kern_rwlock.c revision 1.29 1 1.29 ad /* $NetBSD: kern_rwlock.c,v 1.29 2009/04/19 08:36:04 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.29 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel reader/writer lock implementation, modeled after those
34 1.2 ad * found in Solaris, a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.10 dsl #include <sys/cdefs.h>
41 1.29 ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.29 2009/04/19 08:36:04 ad Exp $");
42 1.2 ad
43 1.2 ad #define __RWLOCK_PRIVATE
44 1.2 ad
45 1.2 ad #include <sys/param.h>
46 1.2 ad #include <sys/proc.h>
47 1.2 ad #include <sys/rwlock.h>
48 1.2 ad #include <sys/sched.h>
49 1.2 ad #include <sys/sleepq.h>
50 1.2 ad #include <sys/systm.h>
51 1.2 ad #include <sys/lockdebug.h>
52 1.11 ad #include <sys/cpu.h>
53 1.14 ad #include <sys/atomic.h>
54 1.15 ad #include <sys/lock.h>
55 1.2 ad
56 1.2 ad #include <dev/lockstat.h>
57 1.2 ad
58 1.2 ad /*
59 1.2 ad * LOCKDEBUG
60 1.2 ad */
61 1.2 ad
62 1.2 ad #if defined(LOCKDEBUG)
63 1.2 ad
64 1.23 ad #define RW_WANTLOCK(rw, op, t) \
65 1.12 yamt LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
66 1.23 ad (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
67 1.2 ad #define RW_LOCKED(rw, op) \
68 1.25 ad LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
69 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
70 1.2 ad #define RW_UNLOCKED(rw, op) \
71 1.12 yamt LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
72 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 1.2 ad #define RW_DASSERT(rw, cond) \
74 1.2 ad do { \
75 1.2 ad if (!(cond)) \
76 1.11 ad rw_abort(rw, __func__, "assertion failed: " #cond); \
77 1.2 ad } while (/* CONSTCOND */ 0);
78 1.2 ad
79 1.2 ad #else /* LOCKDEBUG */
80 1.2 ad
81 1.23 ad #define RW_WANTLOCK(rw, op, t) /* nothing */
82 1.2 ad #define RW_LOCKED(rw, op) /* nothing */
83 1.2 ad #define RW_UNLOCKED(rw, op) /* nothing */
84 1.2 ad #define RW_DASSERT(rw, cond) /* nothing */
85 1.2 ad
86 1.2 ad #endif /* LOCKDEBUG */
87 1.2 ad
88 1.2 ad /*
89 1.2 ad * DIAGNOSTIC
90 1.2 ad */
91 1.2 ad
92 1.2 ad #if defined(DIAGNOSTIC)
93 1.2 ad
94 1.2 ad #define RW_ASSERT(rw, cond) \
95 1.2 ad do { \
96 1.2 ad if (!(cond)) \
97 1.11 ad rw_abort(rw, __func__, "assertion failed: " #cond); \
98 1.2 ad } while (/* CONSTCOND */ 0)
99 1.2 ad
100 1.2 ad #else
101 1.2 ad
102 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
103 1.2 ad
104 1.2 ad #endif /* DIAGNOSTIC */
105 1.2 ad
106 1.12 yamt #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
107 1.12 yamt #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_DEBUG) != 0)
108 1.12 yamt #if defined(LOCKDEBUG)
109 1.12 yamt #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_DEBUG
110 1.12 yamt #else /* defined(LOCKDEBUG) */
111 1.12 yamt #define RW_INHERITDEBUG(new, old) /* nothing */
112 1.12 yamt #endif /* defined(LOCKDEBUG) */
113 1.12 yamt
114 1.20 ad static void rw_abort(krwlock_t *, const char *, const char *);
115 1.20 ad static void rw_dump(volatile void *);
116 1.20 ad static lwp_t *rw_owner(wchan_t);
117 1.20 ad
118 1.20 ad static inline uintptr_t
119 1.20 ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
120 1.12 yamt {
121 1.12 yamt
122 1.20 ad RW_INHERITDEBUG(n, o);
123 1.20 ad return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
124 1.20 ad (void *)o, (void *)n);
125 1.12 yamt }
126 1.2 ad
127 1.20 ad static inline void
128 1.20 ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
129 1.2 ad {
130 1.2 ad
131 1.20 ad RW_INHERITDEBUG(n, o);
132 1.20 ad n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
133 1.20 ad (void *)n);
134 1.20 ad RW_DASSERT(rw, n == o);
135 1.2 ad }
136 1.2 ad
137 1.2 ad /*
138 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
139 1.2 ad */
140 1.2 ad #ifdef LOCKDEBUG
141 1.2 ad #undef __HAVE_RW_STUBS
142 1.2 ad #endif
143 1.2 ad
144 1.2 ad #ifndef __HAVE_RW_STUBS
145 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
146 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
147 1.16 ad __strong_alias(rw_tryenter,rw_vector_tryenter);
148 1.2 ad #endif
149 1.2 ad
150 1.2 ad lockops_t rwlock_lockops = {
151 1.2 ad "Reader / writer lock",
152 1.25 ad LOCKOPS_SLEEP,
153 1.2 ad rw_dump
154 1.2 ad };
155 1.2 ad
156 1.4 yamt syncobj_t rw_syncobj = {
157 1.4 yamt SOBJ_SLEEPQ_SORTED,
158 1.4 yamt turnstile_unsleep,
159 1.4 yamt turnstile_changepri,
160 1.4 yamt sleepq_lendpri,
161 1.4 yamt rw_owner,
162 1.4 yamt };
163 1.4 yamt
164 1.29 ad /* Mutex cache */
165 1.29 ad #define RW_OBJ_MAGIC 0x85d3c85d
166 1.29 ad struct krwobj {
167 1.29 ad krwlock_t ro_lock;
168 1.29 ad u_int ro_magic;
169 1.29 ad u_int ro_refcnt;
170 1.29 ad };
171 1.29 ad
172 1.29 ad static int rw_obj_ctor(void *, void *, int);
173 1.29 ad
174 1.29 ad static pool_cache_t rw_obj_cache;
175 1.29 ad
176 1.2 ad /*
177 1.2 ad * rw_dump:
178 1.2 ad *
179 1.2 ad * Dump the contents of a rwlock structure.
180 1.2 ad */
181 1.11 ad static void
182 1.2 ad rw_dump(volatile void *cookie)
183 1.2 ad {
184 1.2 ad volatile krwlock_t *rw = cookie;
185 1.2 ad
186 1.2 ad printf_nolog("owner/count : %#018lx flags : %#018x\n",
187 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
188 1.2 ad }
189 1.2 ad
190 1.2 ad /*
191 1.11 ad * rw_abort:
192 1.11 ad *
193 1.11 ad * Dump information about an error and panic the system. This
194 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
195 1.11 ad * we ask the compiler to not inline it.
196 1.11 ad */
197 1.26 ad static void __noinline
198 1.11 ad rw_abort(krwlock_t *rw, const char *func, const char *msg)
199 1.11 ad {
200 1.11 ad
201 1.11 ad if (panicstr != NULL)
202 1.11 ad return;
203 1.11 ad
204 1.12 yamt LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
205 1.11 ad }
206 1.11 ad
207 1.11 ad /*
208 1.2 ad * rw_init:
209 1.2 ad *
210 1.2 ad * Initialize a rwlock for use.
211 1.2 ad */
212 1.2 ad void
213 1.2 ad rw_init(krwlock_t *rw)
214 1.2 ad {
215 1.12 yamt bool dodebug;
216 1.2 ad
217 1.2 ad memset(rw, 0, sizeof(*rw));
218 1.2 ad
219 1.12 yamt dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
220 1.11 ad (uintptr_t)__builtin_return_address(0));
221 1.12 yamt RW_SETDEBUG(rw, dodebug);
222 1.2 ad }
223 1.2 ad
224 1.2 ad /*
225 1.2 ad * rw_destroy:
226 1.2 ad *
227 1.2 ad * Tear down a rwlock.
228 1.2 ad */
229 1.2 ad void
230 1.2 ad rw_destroy(krwlock_t *rw)
231 1.2 ad {
232 1.2 ad
233 1.12 yamt RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
234 1.12 yamt LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
235 1.2 ad }
236 1.2 ad
237 1.2 ad /*
238 1.20 ad * rw_onproc:
239 1.20 ad *
240 1.20 ad * Return true if an rwlock owner is running on a CPU in the system.
241 1.20 ad * If the target is waiting on the kernel big lock, then we must
242 1.20 ad * release it. This is necessary to avoid deadlock.
243 1.20 ad *
244 1.20 ad * Note that we can't use the rwlock owner field as an LWP pointer. We
245 1.20 ad * don't have full control over the timing of our execution, and so the
246 1.20 ad * pointer could be completely invalid by the time we dereference it.
247 1.20 ad */
248 1.20 ad static int
249 1.20 ad rw_onproc(uintptr_t owner, struct cpu_info **cip)
250 1.20 ad {
251 1.20 ad #ifdef MULTIPROCESSOR
252 1.20 ad CPU_INFO_ITERATOR cii;
253 1.20 ad struct cpu_info *ci;
254 1.20 ad lwp_t *l;
255 1.20 ad
256 1.20 ad if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
257 1.20 ad return 0;
258 1.20 ad l = (lwp_t *)(owner & RW_THREAD);
259 1.20 ad
260 1.20 ad /* See if the target is running on a CPU somewhere. */
261 1.20 ad if ((ci = *cip) != NULL && ci->ci_curlwp == l)
262 1.20 ad goto run;
263 1.20 ad for (CPU_INFO_FOREACH(cii, ci))
264 1.20 ad if (ci->ci_curlwp == l)
265 1.20 ad goto run;
266 1.20 ad
267 1.20 ad /* No: it may be safe to block now. */
268 1.20 ad *cip = NULL;
269 1.20 ad return 0;
270 1.20 ad
271 1.20 ad run:
272 1.20 ad /* Target is running; do we need to block? */
273 1.20 ad *cip = ci;
274 1.20 ad return ci->ci_biglock_wanted != l;
275 1.20 ad #else
276 1.20 ad return 0;
277 1.20 ad #endif /* MULTIPROCESSOR */
278 1.20 ad }
279 1.20 ad
280 1.20 ad /*
281 1.2 ad * rw_vector_enter:
282 1.2 ad *
283 1.2 ad * Acquire a rwlock.
284 1.2 ad */
285 1.2 ad void
286 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
287 1.2 ad {
288 1.20 ad uintptr_t owner, incr, need_wait, set_wait, curthread, next;
289 1.19 ad struct cpu_info *ci;
290 1.2 ad turnstile_t *ts;
291 1.2 ad int queue;
292 1.7 ad lwp_t *l;
293 1.2 ad LOCKSTAT_TIMER(slptime);
294 1.20 ad LOCKSTAT_TIMER(slpcnt);
295 1.19 ad LOCKSTAT_TIMER(spintime);
296 1.19 ad LOCKSTAT_COUNTER(spincnt);
297 1.2 ad LOCKSTAT_FLAG(lsflag);
298 1.2 ad
299 1.2 ad l = curlwp;
300 1.2 ad curthread = (uintptr_t)l;
301 1.2 ad
302 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
303 1.2 ad RW_ASSERT(rw, curthread != 0);
304 1.23 ad RW_WANTLOCK(rw, op, false);
305 1.2 ad
306 1.2 ad if (panicstr == NULL) {
307 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
308 1.2 ad }
309 1.2 ad
310 1.2 ad /*
311 1.2 ad * We play a slight trick here. If we're a reader, we want
312 1.2 ad * increment the read count. If we're a writer, we want to
313 1.2 ad * set the owner field and whe WRITE_LOCKED bit.
314 1.2 ad *
315 1.2 ad * In the latter case, we expect those bits to be zero,
316 1.2 ad * therefore we can use an add operation to set them, which
317 1.2 ad * means an add operation for both cases.
318 1.2 ad */
319 1.2 ad if (__predict_true(op == RW_READER)) {
320 1.2 ad incr = RW_READ_INCR;
321 1.2 ad set_wait = RW_HAS_WAITERS;
322 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
323 1.2 ad queue = TS_READER_Q;
324 1.2 ad } else {
325 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
326 1.2 ad incr = curthread | RW_WRITE_LOCKED;
327 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
328 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
329 1.2 ad queue = TS_WRITER_Q;
330 1.2 ad }
331 1.2 ad
332 1.2 ad LOCKSTAT_ENTER(lsflag);
333 1.2 ad
334 1.20 ad for (ci = NULL, owner = rw->rw_owner;;) {
335 1.2 ad /*
336 1.2 ad * Read the lock owner field. If the need-to-wait
337 1.2 ad * indicator is clear, then try to acquire the lock.
338 1.2 ad */
339 1.2 ad if ((owner & need_wait) == 0) {
340 1.20 ad next = rw_cas(rw, owner, (owner + incr) &
341 1.20 ad ~RW_WRITE_WANTED);
342 1.20 ad if (__predict_true(next == owner)) {
343 1.2 ad /* Got it! */
344 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
345 1.20 ad membar_enter();
346 1.20 ad #endif
347 1.2 ad break;
348 1.2 ad }
349 1.2 ad
350 1.2 ad /*
351 1.2 ad * Didn't get it -- spin around again (we'll
352 1.2 ad * probably sleep on the next iteration).
353 1.2 ad */
354 1.20 ad owner = next;
355 1.2 ad continue;
356 1.2 ad }
357 1.2 ad
358 1.20 ad if (__predict_false(panicstr != NULL))
359 1.2 ad return;
360 1.20 ad if (__predict_false(RW_OWNER(rw) == curthread))
361 1.11 ad rw_abort(rw, __func__, "locking against myself");
362 1.2 ad
363 1.19 ad /*
364 1.19 ad * If the lock owner is running on another CPU, and
365 1.19 ad * there are no existing waiters, then spin.
366 1.19 ad */
367 1.20 ad if (rw_onproc(owner, &ci)) {
368 1.19 ad LOCKSTAT_START_TIMER(lsflag, spintime);
369 1.19 ad u_int count = SPINLOCK_BACKOFF_MIN;
370 1.20 ad do {
371 1.20 ad SPINLOCK_BACKOFF(count);
372 1.19 ad owner = rw->rw_owner;
373 1.20 ad } while (rw_onproc(owner, &ci));
374 1.19 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
375 1.19 ad LOCKSTAT_COUNT(spincnt, 1);
376 1.19 ad if ((owner & need_wait) == 0)
377 1.19 ad continue;
378 1.19 ad }
379 1.19 ad
380 1.2 ad /*
381 1.2 ad * Grab the turnstile chain lock. Once we have that, we
382 1.2 ad * can adjust the waiter bits and sleep queue.
383 1.2 ad */
384 1.2 ad ts = turnstile_lookup(rw);
385 1.2 ad
386 1.2 ad /*
387 1.2 ad * Mark the rwlock as having waiters. If the set fails,
388 1.2 ad * then we may not need to sleep and should spin again.
389 1.20 ad * Reload rw_owner because turnstile_lookup() may have
390 1.20 ad * spun on the turnstile chain lock.
391 1.2 ad */
392 1.20 ad owner = rw->rw_owner;
393 1.20 ad if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
394 1.20 ad turnstile_exit(rw);
395 1.20 ad continue;
396 1.20 ad }
397 1.20 ad next = rw_cas(rw, owner, owner | set_wait);
398 1.20 ad if (__predict_false(next != owner)) {
399 1.2 ad turnstile_exit(rw);
400 1.20 ad owner = next;
401 1.2 ad continue;
402 1.2 ad }
403 1.2 ad
404 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
405 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
406 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
407 1.20 ad LOCKSTAT_COUNT(slpcnt, 1);
408 1.2 ad
409 1.20 ad /*
410 1.20 ad * No need for a memory barrier because of context switch.
411 1.20 ad * If not handed the lock, then spin again.
412 1.20 ad */
413 1.20 ad if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
414 1.20 ad break;
415 1.2 ad }
416 1.2 ad
417 1.20 ad LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
418 1.20 ad (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
419 1.19 ad LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
420 1.2 ad LOCKSTAT_EXIT(lsflag);
421 1.2 ad
422 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
423 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
424 1.2 ad RW_LOCKED(rw, op);
425 1.2 ad }
426 1.2 ad
427 1.2 ad /*
428 1.2 ad * rw_vector_exit:
429 1.2 ad *
430 1.2 ad * Release a rwlock.
431 1.2 ad */
432 1.2 ad void
433 1.2 ad rw_vector_exit(krwlock_t *rw)
434 1.2 ad {
435 1.20 ad uintptr_t curthread, owner, decr, new, next;
436 1.2 ad turnstile_t *ts;
437 1.2 ad int rcnt, wcnt;
438 1.7 ad lwp_t *l;
439 1.2 ad
440 1.2 ad curthread = (uintptr_t)curlwp;
441 1.2 ad RW_ASSERT(rw, curthread != 0);
442 1.2 ad
443 1.20 ad if (__predict_false(panicstr != NULL))
444 1.2 ad return;
445 1.2 ad
446 1.2 ad /*
447 1.2 ad * Again, we use a trick. Since we used an add operation to
448 1.2 ad * set the required lock bits, we can use a subtract to clear
449 1.2 ad * them, which makes the read-release and write-release path
450 1.2 ad * the same.
451 1.2 ad */
452 1.2 ad owner = rw->rw_owner;
453 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
454 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
455 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
456 1.2 ad decr = curthread | RW_WRITE_LOCKED;
457 1.2 ad } else {
458 1.2 ad RW_UNLOCKED(rw, RW_READER);
459 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
460 1.2 ad decr = RW_READ_INCR;
461 1.2 ad }
462 1.2 ad
463 1.2 ad /*
464 1.2 ad * Compute what we expect the new value of the lock to be. Only
465 1.2 ad * proceed to do direct handoff if there are waiters, and if the
466 1.2 ad * lock would become unowned.
467 1.2 ad */
468 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
469 1.20 ad membar_exit();
470 1.20 ad #endif
471 1.20 ad for (;;) {
472 1.2 ad new = (owner - decr);
473 1.2 ad if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
474 1.2 ad break;
475 1.20 ad next = rw_cas(rw, owner, new);
476 1.20 ad if (__predict_true(next == owner))
477 1.2 ad return;
478 1.20 ad owner = next;
479 1.2 ad }
480 1.2 ad
481 1.20 ad /*
482 1.20 ad * Grab the turnstile chain lock. This gets the interlock
483 1.20 ad * on the sleep queue. Once we have that, we can adjust the
484 1.20 ad * waiter bits.
485 1.20 ad */
486 1.20 ad ts = turnstile_lookup(rw);
487 1.20 ad owner = rw->rw_owner;
488 1.20 ad RW_DASSERT(rw, ts != NULL);
489 1.20 ad RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
490 1.2 ad
491 1.20 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
492 1.20 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
493 1.2 ad
494 1.20 ad /*
495 1.20 ad * Give the lock away.
496 1.20 ad *
497 1.20 ad * If we are releasing a write lock, then prefer to wake all
498 1.20 ad * outstanding readers. Otherwise, wake one writer if there
499 1.20 ad * are outstanding readers, or all writers if there are no
500 1.20 ad * pending readers. If waking one specific writer, the writer
501 1.20 ad * is handed the lock here. If waking multiple writers, we
502 1.20 ad * set WRITE_WANTED to block out new readers, and let them
503 1.20 ad * do the work of acquring the lock in rw_vector_enter().
504 1.20 ad */
505 1.20 ad if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
506 1.20 ad RW_DASSERT(rw, wcnt != 0);
507 1.20 ad RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
508 1.2 ad
509 1.20 ad if (rcnt != 0) {
510 1.20 ad /* Give the lock to the longest waiting writer. */
511 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
512 1.20 ad new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
513 1.28 thorpej if (wcnt > 1)
514 1.20 ad new |= RW_WRITE_WANTED;
515 1.20 ad rw_swap(rw, owner, new);
516 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
517 1.2 ad } else {
518 1.20 ad /* Wake all writers and let them fight it out. */
519 1.20 ad rw_swap(rw, owner, RW_WRITE_WANTED);
520 1.20 ad turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
521 1.20 ad }
522 1.20 ad } else {
523 1.20 ad RW_DASSERT(rw, rcnt != 0);
524 1.2 ad
525 1.20 ad /*
526 1.20 ad * Give the lock to all blocked readers. If there
527 1.20 ad * is a writer waiting, new readers that arrive
528 1.20 ad * after the release will be blocked out.
529 1.20 ad */
530 1.20 ad new = rcnt << RW_READ_COUNT_SHIFT;
531 1.20 ad if (wcnt != 0)
532 1.20 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
533 1.12 yamt
534 1.20 ad /* Wake up all sleeping readers. */
535 1.20 ad rw_swap(rw, owner, new);
536 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
537 1.2 ad }
538 1.2 ad }
539 1.2 ad
540 1.2 ad /*
541 1.16 ad * rw_vector_tryenter:
542 1.2 ad *
543 1.2 ad * Try to acquire a rwlock.
544 1.2 ad */
545 1.2 ad int
546 1.16 ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
547 1.2 ad {
548 1.20 ad uintptr_t curthread, owner, incr, need_wait, next;
549 1.2 ad
550 1.2 ad curthread = (uintptr_t)curlwp;
551 1.2 ad
552 1.2 ad RW_ASSERT(rw, curthread != 0);
553 1.2 ad
554 1.2 ad if (op == RW_READER) {
555 1.2 ad incr = RW_READ_INCR;
556 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
557 1.2 ad } else {
558 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
559 1.2 ad incr = curthread | RW_WRITE_LOCKED;
560 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
561 1.2 ad }
562 1.2 ad
563 1.20 ad for (owner = rw->rw_owner;; owner = next) {
564 1.2 ad owner = rw->rw_owner;
565 1.20 ad if (__predict_false((owner & need_wait) != 0))
566 1.20 ad return 0;
567 1.20 ad next = rw_cas(rw, owner, owner + incr);
568 1.20 ad if (__predict_true(next == owner)) {
569 1.20 ad /* Got it! */
570 1.20 ad break;
571 1.2 ad }
572 1.2 ad }
573 1.2 ad
574 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
575 1.20 ad membar_enter();
576 1.20 ad #endif
577 1.23 ad RW_WANTLOCK(rw, op, true);
578 1.2 ad RW_LOCKED(rw, op);
579 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
580 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
581 1.7 ad
582 1.2 ad return 1;
583 1.2 ad }
584 1.2 ad
585 1.2 ad /*
586 1.2 ad * rw_downgrade:
587 1.2 ad *
588 1.2 ad * Downgrade a write lock to a read lock.
589 1.2 ad */
590 1.2 ad void
591 1.2 ad rw_downgrade(krwlock_t *rw)
592 1.2 ad {
593 1.20 ad uintptr_t owner, curthread, new, next;
594 1.2 ad turnstile_t *ts;
595 1.2 ad int rcnt, wcnt;
596 1.2 ad
597 1.2 ad curthread = (uintptr_t)curlwp;
598 1.2 ad RW_ASSERT(rw, curthread != 0);
599 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
600 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
601 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
602 1.2 ad
603 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
604 1.20 ad membar_producer();
605 1.20 ad #endif
606 1.20 ad
607 1.2 ad owner = rw->rw_owner;
608 1.2 ad if ((owner & RW_HAS_WAITERS) == 0) {
609 1.2 ad /*
610 1.2 ad * There are no waiters, so we can do this the easy way.
611 1.2 ad * Try swapping us down to one read hold. If it fails, the
612 1.2 ad * lock condition has changed and we most likely now have
613 1.2 ad * waiters.
614 1.2 ad */
615 1.20 ad next = rw_cas(rw, owner, RW_READ_INCR);
616 1.20 ad if (__predict_true(next == owner)) {
617 1.2 ad RW_LOCKED(rw, RW_READER);
618 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
619 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
620 1.2 ad return;
621 1.2 ad }
622 1.20 ad owner = next;
623 1.2 ad }
624 1.2 ad
625 1.2 ad /*
626 1.2 ad * Grab the turnstile chain lock. This gets the interlock
627 1.2 ad * on the sleep queue. Once we have that, we can adjust the
628 1.2 ad * waiter bits.
629 1.2 ad */
630 1.20 ad for (;; owner = next) {
631 1.2 ad ts = turnstile_lookup(rw);
632 1.2 ad RW_DASSERT(rw, ts != NULL);
633 1.2 ad
634 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
635 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
636 1.2 ad
637 1.2 ad /*
638 1.2 ad * If there are no readers, just preserve the waiters
639 1.2 ad * bits, swap us down to one read hold and return.
640 1.2 ad */
641 1.2 ad if (rcnt == 0) {
642 1.2 ad RW_DASSERT(rw, wcnt != 0);
643 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
644 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
645 1.2 ad
646 1.2 ad new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
647 1.20 ad next = rw_cas(rw, owner, new);
648 1.27 rmind turnstile_exit(rw);
649 1.20 ad if (__predict_true(next == owner))
650 1.20 ad break;
651 1.20 ad } else {
652 1.20 ad /*
653 1.20 ad * Give the lock to all blocked readers. We may
654 1.20 ad * retain one read hold if downgrading. If there
655 1.20 ad * is a writer waiting, new readers will be blocked
656 1.20 ad * out.
657 1.20 ad */
658 1.20 ad new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
659 1.20 ad if (wcnt != 0)
660 1.20 ad new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
661 1.20 ad
662 1.20 ad next = rw_cas(rw, owner, new);
663 1.20 ad if (__predict_true(next == owner)) {
664 1.20 ad /* Wake up all sleeping readers. */
665 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
666 1.20 ad break;
667 1.2 ad }
668 1.27 rmind turnstile_exit(rw);
669 1.2 ad }
670 1.2 ad }
671 1.2 ad
672 1.2 ad RW_LOCKED(rw, RW_READER);
673 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
674 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
675 1.2 ad }
676 1.2 ad
677 1.2 ad /*
678 1.2 ad * rw_tryupgrade:
679 1.2 ad *
680 1.2 ad * Try to upgrade a read lock to a write lock. We must be the
681 1.2 ad * only reader.
682 1.2 ad */
683 1.2 ad int
684 1.2 ad rw_tryupgrade(krwlock_t *rw)
685 1.2 ad {
686 1.20 ad uintptr_t owner, curthread, new, next;
687 1.2 ad
688 1.2 ad curthread = (uintptr_t)curlwp;
689 1.2 ad RW_ASSERT(rw, curthread != 0);
690 1.23 ad RW_WANTLOCK(rw, RW_WRITER, true);
691 1.2 ad
692 1.20 ad for (owner = rw->rw_owner;; owner = next) {
693 1.2 ad RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
694 1.20 ad if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
695 1.2 ad RW_ASSERT(rw, (owner & RW_THREAD) != 0);
696 1.2 ad return 0;
697 1.2 ad }
698 1.2 ad new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
699 1.20 ad next = rw_cas(rw, owner, new);
700 1.20 ad if (__predict_true(next == owner))
701 1.2 ad break;
702 1.2 ad }
703 1.2 ad
704 1.2 ad RW_UNLOCKED(rw, RW_READER);
705 1.2 ad RW_LOCKED(rw, RW_WRITER);
706 1.2 ad RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
707 1.2 ad RW_DASSERT(rw, RW_OWNER(rw) == curthread);
708 1.2 ad
709 1.20 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
710 1.20 ad membar_producer();
711 1.20 ad #endif
712 1.20 ad
713 1.2 ad return 1;
714 1.2 ad }
715 1.2 ad
716 1.2 ad /*
717 1.2 ad * rw_read_held:
718 1.2 ad *
719 1.2 ad * Returns true if the rwlock is held for reading. Must only be
720 1.2 ad * used for diagnostic assertions, and never be used to make
721 1.2 ad * decisions about how to use a rwlock.
722 1.2 ad */
723 1.2 ad int
724 1.2 ad rw_read_held(krwlock_t *rw)
725 1.2 ad {
726 1.2 ad uintptr_t owner;
727 1.2 ad
728 1.2 ad if (panicstr != NULL)
729 1.2 ad return 1;
730 1.21 ad if (rw == NULL)
731 1.21 ad return 0;
732 1.2 ad owner = rw->rw_owner;
733 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
734 1.2 ad }
735 1.2 ad
736 1.2 ad /*
737 1.2 ad * rw_write_held:
738 1.2 ad *
739 1.2 ad * Returns true if the rwlock is held for writing. Must only be
740 1.2 ad * used for diagnostic assertions, and never be used to make
741 1.2 ad * decisions about how to use a rwlock.
742 1.2 ad */
743 1.2 ad int
744 1.2 ad rw_write_held(krwlock_t *rw)
745 1.2 ad {
746 1.2 ad
747 1.2 ad if (panicstr != NULL)
748 1.2 ad return 1;
749 1.21 ad if (rw == NULL)
750 1.21 ad return 0;
751 1.17 ad return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
752 1.18 ad (RW_WRITE_LOCKED | (uintptr_t)curlwp);
753 1.2 ad }
754 1.2 ad
755 1.2 ad /*
756 1.2 ad * rw_lock_held:
757 1.2 ad *
758 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
759 1.2 ad * only be used for diagnostic assertions, and never be used to make
760 1.2 ad * decisions about how to use a rwlock.
761 1.2 ad */
762 1.2 ad int
763 1.2 ad rw_lock_held(krwlock_t *rw)
764 1.2 ad {
765 1.2 ad
766 1.2 ad if (panicstr != NULL)
767 1.2 ad return 1;
768 1.21 ad if (rw == NULL)
769 1.21 ad return 0;
770 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
771 1.2 ad }
772 1.4 yamt
773 1.5 ad /*
774 1.5 ad * rw_owner:
775 1.5 ad *
776 1.5 ad * Return the current owner of an RW lock, but only if it is write
777 1.5 ad * held. Used for priority inheritance.
778 1.5 ad */
779 1.7 ad static lwp_t *
780 1.4 yamt rw_owner(wchan_t obj)
781 1.4 yamt {
782 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
783 1.4 yamt uintptr_t owner = rw->rw_owner;
784 1.4 yamt
785 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
786 1.4 yamt return NULL;
787 1.4 yamt
788 1.4 yamt return (void *)(owner & RW_THREAD);
789 1.4 yamt }
790 1.29 ad
791 1.29 ad /*
792 1.29 ad * rw_obj_init:
793 1.29 ad *
794 1.29 ad * Initialize the rw object store.
795 1.29 ad */
796 1.29 ad void
797 1.29 ad rw_obj_init(void)
798 1.29 ad {
799 1.29 ad
800 1.29 ad rw_obj_cache = pool_cache_init(sizeof(struct krwobj),
801 1.29 ad coherency_unit, 0, 0, "rwlock", NULL, IPL_NONE, rw_obj_ctor,
802 1.29 ad NULL, NULL);
803 1.29 ad }
804 1.29 ad
805 1.29 ad /*
806 1.29 ad * rw_obj_ctor:
807 1.29 ad *
808 1.29 ad * Initialize a new lock for the cache.
809 1.29 ad */
810 1.29 ad static int
811 1.29 ad rw_obj_ctor(void *arg, void *obj, int flags)
812 1.29 ad {
813 1.29 ad struct krwobj * ro = obj;
814 1.29 ad
815 1.29 ad ro->ro_magic = RW_OBJ_MAGIC;
816 1.29 ad
817 1.29 ad return 0;
818 1.29 ad }
819 1.29 ad
820 1.29 ad /*
821 1.29 ad * rw_obj_alloc:
822 1.29 ad *
823 1.29 ad * Allocate a single lock object.
824 1.29 ad */
825 1.29 ad krwlock_t *
826 1.29 ad rw_obj_alloc(void)
827 1.29 ad {
828 1.29 ad struct krwobj *ro;
829 1.29 ad
830 1.29 ad ro = pool_cache_get(rw_obj_cache, PR_WAITOK);
831 1.29 ad rw_init(&ro->ro_lock);
832 1.29 ad ro->ro_refcnt = 1;
833 1.29 ad
834 1.29 ad return (krwlock_t *)ro;
835 1.29 ad }
836 1.29 ad
837 1.29 ad /*
838 1.29 ad * rw_obj_hold:
839 1.29 ad *
840 1.29 ad * Add a single reference to a lock object. A reference to the object
841 1.29 ad * must already be held, and must be held across this call.
842 1.29 ad */
843 1.29 ad void
844 1.29 ad rw_obj_hold(krwlock_t *lock)
845 1.29 ad {
846 1.29 ad struct krwobj *ro = (struct krwobj *)lock;
847 1.29 ad
848 1.29 ad KASSERT(ro->ro_magic == RW_OBJ_MAGIC);
849 1.29 ad KASSERT(ro->ro_refcnt > 0);
850 1.29 ad
851 1.29 ad atomic_inc_uint(&ro->ro_refcnt);
852 1.29 ad }
853 1.29 ad
854 1.29 ad /*
855 1.29 ad * rw_obj_free:
856 1.29 ad *
857 1.29 ad * Drop a reference from a lock object. If the last reference is being
858 1.29 ad * dropped, free the object and return true. Otherwise, return false.
859 1.29 ad */
860 1.29 ad bool
861 1.29 ad rw_obj_free(krwlock_t *lock)
862 1.29 ad {
863 1.29 ad struct krwobj *ro = (struct krwobj *)lock;
864 1.29 ad
865 1.29 ad KASSERT(ro->ro_magic == RW_OBJ_MAGIC);
866 1.29 ad KASSERT(ro->ro_refcnt > 0);
867 1.29 ad
868 1.29 ad if (atomic_dec_uint_nv(&ro->ro_refcnt) > 0) {
869 1.29 ad return false;
870 1.29 ad }
871 1.29 ad rw_destroy(&ro->ro_lock);
872 1.29 ad pool_cache_put(rw_obj_cache, ro);
873 1.29 ad return true;
874 1.29 ad }
875