kern_rwlock.c revision 1.49 1 1.49 ozaki /* $NetBSD: kern_rwlock.c,v 1.49 2018/01/30 07:52:22 ozaki-r Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.29 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel reader/writer lock implementation, modeled after those
34 1.2 ad * found in Solaris, a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.10 dsl #include <sys/cdefs.h>
41 1.49 ozaki __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.49 2018/01/30 07:52:22 ozaki-r Exp $");
42 1.2 ad
43 1.2 ad #define __RWLOCK_PRIVATE
44 1.2 ad
45 1.2 ad #include <sys/param.h>
46 1.2 ad #include <sys/proc.h>
47 1.2 ad #include <sys/rwlock.h>
48 1.2 ad #include <sys/sched.h>
49 1.2 ad #include <sys/sleepq.h>
50 1.2 ad #include <sys/systm.h>
51 1.2 ad #include <sys/lockdebug.h>
52 1.11 ad #include <sys/cpu.h>
53 1.14 ad #include <sys/atomic.h>
54 1.15 ad #include <sys/lock.h>
55 1.2 ad
56 1.2 ad #include <dev/lockstat.h>
57 1.2 ad
58 1.2 ad /*
59 1.2 ad * LOCKDEBUG
60 1.2 ad */
61 1.2 ad
62 1.2 ad #if defined(LOCKDEBUG)
63 1.2 ad
64 1.40 mlelstv #define RW_WANTLOCK(rw, op) \
65 1.12 yamt LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
66 1.40 mlelstv (uintptr_t)__builtin_return_address(0), op == RW_READER);
67 1.2 ad #define RW_LOCKED(rw, op) \
68 1.25 ad LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
69 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
70 1.2 ad #define RW_UNLOCKED(rw, op) \
71 1.12 yamt LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
72 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 1.2 ad #define RW_DASSERT(rw, cond) \
74 1.2 ad do { \
75 1.2 ad if (!(cond)) \
76 1.46 christos rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
77 1.2 ad } while (/* CONSTCOND */ 0);
78 1.2 ad
79 1.2 ad #else /* LOCKDEBUG */
80 1.2 ad
81 1.40 mlelstv #define RW_WANTLOCK(rw, op) /* nothing */
82 1.2 ad #define RW_LOCKED(rw, op) /* nothing */
83 1.2 ad #define RW_UNLOCKED(rw, op) /* nothing */
84 1.2 ad #define RW_DASSERT(rw, cond) /* nothing */
85 1.2 ad
86 1.2 ad #endif /* LOCKDEBUG */
87 1.2 ad
88 1.2 ad /*
89 1.2 ad * DIAGNOSTIC
90 1.2 ad */
91 1.2 ad
92 1.2 ad #if defined(DIAGNOSTIC)
93 1.2 ad
94 1.2 ad #define RW_ASSERT(rw, cond) \
95 1.2 ad do { \
96 1.2 ad if (!(cond)) \
97 1.46 christos rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
98 1.2 ad } while (/* CONSTCOND */ 0)
99 1.2 ad
100 1.2 ad #else
101 1.2 ad
102 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
103 1.2 ad
104 1.2 ad #endif /* DIAGNOSTIC */
105 1.2 ad
106 1.36 skrll #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
107 1.36 skrll #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
108 1.12 yamt #if defined(LOCKDEBUG)
109 1.44 matt #define RW_INHERITDEBUG(n, o) (n) |= (o) & RW_NODEBUG
110 1.12 yamt #else /* defined(LOCKDEBUG) */
111 1.44 matt #define RW_INHERITDEBUG(n, o) /* nothing */
112 1.12 yamt #endif /* defined(LOCKDEBUG) */
113 1.12 yamt
114 1.46 christos static void rw_abort(const char *, size_t, krwlock_t *, const char *);
115 1.47 christos static void rw_dump(const volatile void *);
116 1.20 ad static lwp_t *rw_owner(wchan_t);
117 1.20 ad
118 1.20 ad static inline uintptr_t
119 1.20 ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
120 1.12 yamt {
121 1.12 yamt
122 1.20 ad RW_INHERITDEBUG(n, o);
123 1.20 ad return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
124 1.20 ad (void *)o, (void *)n);
125 1.12 yamt }
126 1.2 ad
127 1.20 ad static inline void
128 1.20 ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
129 1.2 ad {
130 1.2 ad
131 1.20 ad RW_INHERITDEBUG(n, o);
132 1.20 ad n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
133 1.20 ad (void *)n);
134 1.20 ad RW_DASSERT(rw, n == o);
135 1.2 ad }
136 1.2 ad
137 1.2 ad /*
138 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
139 1.2 ad */
140 1.2 ad #ifdef LOCKDEBUG
141 1.2 ad #undef __HAVE_RW_STUBS
142 1.2 ad #endif
143 1.2 ad
144 1.2 ad #ifndef __HAVE_RW_STUBS
145 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
146 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
147 1.16 ad __strong_alias(rw_tryenter,rw_vector_tryenter);
148 1.2 ad #endif
149 1.2 ad
150 1.2 ad lockops_t rwlock_lockops = {
151 1.48 ozaki .lo_name = "Reader / writer lock",
152 1.48 ozaki .lo_type = LOCKOPS_SLEEP,
153 1.48 ozaki .lo_dump = rw_dump,
154 1.2 ad };
155 1.2 ad
156 1.4 yamt syncobj_t rw_syncobj = {
157 1.49 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
158 1.49 ozaki .sobj_unsleep = turnstile_unsleep,
159 1.49 ozaki .sobj_changepri = turnstile_changepri,
160 1.49 ozaki .sobj_lendpri = sleepq_lendpri,
161 1.49 ozaki .sobj_owner = rw_owner,
162 1.4 yamt };
163 1.4 yamt
164 1.2 ad /*
165 1.2 ad * rw_dump:
166 1.2 ad *
167 1.2 ad * Dump the contents of a rwlock structure.
168 1.2 ad */
169 1.11 ad static void
170 1.47 christos rw_dump(const volatile void *cookie)
171 1.2 ad {
172 1.47 christos const volatile krwlock_t *rw = cookie;
173 1.2 ad
174 1.2 ad printf_nolog("owner/count : %#018lx flags : %#018x\n",
175 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
176 1.2 ad }
177 1.2 ad
178 1.2 ad /*
179 1.11 ad * rw_abort:
180 1.11 ad *
181 1.11 ad * Dump information about an error and panic the system. This
182 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
183 1.11 ad * we ask the compiler to not inline it.
184 1.11 ad */
185 1.26 ad static void __noinline
186 1.46 christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
187 1.11 ad {
188 1.11 ad
189 1.11 ad if (panicstr != NULL)
190 1.11 ad return;
191 1.11 ad
192 1.46 christos LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
193 1.11 ad }
194 1.11 ad
195 1.11 ad /*
196 1.2 ad * rw_init:
197 1.2 ad *
198 1.2 ad * Initialize a rwlock for use.
199 1.2 ad */
200 1.2 ad void
201 1.2 ad rw_init(krwlock_t *rw)
202 1.2 ad {
203 1.12 yamt bool dodebug;
204 1.2 ad
205 1.2 ad memset(rw, 0, sizeof(*rw));
206 1.2 ad
207 1.12 yamt dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
208 1.11 ad (uintptr_t)__builtin_return_address(0));
209 1.12 yamt RW_SETDEBUG(rw, dodebug);
210 1.2 ad }
211 1.2 ad
212 1.2 ad /*
213 1.2 ad * rw_destroy:
214 1.2 ad *
215 1.2 ad * Tear down a rwlock.
216 1.2 ad */
217 1.2 ad void
218 1.2 ad rw_destroy(krwlock_t *rw)
219 1.2 ad {
220 1.2 ad
221 1.36 skrll RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
222 1.12 yamt LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
223 1.2 ad }
224 1.2 ad
225 1.2 ad /*
226 1.37 rmind * rw_oncpu:
227 1.20 ad *
228 1.20 ad * Return true if an rwlock owner is running on a CPU in the system.
229 1.20 ad * If the target is waiting on the kernel big lock, then we must
230 1.20 ad * release it. This is necessary to avoid deadlock.
231 1.20 ad */
232 1.37 rmind static bool
233 1.37 rmind rw_oncpu(uintptr_t owner)
234 1.20 ad {
235 1.20 ad #ifdef MULTIPROCESSOR
236 1.20 ad struct cpu_info *ci;
237 1.20 ad lwp_t *l;
238 1.20 ad
239 1.37 rmind KASSERT(kpreempt_disabled());
240 1.37 rmind
241 1.37 rmind if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
242 1.37 rmind return false;
243 1.37 rmind }
244 1.37 rmind
245 1.37 rmind /*
246 1.37 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
247 1.37 rmind * We must have kernel preemption disabled for that.
248 1.37 rmind */
249 1.20 ad l = (lwp_t *)(owner & RW_THREAD);
250 1.37 rmind ci = l->l_cpu;
251 1.20 ad
252 1.37 rmind if (ci && ci->ci_curlwp == l) {
253 1.37 rmind /* Target is running; do we need to block? */
254 1.37 rmind return (ci->ci_biglock_wanted != l);
255 1.37 rmind }
256 1.37 rmind #endif
257 1.37 rmind /* Not running. It may be safe to block now. */
258 1.37 rmind return false;
259 1.20 ad }
260 1.20 ad
261 1.20 ad /*
262 1.2 ad * rw_vector_enter:
263 1.2 ad *
264 1.2 ad * Acquire a rwlock.
265 1.2 ad */
266 1.2 ad void
267 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
268 1.2 ad {
269 1.20 ad uintptr_t owner, incr, need_wait, set_wait, curthread, next;
270 1.2 ad turnstile_t *ts;
271 1.2 ad int queue;
272 1.7 ad lwp_t *l;
273 1.2 ad LOCKSTAT_TIMER(slptime);
274 1.20 ad LOCKSTAT_TIMER(slpcnt);
275 1.19 ad LOCKSTAT_TIMER(spintime);
276 1.19 ad LOCKSTAT_COUNTER(spincnt);
277 1.2 ad LOCKSTAT_FLAG(lsflag);
278 1.2 ad
279 1.2 ad l = curlwp;
280 1.2 ad curthread = (uintptr_t)l;
281 1.2 ad
282 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
283 1.2 ad RW_ASSERT(rw, curthread != 0);
284 1.40 mlelstv RW_WANTLOCK(rw, op);
285 1.2 ad
286 1.2 ad if (panicstr == NULL) {
287 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
288 1.2 ad }
289 1.2 ad
290 1.2 ad /*
291 1.2 ad * We play a slight trick here. If we're a reader, we want
292 1.2 ad * increment the read count. If we're a writer, we want to
293 1.43 ozaki * set the owner field and the WRITE_LOCKED bit.
294 1.2 ad *
295 1.2 ad * In the latter case, we expect those bits to be zero,
296 1.2 ad * therefore we can use an add operation to set them, which
297 1.2 ad * means an add operation for both cases.
298 1.2 ad */
299 1.2 ad if (__predict_true(op == RW_READER)) {
300 1.2 ad incr = RW_READ_INCR;
301 1.2 ad set_wait = RW_HAS_WAITERS;
302 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
303 1.2 ad queue = TS_READER_Q;
304 1.2 ad } else {
305 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
306 1.2 ad incr = curthread | RW_WRITE_LOCKED;
307 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
308 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
309 1.2 ad queue = TS_WRITER_Q;
310 1.2 ad }
311 1.2 ad
312 1.2 ad LOCKSTAT_ENTER(lsflag);
313 1.2 ad
314 1.37 rmind KPREEMPT_DISABLE(curlwp);
315 1.37 rmind for (owner = rw->rw_owner; ;) {
316 1.2 ad /*
317 1.2 ad * Read the lock owner field. If the need-to-wait
318 1.2 ad * indicator is clear, then try to acquire the lock.
319 1.2 ad */
320 1.2 ad if ((owner & need_wait) == 0) {
321 1.20 ad next = rw_cas(rw, owner, (owner + incr) &
322 1.20 ad ~RW_WRITE_WANTED);
323 1.20 ad if (__predict_true(next == owner)) {
324 1.2 ad /* Got it! */
325 1.20 ad membar_enter();
326 1.2 ad break;
327 1.2 ad }
328 1.2 ad
329 1.2 ad /*
330 1.2 ad * Didn't get it -- spin around again (we'll
331 1.2 ad * probably sleep on the next iteration).
332 1.2 ad */
333 1.20 ad owner = next;
334 1.2 ad continue;
335 1.2 ad }
336 1.37 rmind if (__predict_false(panicstr != NULL)) {
337 1.45 uebayasi KPREEMPT_ENABLE(curlwp);
338 1.2 ad return;
339 1.37 rmind }
340 1.37 rmind if (__predict_false(RW_OWNER(rw) == curthread)) {
341 1.46 christos rw_abort(__func__, __LINE__, rw,
342 1.46 christos "locking against myself");
343 1.37 rmind }
344 1.19 ad /*
345 1.19 ad * If the lock owner is running on another CPU, and
346 1.19 ad * there are no existing waiters, then spin.
347 1.19 ad */
348 1.37 rmind if (rw_oncpu(owner)) {
349 1.19 ad LOCKSTAT_START_TIMER(lsflag, spintime);
350 1.19 ad u_int count = SPINLOCK_BACKOFF_MIN;
351 1.20 ad do {
352 1.38 rmind KPREEMPT_ENABLE(curlwp);
353 1.20 ad SPINLOCK_BACKOFF(count);
354 1.38 rmind KPREEMPT_DISABLE(curlwp);
355 1.19 ad owner = rw->rw_owner;
356 1.37 rmind } while (rw_oncpu(owner));
357 1.19 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
358 1.19 ad LOCKSTAT_COUNT(spincnt, 1);
359 1.19 ad if ((owner & need_wait) == 0)
360 1.19 ad continue;
361 1.19 ad }
362 1.19 ad
363 1.2 ad /*
364 1.2 ad * Grab the turnstile chain lock. Once we have that, we
365 1.2 ad * can adjust the waiter bits and sleep queue.
366 1.2 ad */
367 1.2 ad ts = turnstile_lookup(rw);
368 1.2 ad
369 1.2 ad /*
370 1.2 ad * Mark the rwlock as having waiters. If the set fails,
371 1.2 ad * then we may not need to sleep and should spin again.
372 1.20 ad * Reload rw_owner because turnstile_lookup() may have
373 1.20 ad * spun on the turnstile chain lock.
374 1.2 ad */
375 1.20 ad owner = rw->rw_owner;
376 1.37 rmind if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
377 1.20 ad turnstile_exit(rw);
378 1.20 ad continue;
379 1.20 ad }
380 1.20 ad next = rw_cas(rw, owner, owner | set_wait);
381 1.20 ad if (__predict_false(next != owner)) {
382 1.2 ad turnstile_exit(rw);
383 1.20 ad owner = next;
384 1.2 ad continue;
385 1.2 ad }
386 1.2 ad
387 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
388 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
389 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
390 1.20 ad LOCKSTAT_COUNT(slpcnt, 1);
391 1.2 ad
392 1.20 ad /*
393 1.20 ad * No need for a memory barrier because of context switch.
394 1.20 ad * If not handed the lock, then spin again.
395 1.20 ad */
396 1.20 ad if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
397 1.20 ad break;
398 1.39 yamt
399 1.39 yamt owner = rw->rw_owner;
400 1.2 ad }
401 1.37 rmind KPREEMPT_ENABLE(curlwp);
402 1.2 ad
403 1.20 ad LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
404 1.20 ad (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
405 1.19 ad LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
406 1.2 ad LOCKSTAT_EXIT(lsflag);
407 1.2 ad
408 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
409 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
410 1.2 ad RW_LOCKED(rw, op);
411 1.2 ad }
412 1.2 ad
413 1.2 ad /*
414 1.2 ad * rw_vector_exit:
415 1.2 ad *
416 1.2 ad * Release a rwlock.
417 1.2 ad */
418 1.2 ad void
419 1.2 ad rw_vector_exit(krwlock_t *rw)
420 1.2 ad {
421 1.44 matt uintptr_t curthread, owner, decr, newown, next;
422 1.2 ad turnstile_t *ts;
423 1.2 ad int rcnt, wcnt;
424 1.7 ad lwp_t *l;
425 1.2 ad
426 1.2 ad curthread = (uintptr_t)curlwp;
427 1.2 ad RW_ASSERT(rw, curthread != 0);
428 1.2 ad
429 1.20 ad if (__predict_false(panicstr != NULL))
430 1.2 ad return;
431 1.2 ad
432 1.2 ad /*
433 1.2 ad * Again, we use a trick. Since we used an add operation to
434 1.2 ad * set the required lock bits, we can use a subtract to clear
435 1.2 ad * them, which makes the read-release and write-release path
436 1.2 ad * the same.
437 1.2 ad */
438 1.2 ad owner = rw->rw_owner;
439 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
440 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
441 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
442 1.2 ad decr = curthread | RW_WRITE_LOCKED;
443 1.2 ad } else {
444 1.2 ad RW_UNLOCKED(rw, RW_READER);
445 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
446 1.2 ad decr = RW_READ_INCR;
447 1.2 ad }
448 1.2 ad
449 1.2 ad /*
450 1.2 ad * Compute what we expect the new value of the lock to be. Only
451 1.2 ad * proceed to do direct handoff if there are waiters, and if the
452 1.2 ad * lock would become unowned.
453 1.2 ad */
454 1.20 ad membar_exit();
455 1.20 ad for (;;) {
456 1.44 matt newown = (owner - decr);
457 1.44 matt if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
458 1.2 ad break;
459 1.44 matt next = rw_cas(rw, owner, newown);
460 1.20 ad if (__predict_true(next == owner))
461 1.2 ad return;
462 1.20 ad owner = next;
463 1.2 ad }
464 1.2 ad
465 1.20 ad /*
466 1.20 ad * Grab the turnstile chain lock. This gets the interlock
467 1.20 ad * on the sleep queue. Once we have that, we can adjust the
468 1.20 ad * waiter bits.
469 1.20 ad */
470 1.20 ad ts = turnstile_lookup(rw);
471 1.20 ad owner = rw->rw_owner;
472 1.20 ad RW_DASSERT(rw, ts != NULL);
473 1.20 ad RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
474 1.2 ad
475 1.20 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
476 1.20 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
477 1.2 ad
478 1.20 ad /*
479 1.20 ad * Give the lock away.
480 1.20 ad *
481 1.20 ad * If we are releasing a write lock, then prefer to wake all
482 1.20 ad * outstanding readers. Otherwise, wake one writer if there
483 1.20 ad * are outstanding readers, or all writers if there are no
484 1.20 ad * pending readers. If waking one specific writer, the writer
485 1.20 ad * is handed the lock here. If waking multiple writers, we
486 1.20 ad * set WRITE_WANTED to block out new readers, and let them
487 1.41 skrll * do the work of acquiring the lock in rw_vector_enter().
488 1.20 ad */
489 1.32 yamt if (rcnt == 0 || decr == RW_READ_INCR) {
490 1.20 ad RW_DASSERT(rw, wcnt != 0);
491 1.20 ad RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
492 1.2 ad
493 1.20 ad if (rcnt != 0) {
494 1.20 ad /* Give the lock to the longest waiting writer. */
495 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
496 1.44 matt newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
497 1.28 thorpej if (wcnt > 1)
498 1.44 matt newown |= RW_WRITE_WANTED;
499 1.44 matt rw_swap(rw, owner, newown);
500 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
501 1.2 ad } else {
502 1.20 ad /* Wake all writers and let them fight it out. */
503 1.20 ad rw_swap(rw, owner, RW_WRITE_WANTED);
504 1.20 ad turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
505 1.20 ad }
506 1.20 ad } else {
507 1.20 ad RW_DASSERT(rw, rcnt != 0);
508 1.2 ad
509 1.20 ad /*
510 1.20 ad * Give the lock to all blocked readers. If there
511 1.20 ad * is a writer waiting, new readers that arrive
512 1.20 ad * after the release will be blocked out.
513 1.20 ad */
514 1.44 matt newown = rcnt << RW_READ_COUNT_SHIFT;
515 1.20 ad if (wcnt != 0)
516 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
517 1.12 yamt
518 1.20 ad /* Wake up all sleeping readers. */
519 1.44 matt rw_swap(rw, owner, newown);
520 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
521 1.2 ad }
522 1.2 ad }
523 1.2 ad
524 1.2 ad /*
525 1.16 ad * rw_vector_tryenter:
526 1.2 ad *
527 1.2 ad * Try to acquire a rwlock.
528 1.2 ad */
529 1.2 ad int
530 1.16 ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
531 1.2 ad {
532 1.20 ad uintptr_t curthread, owner, incr, need_wait, next;
533 1.2 ad
534 1.2 ad curthread = (uintptr_t)curlwp;
535 1.2 ad
536 1.2 ad RW_ASSERT(rw, curthread != 0);
537 1.2 ad
538 1.2 ad if (op == RW_READER) {
539 1.2 ad incr = RW_READ_INCR;
540 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
541 1.2 ad } else {
542 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
543 1.2 ad incr = curthread | RW_WRITE_LOCKED;
544 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
545 1.2 ad }
546 1.2 ad
547 1.20 ad for (owner = rw->rw_owner;; owner = next) {
548 1.2 ad owner = rw->rw_owner;
549 1.20 ad if (__predict_false((owner & need_wait) != 0))
550 1.20 ad return 0;
551 1.20 ad next = rw_cas(rw, owner, owner + incr);
552 1.20 ad if (__predict_true(next == owner)) {
553 1.20 ad /* Got it! */
554 1.30 ad membar_enter();
555 1.20 ad break;
556 1.2 ad }
557 1.2 ad }
558 1.2 ad
559 1.40 mlelstv RW_WANTLOCK(rw, op);
560 1.2 ad RW_LOCKED(rw, op);
561 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
562 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
563 1.7 ad
564 1.2 ad return 1;
565 1.2 ad }
566 1.2 ad
567 1.2 ad /*
568 1.2 ad * rw_downgrade:
569 1.2 ad *
570 1.2 ad * Downgrade a write lock to a read lock.
571 1.2 ad */
572 1.2 ad void
573 1.2 ad rw_downgrade(krwlock_t *rw)
574 1.2 ad {
575 1.44 matt uintptr_t owner, curthread, newown, next;
576 1.2 ad turnstile_t *ts;
577 1.2 ad int rcnt, wcnt;
578 1.2 ad
579 1.2 ad curthread = (uintptr_t)curlwp;
580 1.2 ad RW_ASSERT(rw, curthread != 0);
581 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
582 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
583 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
584 1.42 mrg #if !defined(DIAGNOSTIC)
585 1.42 mrg __USE(curthread);
586 1.42 mrg #endif
587 1.42 mrg
588 1.2 ad
589 1.20 ad membar_producer();
590 1.2 ad owner = rw->rw_owner;
591 1.2 ad if ((owner & RW_HAS_WAITERS) == 0) {
592 1.2 ad /*
593 1.2 ad * There are no waiters, so we can do this the easy way.
594 1.2 ad * Try swapping us down to one read hold. If it fails, the
595 1.2 ad * lock condition has changed and we most likely now have
596 1.2 ad * waiters.
597 1.2 ad */
598 1.20 ad next = rw_cas(rw, owner, RW_READ_INCR);
599 1.20 ad if (__predict_true(next == owner)) {
600 1.2 ad RW_LOCKED(rw, RW_READER);
601 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
602 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
603 1.2 ad return;
604 1.2 ad }
605 1.20 ad owner = next;
606 1.2 ad }
607 1.2 ad
608 1.2 ad /*
609 1.2 ad * Grab the turnstile chain lock. This gets the interlock
610 1.2 ad * on the sleep queue. Once we have that, we can adjust the
611 1.2 ad * waiter bits.
612 1.2 ad */
613 1.20 ad for (;; owner = next) {
614 1.2 ad ts = turnstile_lookup(rw);
615 1.2 ad RW_DASSERT(rw, ts != NULL);
616 1.2 ad
617 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
618 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
619 1.2 ad
620 1.2 ad /*
621 1.2 ad * If there are no readers, just preserve the waiters
622 1.2 ad * bits, swap us down to one read hold and return.
623 1.2 ad */
624 1.2 ad if (rcnt == 0) {
625 1.2 ad RW_DASSERT(rw, wcnt != 0);
626 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
627 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
628 1.2 ad
629 1.44 matt newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
630 1.44 matt next = rw_cas(rw, owner, newown);
631 1.27 rmind turnstile_exit(rw);
632 1.20 ad if (__predict_true(next == owner))
633 1.20 ad break;
634 1.20 ad } else {
635 1.20 ad /*
636 1.20 ad * Give the lock to all blocked readers. We may
637 1.20 ad * retain one read hold if downgrading. If there
638 1.20 ad * is a writer waiting, new readers will be blocked
639 1.20 ad * out.
640 1.20 ad */
641 1.44 matt newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
642 1.20 ad if (wcnt != 0)
643 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
644 1.20 ad
645 1.44 matt next = rw_cas(rw, owner, newown);
646 1.20 ad if (__predict_true(next == owner)) {
647 1.20 ad /* Wake up all sleeping readers. */
648 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
649 1.20 ad break;
650 1.2 ad }
651 1.27 rmind turnstile_exit(rw);
652 1.2 ad }
653 1.2 ad }
654 1.2 ad
655 1.40 mlelstv RW_WANTLOCK(rw, RW_READER);
656 1.2 ad RW_LOCKED(rw, RW_READER);
657 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
658 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
659 1.2 ad }
660 1.2 ad
661 1.2 ad /*
662 1.2 ad * rw_tryupgrade:
663 1.2 ad *
664 1.2 ad * Try to upgrade a read lock to a write lock. We must be the
665 1.2 ad * only reader.
666 1.2 ad */
667 1.2 ad int
668 1.2 ad rw_tryupgrade(krwlock_t *rw)
669 1.2 ad {
670 1.44 matt uintptr_t owner, curthread, newown, next;
671 1.2 ad
672 1.2 ad curthread = (uintptr_t)curlwp;
673 1.2 ad RW_ASSERT(rw, curthread != 0);
674 1.31 yamt RW_ASSERT(rw, rw_read_held(rw));
675 1.2 ad
676 1.20 ad for (owner = rw->rw_owner;; owner = next) {
677 1.2 ad RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
678 1.20 ad if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
679 1.2 ad RW_ASSERT(rw, (owner & RW_THREAD) != 0);
680 1.2 ad return 0;
681 1.2 ad }
682 1.44 matt newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
683 1.44 matt next = rw_cas(rw, owner, newown);
684 1.30 ad if (__predict_true(next == owner)) {
685 1.30 ad membar_producer();
686 1.2 ad break;
687 1.30 ad }
688 1.2 ad }
689 1.2 ad
690 1.2 ad RW_UNLOCKED(rw, RW_READER);
691 1.40 mlelstv RW_WANTLOCK(rw, RW_WRITER);
692 1.2 ad RW_LOCKED(rw, RW_WRITER);
693 1.2 ad RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
694 1.2 ad RW_DASSERT(rw, RW_OWNER(rw) == curthread);
695 1.2 ad
696 1.2 ad return 1;
697 1.2 ad }
698 1.2 ad
699 1.2 ad /*
700 1.2 ad * rw_read_held:
701 1.2 ad *
702 1.2 ad * Returns true if the rwlock is held for reading. Must only be
703 1.2 ad * used for diagnostic assertions, and never be used to make
704 1.2 ad * decisions about how to use a rwlock.
705 1.2 ad */
706 1.2 ad int
707 1.2 ad rw_read_held(krwlock_t *rw)
708 1.2 ad {
709 1.2 ad uintptr_t owner;
710 1.2 ad
711 1.2 ad if (panicstr != NULL)
712 1.2 ad return 1;
713 1.21 ad if (rw == NULL)
714 1.21 ad return 0;
715 1.2 ad owner = rw->rw_owner;
716 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
717 1.2 ad }
718 1.2 ad
719 1.2 ad /*
720 1.2 ad * rw_write_held:
721 1.2 ad *
722 1.2 ad * Returns true if the rwlock is held for writing. Must only be
723 1.2 ad * used for diagnostic assertions, and never be used to make
724 1.2 ad * decisions about how to use a rwlock.
725 1.2 ad */
726 1.2 ad int
727 1.2 ad rw_write_held(krwlock_t *rw)
728 1.2 ad {
729 1.2 ad
730 1.2 ad if (panicstr != NULL)
731 1.2 ad return 1;
732 1.21 ad if (rw == NULL)
733 1.21 ad return 0;
734 1.17 ad return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
735 1.18 ad (RW_WRITE_LOCKED | (uintptr_t)curlwp);
736 1.2 ad }
737 1.2 ad
738 1.2 ad /*
739 1.2 ad * rw_lock_held:
740 1.2 ad *
741 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
742 1.2 ad * only be used for diagnostic assertions, and never be used to make
743 1.2 ad * decisions about how to use a rwlock.
744 1.2 ad */
745 1.2 ad int
746 1.2 ad rw_lock_held(krwlock_t *rw)
747 1.2 ad {
748 1.2 ad
749 1.2 ad if (panicstr != NULL)
750 1.2 ad return 1;
751 1.21 ad if (rw == NULL)
752 1.21 ad return 0;
753 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
754 1.2 ad }
755 1.4 yamt
756 1.5 ad /*
757 1.5 ad * rw_owner:
758 1.5 ad *
759 1.5 ad * Return the current owner of an RW lock, but only if it is write
760 1.5 ad * held. Used for priority inheritance.
761 1.5 ad */
762 1.7 ad static lwp_t *
763 1.4 yamt rw_owner(wchan_t obj)
764 1.4 yamt {
765 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
766 1.4 yamt uintptr_t owner = rw->rw_owner;
767 1.4 yamt
768 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
769 1.4 yamt return NULL;
770 1.4 yamt
771 1.4 yamt return (void *)(owner & RW_THREAD);
772 1.4 yamt }
773