Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.45.2.1
      1  1.45.2.1     skrll /*	$NetBSD: kern_rwlock.c,v 1.45.2.1 2017/02/05 13:40:56 skrll Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4      1.29        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.2        ad  * All rights reserved.
      6       1.2        ad  *
      7       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2        ad  * by Jason R. Thorpe and Andrew Doran.
      9       1.2        ad  *
     10       1.2        ad  * Redistribution and use in source and binary forms, with or without
     11       1.2        ad  * modification, are permitted provided that the following conditions
     12       1.2        ad  * are met:
     13       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2        ad  *    documentation and/or other materials provided with the distribution.
     18       1.2        ad  *
     19       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2        ad  */
     31       1.2        ad 
     32       1.2        ad /*
     33       1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     34       1.2        ad  * found in Solaris, a description of which can be found in:
     35       1.2        ad  *
     36       1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37       1.2        ad  *	    Richard McDougall.
     38       1.2        ad  */
     39       1.2        ad 
     40      1.10       dsl #include <sys/cdefs.h>
     41  1.45.2.1     skrll __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.45.2.1 2017/02/05 13:40:56 skrll Exp $");
     42       1.2        ad 
     43       1.2        ad #define	__RWLOCK_PRIVATE
     44       1.2        ad 
     45       1.2        ad #include <sys/param.h>
     46       1.2        ad #include <sys/proc.h>
     47       1.2        ad #include <sys/rwlock.h>
     48       1.2        ad #include <sys/sched.h>
     49       1.2        ad #include <sys/sleepq.h>
     50       1.2        ad #include <sys/systm.h>
     51       1.2        ad #include <sys/lockdebug.h>
     52      1.11        ad #include <sys/cpu.h>
     53      1.14        ad #include <sys/atomic.h>
     54      1.15        ad #include <sys/lock.h>
     55       1.2        ad 
     56       1.2        ad #include <dev/lockstat.h>
     57       1.2        ad 
     58       1.2        ad /*
     59       1.2        ad  * LOCKDEBUG
     60       1.2        ad  */
     61       1.2        ad 
     62       1.2        ad #if defined(LOCKDEBUG)
     63       1.2        ad 
     64      1.40   mlelstv #define	RW_WANTLOCK(rw, op)						\
     65      1.12      yamt 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     66      1.40   mlelstv 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     67       1.2        ad #define	RW_LOCKED(rw, op)						\
     68      1.25        ad 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     69       1.2        ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     70       1.2        ad #define	RW_UNLOCKED(rw, op)						\
     71      1.12      yamt 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     72       1.2        ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73       1.2        ad #define	RW_DASSERT(rw, cond)						\
     74       1.2        ad do {									\
     75       1.2        ad 	if (!(cond))							\
     76  1.45.2.1     skrll 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     77       1.2        ad } while (/* CONSTCOND */ 0);
     78       1.2        ad 
     79       1.2        ad #else	/* LOCKDEBUG */
     80       1.2        ad 
     81      1.40   mlelstv #define	RW_WANTLOCK(rw, op)	/* nothing */
     82       1.2        ad #define	RW_LOCKED(rw, op)	/* nothing */
     83       1.2        ad #define	RW_UNLOCKED(rw, op)	/* nothing */
     84       1.2        ad #define	RW_DASSERT(rw, cond)	/* nothing */
     85       1.2        ad 
     86       1.2        ad #endif	/* LOCKDEBUG */
     87       1.2        ad 
     88       1.2        ad /*
     89       1.2        ad  * DIAGNOSTIC
     90       1.2        ad  */
     91       1.2        ad 
     92       1.2        ad #if defined(DIAGNOSTIC)
     93       1.2        ad 
     94       1.2        ad #define	RW_ASSERT(rw, cond)						\
     95       1.2        ad do {									\
     96       1.2        ad 	if (!(cond))							\
     97  1.45.2.1     skrll 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     98       1.2        ad } while (/* CONSTCOND */ 0)
     99       1.2        ad 
    100       1.2        ad #else
    101       1.2        ad 
    102       1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
    103       1.2        ad 
    104       1.2        ad #endif	/* DIAGNOSTIC */
    105       1.2        ad 
    106      1.36     skrll #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
    107      1.36     skrll #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_NODEBUG) == 0)
    108      1.12      yamt #if defined(LOCKDEBUG)
    109      1.44      matt #define	RW_INHERITDEBUG(n, o)		(n) |= (o) & RW_NODEBUG
    110      1.12      yamt #else /* defined(LOCKDEBUG) */
    111      1.44      matt #define	RW_INHERITDEBUG(n, o)		/* nothing */
    112      1.12      yamt #endif /* defined(LOCKDEBUG) */
    113      1.12      yamt 
    114  1.45.2.1     skrll static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    115      1.20        ad static void	rw_dump(volatile void *);
    116      1.20        ad static lwp_t	*rw_owner(wchan_t);
    117      1.20        ad 
    118      1.20        ad static inline uintptr_t
    119      1.20        ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    120      1.12      yamt {
    121      1.12      yamt 
    122      1.20        ad 	RW_INHERITDEBUG(n, o);
    123      1.20        ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    124      1.20        ad 	    (void *)o, (void *)n);
    125      1.12      yamt }
    126       1.2        ad 
    127      1.20        ad static inline void
    128      1.20        ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    129       1.2        ad {
    130       1.2        ad 
    131      1.20        ad 	RW_INHERITDEBUG(n, o);
    132      1.20        ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    133      1.20        ad 	    (void *)n);
    134      1.20        ad 	RW_DASSERT(rw, n == o);
    135       1.2        ad }
    136       1.2        ad 
    137       1.2        ad /*
    138       1.2        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    139       1.2        ad  */
    140       1.2        ad #ifdef LOCKDEBUG
    141       1.2        ad #undef	__HAVE_RW_STUBS
    142       1.2        ad #endif
    143       1.2        ad 
    144       1.2        ad #ifndef __HAVE_RW_STUBS
    145       1.6     itohy __strong_alias(rw_enter,rw_vector_enter);
    146       1.6     itohy __strong_alias(rw_exit,rw_vector_exit);
    147      1.16        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    148       1.2        ad #endif
    149       1.2        ad 
    150       1.2        ad lockops_t rwlock_lockops = {
    151       1.2        ad 	"Reader / writer lock",
    152      1.25        ad 	LOCKOPS_SLEEP,
    153       1.2        ad 	rw_dump
    154       1.2        ad };
    155       1.2        ad 
    156       1.4      yamt syncobj_t rw_syncobj = {
    157       1.4      yamt 	SOBJ_SLEEPQ_SORTED,
    158       1.4      yamt 	turnstile_unsleep,
    159       1.4      yamt 	turnstile_changepri,
    160       1.4      yamt 	sleepq_lendpri,
    161       1.4      yamt 	rw_owner,
    162       1.4      yamt };
    163       1.4      yamt 
    164       1.2        ad /*
    165       1.2        ad  * rw_dump:
    166       1.2        ad  *
    167       1.2        ad  *	Dump the contents of a rwlock structure.
    168       1.2        ad  */
    169      1.11        ad static void
    170       1.2        ad rw_dump(volatile void *cookie)
    171       1.2        ad {
    172       1.2        ad 	volatile krwlock_t *rw = cookie;
    173       1.2        ad 
    174       1.2        ad 	printf_nolog("owner/count  : %#018lx flags    : %#018x\n",
    175       1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    176       1.2        ad }
    177       1.2        ad 
    178       1.2        ad /*
    179      1.11        ad  * rw_abort:
    180      1.11        ad  *
    181      1.11        ad  *	Dump information about an error and panic the system.  This
    182      1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    183      1.11        ad  *	we ask the compiler to not inline it.
    184      1.11        ad  */
    185      1.26        ad static void __noinline
    186  1.45.2.1     skrll rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    187      1.11        ad {
    188      1.11        ad 
    189      1.11        ad 	if (panicstr != NULL)
    190      1.11        ad 		return;
    191      1.11        ad 
    192  1.45.2.1     skrll 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    193      1.11        ad }
    194      1.11        ad 
    195      1.11        ad /*
    196       1.2        ad  * rw_init:
    197       1.2        ad  *
    198       1.2        ad  *	Initialize a rwlock for use.
    199       1.2        ad  */
    200       1.2        ad void
    201       1.2        ad rw_init(krwlock_t *rw)
    202       1.2        ad {
    203      1.12      yamt 	bool dodebug;
    204       1.2        ad 
    205       1.2        ad 	memset(rw, 0, sizeof(*rw));
    206       1.2        ad 
    207      1.12      yamt 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
    208      1.11        ad 	    (uintptr_t)__builtin_return_address(0));
    209      1.12      yamt 	RW_SETDEBUG(rw, dodebug);
    210       1.2        ad }
    211       1.2        ad 
    212       1.2        ad /*
    213       1.2        ad  * rw_destroy:
    214       1.2        ad  *
    215       1.2        ad  *	Tear down a rwlock.
    216       1.2        ad  */
    217       1.2        ad void
    218       1.2        ad rw_destroy(krwlock_t *rw)
    219       1.2        ad {
    220       1.2        ad 
    221      1.36     skrll 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    222      1.12      yamt 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    223       1.2        ad }
    224       1.2        ad 
    225       1.2        ad /*
    226      1.37     rmind  * rw_oncpu:
    227      1.20        ad  *
    228      1.20        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    229      1.20        ad  *	If the target is waiting on the kernel big lock, then we must
    230      1.20        ad  *	release it.  This is necessary to avoid deadlock.
    231      1.20        ad  */
    232      1.37     rmind static bool
    233      1.37     rmind rw_oncpu(uintptr_t owner)
    234      1.20        ad {
    235      1.20        ad #ifdef MULTIPROCESSOR
    236      1.20        ad 	struct cpu_info *ci;
    237      1.20        ad 	lwp_t *l;
    238      1.20        ad 
    239      1.37     rmind 	KASSERT(kpreempt_disabled());
    240      1.37     rmind 
    241      1.37     rmind 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    242      1.37     rmind 		return false;
    243      1.37     rmind 	}
    244      1.37     rmind 
    245      1.37     rmind 	/*
    246      1.37     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    247      1.37     rmind 	 * We must have kernel preemption disabled for that.
    248      1.37     rmind 	 */
    249      1.20        ad 	l = (lwp_t *)(owner & RW_THREAD);
    250      1.37     rmind 	ci = l->l_cpu;
    251      1.20        ad 
    252      1.37     rmind 	if (ci && ci->ci_curlwp == l) {
    253      1.37     rmind 		/* Target is running; do we need to block? */
    254      1.37     rmind 		return (ci->ci_biglock_wanted != l);
    255      1.37     rmind 	}
    256      1.37     rmind #endif
    257      1.37     rmind 	/* Not running.  It may be safe to block now. */
    258      1.37     rmind 	return false;
    259      1.20        ad }
    260      1.20        ad 
    261      1.20        ad /*
    262       1.2        ad  * rw_vector_enter:
    263       1.2        ad  *
    264       1.2        ad  *	Acquire a rwlock.
    265       1.2        ad  */
    266       1.2        ad void
    267       1.2        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    268       1.2        ad {
    269      1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    270       1.2        ad 	turnstile_t *ts;
    271       1.2        ad 	int queue;
    272       1.7        ad 	lwp_t *l;
    273       1.2        ad 	LOCKSTAT_TIMER(slptime);
    274      1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    275      1.19        ad 	LOCKSTAT_TIMER(spintime);
    276      1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    277       1.2        ad 	LOCKSTAT_FLAG(lsflag);
    278       1.2        ad 
    279       1.2        ad 	l = curlwp;
    280       1.2        ad 	curthread = (uintptr_t)l;
    281       1.2        ad 
    282      1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    283       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    284      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    285       1.2        ad 
    286       1.2        ad 	if (panicstr == NULL) {
    287       1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    288       1.2        ad 	}
    289       1.2        ad 
    290       1.2        ad 	/*
    291       1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    292       1.2        ad 	 * increment the read count.  If we're a writer, we want to
    293      1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    294       1.2        ad 	 *
    295       1.2        ad 	 * In the latter case, we expect those bits to be zero,
    296       1.2        ad 	 * therefore we can use an add operation to set them, which
    297       1.2        ad 	 * means an add operation for both cases.
    298       1.2        ad 	 */
    299       1.2        ad 	if (__predict_true(op == RW_READER)) {
    300       1.2        ad 		incr = RW_READ_INCR;
    301       1.2        ad 		set_wait = RW_HAS_WAITERS;
    302       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    303       1.2        ad 		queue = TS_READER_Q;
    304       1.2        ad 	} else {
    305       1.2        ad 		RW_DASSERT(rw, op == RW_WRITER);
    306       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    307       1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    308       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    309       1.2        ad 		queue = TS_WRITER_Q;
    310       1.2        ad 	}
    311       1.2        ad 
    312       1.2        ad 	LOCKSTAT_ENTER(lsflag);
    313       1.2        ad 
    314      1.37     rmind 	KPREEMPT_DISABLE(curlwp);
    315      1.37     rmind 	for (owner = rw->rw_owner; ;) {
    316       1.2        ad 		/*
    317       1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    318       1.2        ad 		 * indicator is clear, then try to acquire the lock.
    319       1.2        ad 		 */
    320       1.2        ad 		if ((owner & need_wait) == 0) {
    321      1.20        ad 			next = rw_cas(rw, owner, (owner + incr) &
    322      1.20        ad 			    ~RW_WRITE_WANTED);
    323      1.20        ad 			if (__predict_true(next == owner)) {
    324       1.2        ad 				/* Got it! */
    325      1.20        ad 				membar_enter();
    326       1.2        ad 				break;
    327       1.2        ad 			}
    328       1.2        ad 
    329       1.2        ad 			/*
    330       1.2        ad 			 * Didn't get it -- spin around again (we'll
    331       1.2        ad 			 * probably sleep on the next iteration).
    332       1.2        ad 			 */
    333      1.20        ad 			owner = next;
    334       1.2        ad 			continue;
    335       1.2        ad 		}
    336      1.37     rmind 		if (__predict_false(panicstr != NULL)) {
    337      1.45  uebayasi 			KPREEMPT_ENABLE(curlwp);
    338       1.2        ad 			return;
    339      1.37     rmind 		}
    340      1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    341  1.45.2.1     skrll 			rw_abort(__func__, __LINE__, rw,
    342  1.45.2.1     skrll 			    "locking against myself");
    343      1.37     rmind 		}
    344      1.19        ad 		/*
    345      1.19        ad 		 * If the lock owner is running on another CPU, and
    346      1.19        ad 		 * there are no existing waiters, then spin.
    347      1.19        ad 		 */
    348      1.37     rmind 		if (rw_oncpu(owner)) {
    349      1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    350      1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    351      1.20        ad 			do {
    352      1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    353      1.20        ad 				SPINLOCK_BACKOFF(count);
    354      1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    355      1.19        ad 				owner = rw->rw_owner;
    356      1.37     rmind 			} while (rw_oncpu(owner));
    357      1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    358      1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    359      1.19        ad 			if ((owner & need_wait) == 0)
    360      1.19        ad 				continue;
    361      1.19        ad 		}
    362      1.19        ad 
    363       1.2        ad 		/*
    364       1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    365       1.2        ad 		 * can adjust the waiter bits and sleep queue.
    366       1.2        ad 		 */
    367       1.2        ad 		ts = turnstile_lookup(rw);
    368       1.2        ad 
    369       1.2        ad 		/*
    370       1.2        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    371       1.2        ad 		 * then we may not need to sleep and should spin again.
    372      1.20        ad 		 * Reload rw_owner because turnstile_lookup() may have
    373      1.20        ad 		 * spun on the turnstile chain lock.
    374       1.2        ad 		 */
    375      1.20        ad 		owner = rw->rw_owner;
    376      1.37     rmind 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    377      1.20        ad 			turnstile_exit(rw);
    378      1.20        ad 			continue;
    379      1.20        ad 		}
    380      1.20        ad 		next = rw_cas(rw, owner, owner | set_wait);
    381      1.20        ad 		if (__predict_false(next != owner)) {
    382       1.2        ad 			turnstile_exit(rw);
    383      1.20        ad 			owner = next;
    384       1.2        ad 			continue;
    385       1.2        ad 		}
    386       1.2        ad 
    387       1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    388       1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    389       1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    390      1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    391       1.2        ad 
    392      1.20        ad 		/*
    393      1.20        ad 		 * No need for a memory barrier because of context switch.
    394      1.20        ad 		 * If not handed the lock, then spin again.
    395      1.20        ad 		 */
    396      1.20        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    397      1.20        ad 			break;
    398      1.39      yamt 
    399      1.39      yamt 		owner = rw->rw_owner;
    400       1.2        ad 	}
    401      1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    402       1.2        ad 
    403      1.20        ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    404      1.20        ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    405      1.19        ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    406       1.2        ad 	LOCKSTAT_EXIT(lsflag);
    407       1.2        ad 
    408       1.2        ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    409       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    410       1.2        ad 	RW_LOCKED(rw, op);
    411       1.2        ad }
    412       1.2        ad 
    413       1.2        ad /*
    414       1.2        ad  * rw_vector_exit:
    415       1.2        ad  *
    416       1.2        ad  *	Release a rwlock.
    417       1.2        ad  */
    418       1.2        ad void
    419       1.2        ad rw_vector_exit(krwlock_t *rw)
    420       1.2        ad {
    421      1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    422       1.2        ad 	turnstile_t *ts;
    423       1.2        ad 	int rcnt, wcnt;
    424       1.7        ad 	lwp_t *l;
    425       1.2        ad 
    426       1.2        ad 	curthread = (uintptr_t)curlwp;
    427       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    428       1.2        ad 
    429      1.20        ad 	if (__predict_false(panicstr != NULL))
    430       1.2        ad 		return;
    431       1.2        ad 
    432       1.2        ad 	/*
    433       1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    434       1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    435       1.2        ad 	 * them, which makes the read-release and write-release path
    436       1.2        ad 	 * the same.
    437       1.2        ad 	 */
    438       1.2        ad 	owner = rw->rw_owner;
    439       1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    440       1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    441       1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    442       1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    443       1.2        ad 	} else {
    444       1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    445       1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    446       1.2        ad 		decr = RW_READ_INCR;
    447       1.2        ad 	}
    448       1.2        ad 
    449       1.2        ad 	/*
    450       1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    451       1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    452       1.2        ad 	 * lock would become unowned.
    453       1.2        ad 	 */
    454      1.20        ad 	membar_exit();
    455      1.20        ad 	for (;;) {
    456      1.44      matt 		newown = (owner - decr);
    457      1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    458       1.2        ad 			break;
    459      1.44      matt 		next = rw_cas(rw, owner, newown);
    460      1.20        ad 		if (__predict_true(next == owner))
    461       1.2        ad 			return;
    462      1.20        ad 		owner = next;
    463       1.2        ad 	}
    464       1.2        ad 
    465      1.20        ad 	/*
    466      1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    467      1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    468      1.20        ad 	 * waiter bits.
    469      1.20        ad 	 */
    470      1.20        ad 	ts = turnstile_lookup(rw);
    471      1.20        ad 	owner = rw->rw_owner;
    472      1.20        ad 	RW_DASSERT(rw, ts != NULL);
    473      1.20        ad 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    474       1.2        ad 
    475      1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    476      1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    477       1.2        ad 
    478      1.20        ad 	/*
    479      1.20        ad 	 * Give the lock away.
    480      1.20        ad 	 *
    481      1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    482      1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    483      1.20        ad 	 * are outstanding readers, or all writers if there are no
    484      1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    485      1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    486      1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    487      1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    488      1.20        ad 	 */
    489      1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    490      1.20        ad 		RW_DASSERT(rw, wcnt != 0);
    491      1.20        ad 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    492       1.2        ad 
    493      1.20        ad 		if (rcnt != 0) {
    494      1.20        ad 			/* Give the lock to the longest waiting writer. */
    495       1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    496      1.44      matt 			newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    497      1.28   thorpej 			if (wcnt > 1)
    498      1.44      matt 				newown |= RW_WRITE_WANTED;
    499      1.44      matt 			rw_swap(rw, owner, newown);
    500       1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    501       1.2        ad 		} else {
    502      1.20        ad 			/* Wake all writers and let them fight it out. */
    503      1.20        ad 			rw_swap(rw, owner, RW_WRITE_WANTED);
    504      1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    505      1.20        ad 		}
    506      1.20        ad 	} else {
    507      1.20        ad 		RW_DASSERT(rw, rcnt != 0);
    508       1.2        ad 
    509      1.20        ad 		/*
    510      1.20        ad 		 * Give the lock to all blocked readers.  If there
    511      1.20        ad 		 * is a writer waiting, new readers that arrive
    512      1.20        ad 		 * after the release will be blocked out.
    513      1.20        ad 		 */
    514      1.44      matt 		newown = rcnt << RW_READ_COUNT_SHIFT;
    515      1.20        ad 		if (wcnt != 0)
    516      1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    517      1.12      yamt 
    518      1.20        ad 		/* Wake up all sleeping readers. */
    519      1.44      matt 		rw_swap(rw, owner, newown);
    520      1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    521       1.2        ad 	}
    522       1.2        ad }
    523       1.2        ad 
    524       1.2        ad /*
    525      1.16        ad  * rw_vector_tryenter:
    526       1.2        ad  *
    527       1.2        ad  *	Try to acquire a rwlock.
    528       1.2        ad  */
    529       1.2        ad int
    530      1.16        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    531       1.2        ad {
    532      1.20        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    533       1.2        ad 
    534       1.2        ad 	curthread = (uintptr_t)curlwp;
    535       1.2        ad 
    536       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    537       1.2        ad 
    538       1.2        ad 	if (op == RW_READER) {
    539       1.2        ad 		incr = RW_READ_INCR;
    540       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    541       1.2        ad 	} else {
    542       1.2        ad 		RW_DASSERT(rw, op == RW_WRITER);
    543       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    544       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    545       1.2        ad 	}
    546       1.2        ad 
    547      1.20        ad 	for (owner = rw->rw_owner;; owner = next) {
    548       1.2        ad 		owner = rw->rw_owner;
    549      1.20        ad 		if (__predict_false((owner & need_wait) != 0))
    550      1.20        ad 			return 0;
    551      1.20        ad 		next = rw_cas(rw, owner, owner + incr);
    552      1.20        ad 		if (__predict_true(next == owner)) {
    553      1.20        ad 			/* Got it! */
    554      1.30        ad 			membar_enter();
    555      1.20        ad 			break;
    556       1.2        ad 		}
    557       1.2        ad 	}
    558       1.2        ad 
    559      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    560       1.2        ad 	RW_LOCKED(rw, op);
    561       1.2        ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    562       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    563       1.7        ad 
    564       1.2        ad 	return 1;
    565       1.2        ad }
    566       1.2        ad 
    567       1.2        ad /*
    568       1.2        ad  * rw_downgrade:
    569       1.2        ad  *
    570       1.2        ad  *	Downgrade a write lock to a read lock.
    571       1.2        ad  */
    572       1.2        ad void
    573       1.2        ad rw_downgrade(krwlock_t *rw)
    574       1.2        ad {
    575      1.44      matt 	uintptr_t owner, curthread, newown, next;
    576       1.2        ad 	turnstile_t *ts;
    577       1.2        ad 	int rcnt, wcnt;
    578       1.2        ad 
    579       1.2        ad 	curthread = (uintptr_t)curlwp;
    580       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    581       1.2        ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    582       1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    583       1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    584      1.42       mrg #if !defined(DIAGNOSTIC)
    585      1.42       mrg 	__USE(curthread);
    586      1.42       mrg #endif
    587      1.42       mrg 
    588       1.2        ad 
    589      1.20        ad 	membar_producer();
    590       1.2        ad 	owner = rw->rw_owner;
    591       1.2        ad 	if ((owner & RW_HAS_WAITERS) == 0) {
    592       1.2        ad 		/*
    593       1.2        ad 		 * There are no waiters, so we can do this the easy way.
    594       1.2        ad 		 * Try swapping us down to one read hold.  If it fails, the
    595       1.2        ad 		 * lock condition has changed and we most likely now have
    596       1.2        ad 		 * waiters.
    597       1.2        ad 		 */
    598      1.20        ad 		next = rw_cas(rw, owner, RW_READ_INCR);
    599      1.20        ad 		if (__predict_true(next == owner)) {
    600       1.2        ad 			RW_LOCKED(rw, RW_READER);
    601       1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    602       1.2        ad 			RW_DASSERT(rw, RW_COUNT(rw) != 0);
    603       1.2        ad 			return;
    604       1.2        ad 		}
    605      1.20        ad 		owner = next;
    606       1.2        ad 	}
    607       1.2        ad 
    608       1.2        ad 	/*
    609       1.2        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    610       1.2        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    611       1.2        ad 	 * waiter bits.
    612       1.2        ad 	 */
    613      1.20        ad 	for (;; owner = next) {
    614       1.2        ad 		ts = turnstile_lookup(rw);
    615       1.2        ad 		RW_DASSERT(rw, ts != NULL);
    616       1.2        ad 
    617       1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    618       1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    619       1.2        ad 
    620       1.2        ad 		/*
    621       1.2        ad 		 * If there are no readers, just preserve the waiters
    622       1.2        ad 		 * bits, swap us down to one read hold and return.
    623       1.2        ad 		 */
    624       1.2        ad 		if (rcnt == 0) {
    625       1.2        ad 			RW_DASSERT(rw, wcnt != 0);
    626       1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    627       1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    628       1.2        ad 
    629      1.44      matt 			newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    630      1.44      matt 			next = rw_cas(rw, owner, newown);
    631      1.27     rmind 			turnstile_exit(rw);
    632      1.20        ad 			if (__predict_true(next == owner))
    633      1.20        ad 				break;
    634      1.20        ad 		} else {
    635      1.20        ad 			/*
    636      1.20        ad 			 * Give the lock to all blocked readers.  We may
    637      1.20        ad 			 * retain one read hold if downgrading.  If there
    638      1.20        ad 			 * is a writer waiting, new readers will be blocked
    639      1.20        ad 			 * out.
    640      1.20        ad 			 */
    641      1.44      matt 			newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    642      1.20        ad 			if (wcnt != 0)
    643      1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    644      1.20        ad 
    645      1.44      matt 			next = rw_cas(rw, owner, newown);
    646      1.20        ad 			if (__predict_true(next == owner)) {
    647      1.20        ad 				/* Wake up all sleeping readers. */
    648      1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    649      1.20        ad 				break;
    650       1.2        ad 			}
    651      1.27     rmind 			turnstile_exit(rw);
    652       1.2        ad 		}
    653       1.2        ad 	}
    654       1.2        ad 
    655      1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    656       1.2        ad 	RW_LOCKED(rw, RW_READER);
    657       1.2        ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    658       1.2        ad 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    659       1.2        ad }
    660       1.2        ad 
    661       1.2        ad /*
    662       1.2        ad  * rw_tryupgrade:
    663       1.2        ad  *
    664       1.2        ad  *	Try to upgrade a read lock to a write lock.  We must be the
    665       1.2        ad  *	only reader.
    666       1.2        ad  */
    667       1.2        ad int
    668       1.2        ad rw_tryupgrade(krwlock_t *rw)
    669       1.2        ad {
    670      1.44      matt 	uintptr_t owner, curthread, newown, next;
    671       1.2        ad 
    672       1.2        ad 	curthread = (uintptr_t)curlwp;
    673       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    674      1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    675       1.2        ad 
    676      1.20        ad 	for (owner = rw->rw_owner;; owner = next) {
    677       1.2        ad 		RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
    678      1.20        ad 		if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
    679       1.2        ad 			RW_ASSERT(rw, (owner & RW_THREAD) != 0);
    680       1.2        ad 			return 0;
    681       1.2        ad 		}
    682      1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    683      1.44      matt 		next = rw_cas(rw, owner, newown);
    684      1.30        ad 		if (__predict_true(next == owner)) {
    685      1.30        ad 			membar_producer();
    686       1.2        ad 			break;
    687      1.30        ad 		}
    688       1.2        ad 	}
    689       1.2        ad 
    690       1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    691      1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    692       1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    693       1.2        ad 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    694       1.2        ad 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    695       1.2        ad 
    696       1.2        ad 	return 1;
    697       1.2        ad }
    698       1.2        ad 
    699       1.2        ad /*
    700       1.2        ad  * rw_read_held:
    701       1.2        ad  *
    702       1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    703       1.2        ad  *	used for diagnostic assertions, and never be used to make
    704       1.2        ad  * 	decisions about how to use a rwlock.
    705       1.2        ad  */
    706       1.2        ad int
    707       1.2        ad rw_read_held(krwlock_t *rw)
    708       1.2        ad {
    709       1.2        ad 	uintptr_t owner;
    710       1.2        ad 
    711       1.2        ad 	if (panicstr != NULL)
    712       1.2        ad 		return 1;
    713      1.21        ad 	if (rw == NULL)
    714      1.21        ad 		return 0;
    715       1.2        ad 	owner = rw->rw_owner;
    716       1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    717       1.2        ad }
    718       1.2        ad 
    719       1.2        ad /*
    720       1.2        ad  * rw_write_held:
    721       1.2        ad  *
    722       1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    723       1.2        ad  *	used for diagnostic assertions, and never be used to make
    724       1.2        ad  *	decisions about how to use a rwlock.
    725       1.2        ad  */
    726       1.2        ad int
    727       1.2        ad rw_write_held(krwlock_t *rw)
    728       1.2        ad {
    729       1.2        ad 
    730       1.2        ad 	if (panicstr != NULL)
    731       1.2        ad 		return 1;
    732      1.21        ad 	if (rw == NULL)
    733      1.21        ad 		return 0;
    734      1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    735      1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    736       1.2        ad }
    737       1.2        ad 
    738       1.2        ad /*
    739       1.2        ad  * rw_lock_held:
    740       1.2        ad  *
    741       1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    742       1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    743       1.2        ad  *	decisions about how to use a rwlock.
    744       1.2        ad  */
    745       1.2        ad int
    746       1.2        ad rw_lock_held(krwlock_t *rw)
    747       1.2        ad {
    748       1.2        ad 
    749       1.2        ad 	if (panicstr != NULL)
    750       1.2        ad 		return 1;
    751      1.21        ad 	if (rw == NULL)
    752      1.21        ad 		return 0;
    753       1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    754       1.2        ad }
    755       1.4      yamt 
    756       1.5        ad /*
    757       1.5        ad  * rw_owner:
    758       1.5        ad  *
    759       1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    760       1.5        ad  *	held.  Used for priority inheritance.
    761       1.5        ad  */
    762       1.7        ad static lwp_t *
    763       1.4      yamt rw_owner(wchan_t obj)
    764       1.4      yamt {
    765       1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    766       1.4      yamt 	uintptr_t owner = rw->rw_owner;
    767       1.4      yamt 
    768       1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    769       1.4      yamt 		return NULL;
    770       1.4      yamt 
    771       1.4      yamt 	return (void *)(owner & RW_THREAD);
    772       1.4      yamt }
    773