Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.29
      1  1.29       ad /*	$NetBSD: kern_rwlock.c,v 1.29 2009/04/19 08:36:04 ad Exp $	*/
      2   1.2       ad 
      3   1.2       ad /*-
      4  1.29       ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.2       ad  * All rights reserved.
      6   1.2       ad  *
      7   1.2       ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2       ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2       ad  *
     10   1.2       ad  * Redistribution and use in source and binary forms, with or without
     11   1.2       ad  * modification, are permitted provided that the following conditions
     12   1.2       ad  * are met:
     13   1.2       ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2       ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2       ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2       ad  *    documentation and/or other materials provided with the distribution.
     18   1.2       ad  *
     19   1.2       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2       ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2       ad  */
     31   1.2       ad 
     32   1.2       ad /*
     33   1.2       ad  * Kernel reader/writer lock implementation, modeled after those
     34   1.2       ad  * found in Solaris, a description of which can be found in:
     35   1.2       ad  *
     36   1.2       ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37   1.2       ad  *	    Richard McDougall.
     38   1.2       ad  */
     39   1.2       ad 
     40  1.10      dsl #include <sys/cdefs.h>
     41  1.29       ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.29 2009/04/19 08:36:04 ad Exp $");
     42   1.2       ad 
     43   1.2       ad #define	__RWLOCK_PRIVATE
     44   1.2       ad 
     45   1.2       ad #include <sys/param.h>
     46   1.2       ad #include <sys/proc.h>
     47   1.2       ad #include <sys/rwlock.h>
     48   1.2       ad #include <sys/sched.h>
     49   1.2       ad #include <sys/sleepq.h>
     50   1.2       ad #include <sys/systm.h>
     51   1.2       ad #include <sys/lockdebug.h>
     52  1.11       ad #include <sys/cpu.h>
     53  1.14       ad #include <sys/atomic.h>
     54  1.15       ad #include <sys/lock.h>
     55   1.2       ad 
     56   1.2       ad #include <dev/lockstat.h>
     57   1.2       ad 
     58   1.2       ad /*
     59   1.2       ad  * LOCKDEBUG
     60   1.2       ad  */
     61   1.2       ad 
     62   1.2       ad #if defined(LOCKDEBUG)
     63   1.2       ad 
     64  1.23       ad #define	RW_WANTLOCK(rw, op, t)						\
     65  1.12     yamt 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     66  1.23       ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
     67   1.2       ad #define	RW_LOCKED(rw, op)						\
     68  1.25       ad 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     69   1.2       ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     70   1.2       ad #define	RW_UNLOCKED(rw, op)						\
     71  1.12     yamt 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     72   1.2       ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73   1.2       ad #define	RW_DASSERT(rw, cond)						\
     74   1.2       ad do {									\
     75   1.2       ad 	if (!(cond))							\
     76  1.11       ad 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
     77   1.2       ad } while (/* CONSTCOND */ 0);
     78   1.2       ad 
     79   1.2       ad #else	/* LOCKDEBUG */
     80   1.2       ad 
     81  1.23       ad #define	RW_WANTLOCK(rw, op, t)	/* nothing */
     82   1.2       ad #define	RW_LOCKED(rw, op)	/* nothing */
     83   1.2       ad #define	RW_UNLOCKED(rw, op)	/* nothing */
     84   1.2       ad #define	RW_DASSERT(rw, cond)	/* nothing */
     85   1.2       ad 
     86   1.2       ad #endif	/* LOCKDEBUG */
     87   1.2       ad 
     88   1.2       ad /*
     89   1.2       ad  * DIAGNOSTIC
     90   1.2       ad  */
     91   1.2       ad 
     92   1.2       ad #if defined(DIAGNOSTIC)
     93   1.2       ad 
     94   1.2       ad #define	RW_ASSERT(rw, cond)						\
     95   1.2       ad do {									\
     96   1.2       ad 	if (!(cond))							\
     97  1.11       ad 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
     98   1.2       ad } while (/* CONSTCOND */ 0)
     99   1.2       ad 
    100   1.2       ad #else
    101   1.2       ad 
    102   1.2       ad #define	RW_ASSERT(rw, cond)	/* nothing */
    103   1.2       ad 
    104   1.2       ad #endif	/* DIAGNOSTIC */
    105   1.2       ad 
    106  1.12     yamt #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
    107  1.12     yamt #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_DEBUG) != 0)
    108  1.12     yamt #if defined(LOCKDEBUG)
    109  1.12     yamt #define	RW_INHERITDEBUG(new, old)	(new) |= (old) & RW_DEBUG
    110  1.12     yamt #else /* defined(LOCKDEBUG) */
    111  1.12     yamt #define	RW_INHERITDEBUG(new, old)	/* nothing */
    112  1.12     yamt #endif /* defined(LOCKDEBUG) */
    113  1.12     yamt 
    114  1.20       ad static void	rw_abort(krwlock_t *, const char *, const char *);
    115  1.20       ad static void	rw_dump(volatile void *);
    116  1.20       ad static lwp_t	*rw_owner(wchan_t);
    117  1.20       ad 
    118  1.20       ad static inline uintptr_t
    119  1.20       ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    120  1.12     yamt {
    121  1.12     yamt 
    122  1.20       ad 	RW_INHERITDEBUG(n, o);
    123  1.20       ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    124  1.20       ad 	    (void *)o, (void *)n);
    125  1.12     yamt }
    126   1.2       ad 
    127  1.20       ad static inline void
    128  1.20       ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    129   1.2       ad {
    130   1.2       ad 
    131  1.20       ad 	RW_INHERITDEBUG(n, o);
    132  1.20       ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    133  1.20       ad 	    (void *)n);
    134  1.20       ad 	RW_DASSERT(rw, n == o);
    135   1.2       ad }
    136   1.2       ad 
    137   1.2       ad /*
    138   1.2       ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    139   1.2       ad  */
    140   1.2       ad #ifdef LOCKDEBUG
    141   1.2       ad #undef	__HAVE_RW_STUBS
    142   1.2       ad #endif
    143   1.2       ad 
    144   1.2       ad #ifndef __HAVE_RW_STUBS
    145   1.6    itohy __strong_alias(rw_enter,rw_vector_enter);
    146   1.6    itohy __strong_alias(rw_exit,rw_vector_exit);
    147  1.16       ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    148   1.2       ad #endif
    149   1.2       ad 
    150   1.2       ad lockops_t rwlock_lockops = {
    151   1.2       ad 	"Reader / writer lock",
    152  1.25       ad 	LOCKOPS_SLEEP,
    153   1.2       ad 	rw_dump
    154   1.2       ad };
    155   1.2       ad 
    156   1.4     yamt syncobj_t rw_syncobj = {
    157   1.4     yamt 	SOBJ_SLEEPQ_SORTED,
    158   1.4     yamt 	turnstile_unsleep,
    159   1.4     yamt 	turnstile_changepri,
    160   1.4     yamt 	sleepq_lendpri,
    161   1.4     yamt 	rw_owner,
    162   1.4     yamt };
    163   1.4     yamt 
    164  1.29       ad /* Mutex cache */
    165  1.29       ad #define	RW_OBJ_MAGIC	0x85d3c85d
    166  1.29       ad struct krwobj {
    167  1.29       ad 	krwlock_t	ro_lock;
    168  1.29       ad 	u_int		ro_magic;
    169  1.29       ad 	u_int		ro_refcnt;
    170  1.29       ad };
    171  1.29       ad 
    172  1.29       ad static int	rw_obj_ctor(void *, void *, int);
    173  1.29       ad 
    174  1.29       ad static pool_cache_t	rw_obj_cache;
    175  1.29       ad 
    176   1.2       ad /*
    177   1.2       ad  * rw_dump:
    178   1.2       ad  *
    179   1.2       ad  *	Dump the contents of a rwlock structure.
    180   1.2       ad  */
    181  1.11       ad static void
    182   1.2       ad rw_dump(volatile void *cookie)
    183   1.2       ad {
    184   1.2       ad 	volatile krwlock_t *rw = cookie;
    185   1.2       ad 
    186   1.2       ad 	printf_nolog("owner/count  : %#018lx flags    : %#018x\n",
    187   1.2       ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    188   1.2       ad }
    189   1.2       ad 
    190   1.2       ad /*
    191  1.11       ad  * rw_abort:
    192  1.11       ad  *
    193  1.11       ad  *	Dump information about an error and panic the system.  This
    194  1.11       ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    195  1.11       ad  *	we ask the compiler to not inline it.
    196  1.11       ad  */
    197  1.26       ad static void __noinline
    198  1.11       ad rw_abort(krwlock_t *rw, const char *func, const char *msg)
    199  1.11       ad {
    200  1.11       ad 
    201  1.11       ad 	if (panicstr != NULL)
    202  1.11       ad 		return;
    203  1.11       ad 
    204  1.12     yamt 	LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
    205  1.11       ad }
    206  1.11       ad 
    207  1.11       ad /*
    208   1.2       ad  * rw_init:
    209   1.2       ad  *
    210   1.2       ad  *	Initialize a rwlock for use.
    211   1.2       ad  */
    212   1.2       ad void
    213   1.2       ad rw_init(krwlock_t *rw)
    214   1.2       ad {
    215  1.12     yamt 	bool dodebug;
    216   1.2       ad 
    217   1.2       ad 	memset(rw, 0, sizeof(*rw));
    218   1.2       ad 
    219  1.12     yamt 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
    220  1.11       ad 	    (uintptr_t)__builtin_return_address(0));
    221  1.12     yamt 	RW_SETDEBUG(rw, dodebug);
    222   1.2       ad }
    223   1.2       ad 
    224   1.2       ad /*
    225   1.2       ad  * rw_destroy:
    226   1.2       ad  *
    227   1.2       ad  *	Tear down a rwlock.
    228   1.2       ad  */
    229   1.2       ad void
    230   1.2       ad rw_destroy(krwlock_t *rw)
    231   1.2       ad {
    232   1.2       ad 
    233  1.12     yamt 	RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
    234  1.12     yamt 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    235   1.2       ad }
    236   1.2       ad 
    237   1.2       ad /*
    238  1.20       ad  * rw_onproc:
    239  1.20       ad  *
    240  1.20       ad  *	Return true if an rwlock owner is running on a CPU in the system.
    241  1.20       ad  *	If the target is waiting on the kernel big lock, then we must
    242  1.20       ad  *	release it.  This is necessary to avoid deadlock.
    243  1.20       ad  *
    244  1.20       ad  *	Note that we can't use the rwlock owner field as an LWP pointer.  We
    245  1.20       ad  *	don't have full control over the timing of our execution, and so the
    246  1.20       ad  *	pointer could be completely invalid by the time we dereference it.
    247  1.20       ad  */
    248  1.20       ad static int
    249  1.20       ad rw_onproc(uintptr_t owner, struct cpu_info **cip)
    250  1.20       ad {
    251  1.20       ad #ifdef MULTIPROCESSOR
    252  1.20       ad 	CPU_INFO_ITERATOR cii;
    253  1.20       ad 	struct cpu_info *ci;
    254  1.20       ad 	lwp_t *l;
    255  1.20       ad 
    256  1.20       ad 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
    257  1.20       ad 		return 0;
    258  1.20       ad 	l = (lwp_t *)(owner & RW_THREAD);
    259  1.20       ad 
    260  1.20       ad 	/* See if the target is running on a CPU somewhere. */
    261  1.20       ad 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    262  1.20       ad 		goto run;
    263  1.20       ad 	for (CPU_INFO_FOREACH(cii, ci))
    264  1.20       ad 		if (ci->ci_curlwp == l)
    265  1.20       ad 			goto run;
    266  1.20       ad 
    267  1.20       ad 	/* No: it may be safe to block now. */
    268  1.20       ad 	*cip = NULL;
    269  1.20       ad 	return 0;
    270  1.20       ad 
    271  1.20       ad  run:
    272  1.20       ad  	/* Target is running; do we need to block? */
    273  1.20       ad  	*cip = ci;
    274  1.20       ad 	return ci->ci_biglock_wanted != l;
    275  1.20       ad #else
    276  1.20       ad 	return 0;
    277  1.20       ad #endif	/* MULTIPROCESSOR */
    278  1.20       ad }
    279  1.20       ad 
    280  1.20       ad /*
    281   1.2       ad  * rw_vector_enter:
    282   1.2       ad  *
    283   1.2       ad  *	Acquire a rwlock.
    284   1.2       ad  */
    285   1.2       ad void
    286   1.2       ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    287   1.2       ad {
    288  1.20       ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    289  1.19       ad 	struct cpu_info *ci;
    290   1.2       ad 	turnstile_t *ts;
    291   1.2       ad 	int queue;
    292   1.7       ad 	lwp_t *l;
    293   1.2       ad 	LOCKSTAT_TIMER(slptime);
    294  1.20       ad 	LOCKSTAT_TIMER(slpcnt);
    295  1.19       ad 	LOCKSTAT_TIMER(spintime);
    296  1.19       ad 	LOCKSTAT_COUNTER(spincnt);
    297   1.2       ad 	LOCKSTAT_FLAG(lsflag);
    298   1.2       ad 
    299   1.2       ad 	l = curlwp;
    300   1.2       ad 	curthread = (uintptr_t)l;
    301   1.2       ad 
    302  1.13       ad 	RW_ASSERT(rw, !cpu_intr_p());
    303   1.2       ad 	RW_ASSERT(rw, curthread != 0);
    304  1.23       ad 	RW_WANTLOCK(rw, op, false);
    305   1.2       ad 
    306   1.2       ad 	if (panicstr == NULL) {
    307   1.2       ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    308   1.2       ad 	}
    309   1.2       ad 
    310   1.2       ad 	/*
    311   1.2       ad 	 * We play a slight trick here.  If we're a reader, we want
    312   1.2       ad 	 * increment the read count.  If we're a writer, we want to
    313   1.2       ad 	 * set the owner field and whe WRITE_LOCKED bit.
    314   1.2       ad 	 *
    315   1.2       ad 	 * In the latter case, we expect those bits to be zero,
    316   1.2       ad 	 * therefore we can use an add operation to set them, which
    317   1.2       ad 	 * means an add operation for both cases.
    318   1.2       ad 	 */
    319   1.2       ad 	if (__predict_true(op == RW_READER)) {
    320   1.2       ad 		incr = RW_READ_INCR;
    321   1.2       ad 		set_wait = RW_HAS_WAITERS;
    322   1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    323   1.2       ad 		queue = TS_READER_Q;
    324   1.2       ad 	} else {
    325   1.2       ad 		RW_DASSERT(rw, op == RW_WRITER);
    326   1.2       ad 		incr = curthread | RW_WRITE_LOCKED;
    327   1.2       ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    328   1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    329   1.2       ad 		queue = TS_WRITER_Q;
    330   1.2       ad 	}
    331   1.2       ad 
    332   1.2       ad 	LOCKSTAT_ENTER(lsflag);
    333   1.2       ad 
    334  1.20       ad 	for (ci = NULL, owner = rw->rw_owner;;) {
    335   1.2       ad 		/*
    336   1.2       ad 		 * Read the lock owner field.  If the need-to-wait
    337   1.2       ad 		 * indicator is clear, then try to acquire the lock.
    338   1.2       ad 		 */
    339   1.2       ad 		if ((owner & need_wait) == 0) {
    340  1.20       ad 			next = rw_cas(rw, owner, (owner + incr) &
    341  1.20       ad 			    ~RW_WRITE_WANTED);
    342  1.20       ad 			if (__predict_true(next == owner)) {
    343   1.2       ad 				/* Got it! */
    344  1.20       ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
    345  1.20       ad 				membar_enter();
    346  1.20       ad #endif
    347   1.2       ad 				break;
    348   1.2       ad 			}
    349   1.2       ad 
    350   1.2       ad 			/*
    351   1.2       ad 			 * Didn't get it -- spin around again (we'll
    352   1.2       ad 			 * probably sleep on the next iteration).
    353   1.2       ad 			 */
    354  1.20       ad 			owner = next;
    355   1.2       ad 			continue;
    356   1.2       ad 		}
    357   1.2       ad 
    358  1.20       ad 		if (__predict_false(panicstr != NULL))
    359   1.2       ad 			return;
    360  1.20       ad 		if (__predict_false(RW_OWNER(rw) == curthread))
    361  1.11       ad 			rw_abort(rw, __func__, "locking against myself");
    362   1.2       ad 
    363  1.19       ad 		/*
    364  1.19       ad 		 * If the lock owner is running on another CPU, and
    365  1.19       ad 		 * there are no existing waiters, then spin.
    366  1.19       ad 		 */
    367  1.20       ad 		if (rw_onproc(owner, &ci)) {
    368  1.19       ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    369  1.19       ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    370  1.20       ad 			do {
    371  1.20       ad 				SPINLOCK_BACKOFF(count);
    372  1.19       ad 				owner = rw->rw_owner;
    373  1.20       ad 			} while (rw_onproc(owner, &ci));
    374  1.19       ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    375  1.19       ad 			LOCKSTAT_COUNT(spincnt, 1);
    376  1.19       ad 			if ((owner & need_wait) == 0)
    377  1.19       ad 				continue;
    378  1.19       ad 		}
    379  1.19       ad 
    380   1.2       ad 		/*
    381   1.2       ad 		 * Grab the turnstile chain lock.  Once we have that, we
    382   1.2       ad 		 * can adjust the waiter bits and sleep queue.
    383   1.2       ad 		 */
    384   1.2       ad 		ts = turnstile_lookup(rw);
    385   1.2       ad 
    386   1.2       ad 		/*
    387   1.2       ad 		 * Mark the rwlock as having waiters.  If the set fails,
    388   1.2       ad 		 * then we may not need to sleep and should spin again.
    389  1.20       ad 		 * Reload rw_owner because turnstile_lookup() may have
    390  1.20       ad 		 * spun on the turnstile chain lock.
    391   1.2       ad 		 */
    392  1.20       ad 		owner = rw->rw_owner;
    393  1.20       ad 		if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
    394  1.20       ad 			turnstile_exit(rw);
    395  1.20       ad 			continue;
    396  1.20       ad 		}
    397  1.20       ad 		next = rw_cas(rw, owner, owner | set_wait);
    398  1.20       ad 		if (__predict_false(next != owner)) {
    399   1.2       ad 			turnstile_exit(rw);
    400  1.20       ad 			owner = next;
    401   1.2       ad 			continue;
    402   1.2       ad 		}
    403   1.2       ad 
    404   1.2       ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    405   1.4     yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    406   1.2       ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    407  1.20       ad 		LOCKSTAT_COUNT(slpcnt, 1);
    408   1.2       ad 
    409  1.20       ad 		/*
    410  1.20       ad 		 * No need for a memory barrier because of context switch.
    411  1.20       ad 		 * If not handed the lock, then spin again.
    412  1.20       ad 		 */
    413  1.20       ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    414  1.20       ad 			break;
    415   1.2       ad 	}
    416   1.2       ad 
    417  1.20       ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    418  1.20       ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    419  1.19       ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    420   1.2       ad 	LOCKSTAT_EXIT(lsflag);
    421   1.2       ad 
    422   1.2       ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    423   1.2       ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    424   1.2       ad 	RW_LOCKED(rw, op);
    425   1.2       ad }
    426   1.2       ad 
    427   1.2       ad /*
    428   1.2       ad  * rw_vector_exit:
    429   1.2       ad  *
    430   1.2       ad  *	Release a rwlock.
    431   1.2       ad  */
    432   1.2       ad void
    433   1.2       ad rw_vector_exit(krwlock_t *rw)
    434   1.2       ad {
    435  1.20       ad 	uintptr_t curthread, owner, decr, new, next;
    436   1.2       ad 	turnstile_t *ts;
    437   1.2       ad 	int rcnt, wcnt;
    438   1.7       ad 	lwp_t *l;
    439   1.2       ad 
    440   1.2       ad 	curthread = (uintptr_t)curlwp;
    441   1.2       ad 	RW_ASSERT(rw, curthread != 0);
    442   1.2       ad 
    443  1.20       ad 	if (__predict_false(panicstr != NULL))
    444   1.2       ad 		return;
    445   1.2       ad 
    446   1.2       ad 	/*
    447   1.2       ad 	 * Again, we use a trick.  Since we used an add operation to
    448   1.2       ad 	 * set the required lock bits, we can use a subtract to clear
    449   1.2       ad 	 * them, which makes the read-release and write-release path
    450   1.2       ad 	 * the same.
    451   1.2       ad 	 */
    452   1.2       ad 	owner = rw->rw_owner;
    453   1.2       ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    454   1.2       ad 		RW_UNLOCKED(rw, RW_WRITER);
    455   1.2       ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    456   1.2       ad 		decr = curthread | RW_WRITE_LOCKED;
    457   1.2       ad 	} else {
    458   1.2       ad 		RW_UNLOCKED(rw, RW_READER);
    459   1.2       ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    460   1.2       ad 		decr = RW_READ_INCR;
    461   1.2       ad 	}
    462   1.2       ad 
    463   1.2       ad 	/*
    464   1.2       ad 	 * Compute what we expect the new value of the lock to be. Only
    465   1.2       ad 	 * proceed to do direct handoff if there are waiters, and if the
    466   1.2       ad 	 * lock would become unowned.
    467   1.2       ad 	 */
    468  1.20       ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
    469  1.20       ad 	membar_exit();
    470  1.20       ad #endif
    471  1.20       ad 	for (;;) {
    472   1.2       ad 		new = (owner - decr);
    473   1.2       ad 		if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    474   1.2       ad 			break;
    475  1.20       ad 		next = rw_cas(rw, owner, new);
    476  1.20       ad 		if (__predict_true(next == owner))
    477   1.2       ad 			return;
    478  1.20       ad 		owner = next;
    479   1.2       ad 	}
    480   1.2       ad 
    481  1.20       ad 	/*
    482  1.20       ad 	 * Grab the turnstile chain lock.  This gets the interlock
    483  1.20       ad 	 * on the sleep queue.  Once we have that, we can adjust the
    484  1.20       ad 	 * waiter bits.
    485  1.20       ad 	 */
    486  1.20       ad 	ts = turnstile_lookup(rw);
    487  1.20       ad 	owner = rw->rw_owner;
    488  1.20       ad 	RW_DASSERT(rw, ts != NULL);
    489  1.20       ad 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    490   1.2       ad 
    491  1.20       ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    492  1.20       ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    493   1.2       ad 
    494  1.20       ad 	/*
    495  1.20       ad 	 * Give the lock away.
    496  1.20       ad 	 *
    497  1.20       ad 	 * If we are releasing a write lock, then prefer to wake all
    498  1.20       ad 	 * outstanding readers.  Otherwise, wake one writer if there
    499  1.20       ad 	 * are outstanding readers, or all writers if there are no
    500  1.20       ad 	 * pending readers.  If waking one specific writer, the writer
    501  1.20       ad 	 * is handed the lock here.  If waking multiple writers, we
    502  1.20       ad 	 * set WRITE_WANTED to block out new readers, and let them
    503  1.20       ad 	 * do the work of acquring the lock in rw_vector_enter().
    504  1.20       ad 	 */
    505  1.20       ad 	if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
    506  1.20       ad 		RW_DASSERT(rw, wcnt != 0);
    507  1.20       ad 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    508   1.2       ad 
    509  1.20       ad 		if (rcnt != 0) {
    510  1.20       ad 			/* Give the lock to the longest waiting writer. */
    511   1.2       ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    512  1.20       ad 			new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    513  1.28  thorpej 			if (wcnt > 1)
    514  1.20       ad 				new |= RW_WRITE_WANTED;
    515  1.20       ad 			rw_swap(rw, owner, new);
    516   1.7       ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    517   1.2       ad 		} else {
    518  1.20       ad 			/* Wake all writers and let them fight it out. */
    519  1.20       ad 			rw_swap(rw, owner, RW_WRITE_WANTED);
    520  1.20       ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    521  1.20       ad 		}
    522  1.20       ad 	} else {
    523  1.20       ad 		RW_DASSERT(rw, rcnt != 0);
    524   1.2       ad 
    525  1.20       ad 		/*
    526  1.20       ad 		 * Give the lock to all blocked readers.  If there
    527  1.20       ad 		 * is a writer waiting, new readers that arrive
    528  1.20       ad 		 * after the release will be blocked out.
    529  1.20       ad 		 */
    530  1.20       ad 		new = rcnt << RW_READ_COUNT_SHIFT;
    531  1.20       ad 		if (wcnt != 0)
    532  1.20       ad 			new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    533  1.12     yamt 
    534  1.20       ad 		/* Wake up all sleeping readers. */
    535  1.20       ad 		rw_swap(rw, owner, new);
    536  1.20       ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    537   1.2       ad 	}
    538   1.2       ad }
    539   1.2       ad 
    540   1.2       ad /*
    541  1.16       ad  * rw_vector_tryenter:
    542   1.2       ad  *
    543   1.2       ad  *	Try to acquire a rwlock.
    544   1.2       ad  */
    545   1.2       ad int
    546  1.16       ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    547   1.2       ad {
    548  1.20       ad 	uintptr_t curthread, owner, incr, need_wait, next;
    549   1.2       ad 
    550   1.2       ad 	curthread = (uintptr_t)curlwp;
    551   1.2       ad 
    552   1.2       ad 	RW_ASSERT(rw, curthread != 0);
    553   1.2       ad 
    554   1.2       ad 	if (op == RW_READER) {
    555   1.2       ad 		incr = RW_READ_INCR;
    556   1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    557   1.2       ad 	} else {
    558   1.2       ad 		RW_DASSERT(rw, op == RW_WRITER);
    559   1.2       ad 		incr = curthread | RW_WRITE_LOCKED;
    560   1.2       ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    561   1.2       ad 	}
    562   1.2       ad 
    563  1.20       ad 	for (owner = rw->rw_owner;; owner = next) {
    564   1.2       ad 		owner = rw->rw_owner;
    565  1.20       ad 		if (__predict_false((owner & need_wait) != 0))
    566  1.20       ad 			return 0;
    567  1.20       ad 		next = rw_cas(rw, owner, owner + incr);
    568  1.20       ad 		if (__predict_true(next == owner)) {
    569  1.20       ad 			/* Got it! */
    570  1.20       ad 			break;
    571   1.2       ad 		}
    572   1.2       ad 	}
    573   1.2       ad 
    574  1.20       ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
    575  1.20       ad 	membar_enter();
    576  1.20       ad #endif
    577  1.23       ad 	RW_WANTLOCK(rw, op, true);
    578   1.2       ad 	RW_LOCKED(rw, op);
    579   1.2       ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    580   1.2       ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    581   1.7       ad 
    582   1.2       ad 	return 1;
    583   1.2       ad }
    584   1.2       ad 
    585   1.2       ad /*
    586   1.2       ad  * rw_downgrade:
    587   1.2       ad  *
    588   1.2       ad  *	Downgrade a write lock to a read lock.
    589   1.2       ad  */
    590   1.2       ad void
    591   1.2       ad rw_downgrade(krwlock_t *rw)
    592   1.2       ad {
    593  1.20       ad 	uintptr_t owner, curthread, new, next;
    594   1.2       ad 	turnstile_t *ts;
    595   1.2       ad 	int rcnt, wcnt;
    596   1.2       ad 
    597   1.2       ad 	curthread = (uintptr_t)curlwp;
    598   1.2       ad 	RW_ASSERT(rw, curthread != 0);
    599   1.2       ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    600   1.2       ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    601   1.2       ad 	RW_UNLOCKED(rw, RW_WRITER);
    602   1.2       ad 
    603  1.20       ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
    604  1.20       ad 	membar_producer();
    605  1.20       ad #endif
    606  1.20       ad 
    607   1.2       ad 	owner = rw->rw_owner;
    608   1.2       ad 	if ((owner & RW_HAS_WAITERS) == 0) {
    609   1.2       ad 		/*
    610   1.2       ad 		 * There are no waiters, so we can do this the easy way.
    611   1.2       ad 		 * Try swapping us down to one read hold.  If it fails, the
    612   1.2       ad 		 * lock condition has changed and we most likely now have
    613   1.2       ad 		 * waiters.
    614   1.2       ad 		 */
    615  1.20       ad 		next = rw_cas(rw, owner, RW_READ_INCR);
    616  1.20       ad 		if (__predict_true(next == owner)) {
    617   1.2       ad 			RW_LOCKED(rw, RW_READER);
    618   1.2       ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    619   1.2       ad 			RW_DASSERT(rw, RW_COUNT(rw) != 0);
    620   1.2       ad 			return;
    621   1.2       ad 		}
    622  1.20       ad 		owner = next;
    623   1.2       ad 	}
    624   1.2       ad 
    625   1.2       ad 	/*
    626   1.2       ad 	 * Grab the turnstile chain lock.  This gets the interlock
    627   1.2       ad 	 * on the sleep queue.  Once we have that, we can adjust the
    628   1.2       ad 	 * waiter bits.
    629   1.2       ad 	 */
    630  1.20       ad 	for (;; owner = next) {
    631   1.2       ad 		ts = turnstile_lookup(rw);
    632   1.2       ad 		RW_DASSERT(rw, ts != NULL);
    633   1.2       ad 
    634   1.2       ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    635   1.2       ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    636   1.2       ad 
    637   1.2       ad 		/*
    638   1.2       ad 		 * If there are no readers, just preserve the waiters
    639   1.2       ad 		 * bits, swap us down to one read hold and return.
    640   1.2       ad 		 */
    641   1.2       ad 		if (rcnt == 0) {
    642   1.2       ad 			RW_DASSERT(rw, wcnt != 0);
    643   1.2       ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    644   1.2       ad 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    645   1.2       ad 
    646   1.2       ad 			new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    647  1.20       ad 			next = rw_cas(rw, owner, new);
    648  1.27    rmind 			turnstile_exit(rw);
    649  1.20       ad 			if (__predict_true(next == owner))
    650  1.20       ad 				break;
    651  1.20       ad 		} else {
    652  1.20       ad 			/*
    653  1.20       ad 			 * Give the lock to all blocked readers.  We may
    654  1.20       ad 			 * retain one read hold if downgrading.  If there
    655  1.20       ad 			 * is a writer waiting, new readers will be blocked
    656  1.20       ad 			 * out.
    657  1.20       ad 			 */
    658  1.20       ad 			new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    659  1.20       ad 			if (wcnt != 0)
    660  1.20       ad 				new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    661  1.20       ad 
    662  1.20       ad 			next = rw_cas(rw, owner, new);
    663  1.20       ad 			if (__predict_true(next == owner)) {
    664  1.20       ad 				/* Wake up all sleeping readers. */
    665  1.20       ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    666  1.20       ad 				break;
    667   1.2       ad 			}
    668  1.27    rmind 			turnstile_exit(rw);
    669   1.2       ad 		}
    670   1.2       ad 	}
    671   1.2       ad 
    672   1.2       ad 	RW_LOCKED(rw, RW_READER);
    673   1.2       ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    674   1.2       ad 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    675   1.2       ad }
    676   1.2       ad 
    677   1.2       ad /*
    678   1.2       ad  * rw_tryupgrade:
    679   1.2       ad  *
    680   1.2       ad  *	Try to upgrade a read lock to a write lock.  We must be the
    681   1.2       ad  *	only reader.
    682   1.2       ad  */
    683   1.2       ad int
    684   1.2       ad rw_tryupgrade(krwlock_t *rw)
    685   1.2       ad {
    686  1.20       ad 	uintptr_t owner, curthread, new, next;
    687   1.2       ad 
    688   1.2       ad 	curthread = (uintptr_t)curlwp;
    689   1.2       ad 	RW_ASSERT(rw, curthread != 0);
    690  1.23       ad 	RW_WANTLOCK(rw, RW_WRITER, true);
    691   1.2       ad 
    692  1.20       ad 	for (owner = rw->rw_owner;; owner = next) {
    693   1.2       ad 		RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
    694  1.20       ad 		if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
    695   1.2       ad 			RW_ASSERT(rw, (owner & RW_THREAD) != 0);
    696   1.2       ad 			return 0;
    697   1.2       ad 		}
    698   1.2       ad 		new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    699  1.20       ad 		next = rw_cas(rw, owner, new);
    700  1.20       ad 		if (__predict_true(next == owner))
    701   1.2       ad 			break;
    702   1.2       ad 	}
    703   1.2       ad 
    704   1.2       ad 	RW_UNLOCKED(rw, RW_READER);
    705   1.2       ad 	RW_LOCKED(rw, RW_WRITER);
    706   1.2       ad 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    707   1.2       ad 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    708   1.2       ad 
    709  1.20       ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
    710  1.20       ad 	membar_producer();
    711  1.20       ad #endif
    712  1.20       ad 
    713   1.2       ad 	return 1;
    714   1.2       ad }
    715   1.2       ad 
    716   1.2       ad /*
    717   1.2       ad  * rw_read_held:
    718   1.2       ad  *
    719   1.2       ad  *	Returns true if the rwlock is held for reading.  Must only be
    720   1.2       ad  *	used for diagnostic assertions, and never be used to make
    721   1.2       ad  * 	decisions about how to use a rwlock.
    722   1.2       ad  */
    723   1.2       ad int
    724   1.2       ad rw_read_held(krwlock_t *rw)
    725   1.2       ad {
    726   1.2       ad 	uintptr_t owner;
    727   1.2       ad 
    728   1.2       ad 	if (panicstr != NULL)
    729   1.2       ad 		return 1;
    730  1.21       ad 	if (rw == NULL)
    731  1.21       ad 		return 0;
    732   1.2       ad 	owner = rw->rw_owner;
    733   1.2       ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    734   1.2       ad }
    735   1.2       ad 
    736   1.2       ad /*
    737   1.2       ad  * rw_write_held:
    738   1.2       ad  *
    739   1.2       ad  *	Returns true if the rwlock is held for writing.  Must only be
    740   1.2       ad  *	used for diagnostic assertions, and never be used to make
    741   1.2       ad  *	decisions about how to use a rwlock.
    742   1.2       ad  */
    743   1.2       ad int
    744   1.2       ad rw_write_held(krwlock_t *rw)
    745   1.2       ad {
    746   1.2       ad 
    747   1.2       ad 	if (panicstr != NULL)
    748   1.2       ad 		return 1;
    749  1.21       ad 	if (rw == NULL)
    750  1.21       ad 		return 0;
    751  1.17       ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    752  1.18       ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    753   1.2       ad }
    754   1.2       ad 
    755   1.2       ad /*
    756   1.2       ad  * rw_lock_held:
    757   1.2       ad  *
    758   1.2       ad  *	Returns true if the rwlock is held for reading or writing.  Must
    759   1.2       ad  *	only be used for diagnostic assertions, and never be used to make
    760   1.2       ad  *	decisions about how to use a rwlock.
    761   1.2       ad  */
    762   1.2       ad int
    763   1.2       ad rw_lock_held(krwlock_t *rw)
    764   1.2       ad {
    765   1.2       ad 
    766   1.2       ad 	if (panicstr != NULL)
    767   1.2       ad 		return 1;
    768  1.21       ad 	if (rw == NULL)
    769  1.21       ad 		return 0;
    770   1.2       ad 	return (rw->rw_owner & RW_THREAD) != 0;
    771   1.2       ad }
    772   1.4     yamt 
    773   1.5       ad /*
    774   1.5       ad  * rw_owner:
    775   1.5       ad  *
    776   1.5       ad  *	Return the current owner of an RW lock, but only if it is write
    777   1.5       ad  *	held.  Used for priority inheritance.
    778   1.5       ad  */
    779   1.7       ad static lwp_t *
    780   1.4     yamt rw_owner(wchan_t obj)
    781   1.4     yamt {
    782   1.4     yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    783   1.4     yamt 	uintptr_t owner = rw->rw_owner;
    784   1.4     yamt 
    785   1.4     yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    786   1.4     yamt 		return NULL;
    787   1.4     yamt 
    788   1.4     yamt 	return (void *)(owner & RW_THREAD);
    789   1.4     yamt }
    790  1.29       ad 
    791  1.29       ad /*
    792  1.29       ad  * rw_obj_init:
    793  1.29       ad  *
    794  1.29       ad  *	Initialize the rw object store.
    795  1.29       ad  */
    796  1.29       ad void
    797  1.29       ad rw_obj_init(void)
    798  1.29       ad {
    799  1.29       ad 
    800  1.29       ad 	rw_obj_cache = pool_cache_init(sizeof(struct krwobj),
    801  1.29       ad 	    coherency_unit, 0, 0, "rwlock", NULL, IPL_NONE, rw_obj_ctor,
    802  1.29       ad 	    NULL, NULL);
    803  1.29       ad }
    804  1.29       ad 
    805  1.29       ad /*
    806  1.29       ad  * rw_obj_ctor:
    807  1.29       ad  *
    808  1.29       ad  *	Initialize a new lock for the cache.
    809  1.29       ad  */
    810  1.29       ad static int
    811  1.29       ad rw_obj_ctor(void *arg, void *obj, int flags)
    812  1.29       ad {
    813  1.29       ad 	struct krwobj * ro = obj;
    814  1.29       ad 
    815  1.29       ad 	ro->ro_magic = RW_OBJ_MAGIC;
    816  1.29       ad 
    817  1.29       ad 	return 0;
    818  1.29       ad }
    819  1.29       ad 
    820  1.29       ad /*
    821  1.29       ad  * rw_obj_alloc:
    822  1.29       ad  *
    823  1.29       ad  *	Allocate a single lock object.
    824  1.29       ad  */
    825  1.29       ad krwlock_t *
    826  1.29       ad rw_obj_alloc(void)
    827  1.29       ad {
    828  1.29       ad 	struct krwobj *ro;
    829  1.29       ad 
    830  1.29       ad 	ro = pool_cache_get(rw_obj_cache, PR_WAITOK);
    831  1.29       ad 	rw_init(&ro->ro_lock);
    832  1.29       ad 	ro->ro_refcnt = 1;
    833  1.29       ad 
    834  1.29       ad 	return (krwlock_t *)ro;
    835  1.29       ad }
    836  1.29       ad 
    837  1.29       ad /*
    838  1.29       ad  * rw_obj_hold:
    839  1.29       ad  *
    840  1.29       ad  *	Add a single reference to a lock object.  A reference to the object
    841  1.29       ad  *	must already be held, and must be held across this call.
    842  1.29       ad  */
    843  1.29       ad void
    844  1.29       ad rw_obj_hold(krwlock_t *lock)
    845  1.29       ad {
    846  1.29       ad 	struct krwobj *ro = (struct krwobj *)lock;
    847  1.29       ad 
    848  1.29       ad 	KASSERT(ro->ro_magic == RW_OBJ_MAGIC);
    849  1.29       ad 	KASSERT(ro->ro_refcnt > 0);
    850  1.29       ad 
    851  1.29       ad 	atomic_inc_uint(&ro->ro_refcnt);
    852  1.29       ad }
    853  1.29       ad 
    854  1.29       ad /*
    855  1.29       ad  * rw_obj_free:
    856  1.29       ad  *
    857  1.29       ad  *	Drop a reference from a lock object.  If the last reference is being
    858  1.29       ad  *	dropped, free the object and return true.  Otherwise, return false.
    859  1.29       ad  */
    860  1.29       ad bool
    861  1.29       ad rw_obj_free(krwlock_t *lock)
    862  1.29       ad {
    863  1.29       ad 	struct krwobj *ro = (struct krwobj *)lock;
    864  1.29       ad 
    865  1.29       ad 	KASSERT(ro->ro_magic == RW_OBJ_MAGIC);
    866  1.29       ad 	KASSERT(ro->ro_refcnt > 0);
    867  1.29       ad 
    868  1.29       ad 	if (atomic_dec_uint_nv(&ro->ro_refcnt) > 0) {
    869  1.29       ad 		return false;
    870  1.29       ad 	}
    871  1.29       ad 	rw_destroy(&ro->ro_lock);
    872  1.29       ad 	pool_cache_put(rw_obj_cache, ro);
    873  1.29       ad 	return true;
    874  1.29       ad }
    875