841  1.28.8.1      jym 
    842  1.28.8.1      jym 	atomic_inc_uint(&ro->ro_refcnt);
    843  1.28.8.1      jym }
    844  1.28.8.1      jym 
    845  1.28.8.1      jym /*
    846  1.28.8.1      jym  * rw_obj_free:
    847  1.28.8.1      jym  *
    848  1.28.8.1      jym  *	Drop a reference from a lock object.  If the last reference is being
    849  1.28.8.1      jym  *	dropped, free the object and return true.  Otherwise, return false.
    850  1.28.8.1      jym  */
    851  1.28.8.1      jym bool
    852  1.28.8.1      jym rw_obj_free(krwlock_t *lock)
    853  1.28.8.1      jym {
    854  1.28.8.1      jym 	struct krwobj *ro = (struct krwobj *)lock;
    855  1.28.8.1      jym 
    856  1.28.8.1      jym 	KASSERT(ro->ro_magic == RW_OBJ_MAGIC);
    857  1.28.8.1      jym 	KASSERT(ro->ro_refcnt > 0);
    858  1.28.8.1      jym 
    859  1.28.8.1      jym 	if (atomic_dec_uint_nv(&ro->ro_refcnt) > 0) {
    860  1.28.8.1      jym 		return false;
    861  1.28.8.1      jym 	}
    862  1.28.8.1      jym 	rw_destroy(&ro->ro_lock);
    863  1.28.8.1      jym 	pool_cache_put(rw_obj_cache, ro);
    864  1.28.8.1      jym 	return true;
    865  1.28.8.1      jym }
    866