Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.49
      1  1.49     ozaki /*	$NetBSD: kern_rwlock.c,v 1.49 2018/01/30 07:52:22 ozaki-r Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.29        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     34   1.2        ad  * found in Solaris, a description of which can be found in:
     35   1.2        ad  *
     36   1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37   1.2        ad  *	    Richard McDougall.
     38   1.2        ad  */
     39   1.2        ad 
     40  1.10       dsl #include <sys/cdefs.h>
     41  1.49     ozaki __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.49 2018/01/30 07:52:22 ozaki-r Exp $");
     42   1.2        ad 
     43   1.2        ad #define	__RWLOCK_PRIVATE
     44   1.2        ad 
     45   1.2        ad #include <sys/param.h>
     46   1.2        ad #include <sys/proc.h>
     47   1.2        ad #include <sys/rwlock.h>
     48   1.2        ad #include <sys/sched.h>
     49   1.2        ad #include <sys/sleepq.h>
     50   1.2        ad #include <sys/systm.h>
     51   1.2        ad #include <sys/lockdebug.h>
     52  1.11        ad #include <sys/cpu.h>
     53  1.14        ad #include <sys/atomic.h>
     54  1.15        ad #include <sys/lock.h>
     55   1.2        ad 
     56   1.2        ad #include <dev/lockstat.h>
     57   1.2        ad 
     58   1.2        ad /*
     59   1.2        ad  * LOCKDEBUG
     60   1.2        ad  */
     61   1.2        ad 
     62   1.2        ad #if defined(LOCKDEBUG)
     63   1.2        ad 
     64  1.40   mlelstv #define	RW_WANTLOCK(rw, op)						\
     65  1.12      yamt 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     66  1.40   mlelstv 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     67   1.2        ad #define	RW_LOCKED(rw, op)						\
     68  1.25        ad 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     69   1.2        ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     70   1.2        ad #define	RW_UNLOCKED(rw, op)						\
     71  1.12      yamt 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     72   1.2        ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73   1.2        ad #define	RW_DASSERT(rw, cond)						\
     74   1.2        ad do {									\
     75   1.2        ad 	if (!(cond))							\
     76  1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     77   1.2        ad } while (/* CONSTCOND */ 0);
     78   1.2        ad 
     79   1.2        ad #else	/* LOCKDEBUG */
     80   1.2        ad 
     81  1.40   mlelstv #define	RW_WANTLOCK(rw, op)	/* nothing */
     82   1.2        ad #define	RW_LOCKED(rw, op)	/* nothing */
     83   1.2        ad #define	RW_UNLOCKED(rw, op)	/* nothing */
     84   1.2        ad #define	RW_DASSERT(rw, cond)	/* nothing */
     85   1.2        ad 
     86   1.2        ad #endif	/* LOCKDEBUG */
     87   1.2        ad 
     88   1.2        ad /*
     89   1.2        ad  * DIAGNOSTIC
     90   1.2        ad  */
     91   1.2        ad 
     92   1.2        ad #if defined(DIAGNOSTIC)
     93   1.2        ad 
     94   1.2        ad #define	RW_ASSERT(rw, cond)						\
     95   1.2        ad do {									\
     96   1.2        ad 	if (!(cond))							\
     97  1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     98   1.2        ad } while (/* CONSTCOND */ 0)
     99   1.2        ad 
    100   1.2        ad #else
    101   1.2        ad 
    102   1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
    103   1.2        ad 
    104   1.2        ad #endif	/* DIAGNOSTIC */
    105   1.2        ad 
    106  1.36     skrll #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
    107  1.36     skrll #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_NODEBUG) == 0)
    108  1.12      yamt #if defined(LOCKDEBUG)
    109  1.44      matt #define	RW_INHERITDEBUG(n, o)		(n) |= (o) & RW_NODEBUG
    110  1.12      yamt #else /* defined(LOCKDEBUG) */
    111  1.44      matt #define	RW_INHERITDEBUG(n, o)		/* nothing */
    112  1.12      yamt #endif /* defined(LOCKDEBUG) */
    113  1.12      yamt 
    114  1.46  christos static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    115  1.47  christos static void	rw_dump(const volatile void *);
    116  1.20        ad static lwp_t	*rw_owner(wchan_t);
    117  1.20        ad 
    118  1.20        ad static inline uintptr_t
    119  1.20        ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    120  1.12      yamt {
    121  1.12      yamt 
    122  1.20        ad 	RW_INHERITDEBUG(n, o);
    123  1.20        ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    124  1.20        ad 	    (void *)o, (void *)n);
    125  1.12      yamt }
    126   1.2        ad 
    127  1.20        ad static inline void
    128  1.20        ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    129   1.2        ad {
    130   1.2        ad 
    131  1.20        ad 	RW_INHERITDEBUG(n, o);
    132  1.20        ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    133  1.20        ad 	    (void *)n);
    134  1.20        ad 	RW_DASSERT(rw, n == o);
    135   1.2        ad }
    136   1.2        ad 
    137   1.2        ad /*
    138   1.2        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    139   1.2        ad  */
    140   1.2        ad #ifdef LOCKDEBUG
    141   1.2        ad #undef	__HAVE_RW_STUBS
    142   1.2        ad #endif
    143   1.2        ad 
    144   1.2        ad #ifndef __HAVE_RW_STUBS
    145   1.6     itohy __strong_alias(rw_enter,rw_vector_enter);
    146   1.6     itohy __strong_alias(rw_exit,rw_vector_exit);
    147  1.16        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    148   1.2        ad #endif
    149   1.2        ad 
    150   1.2        ad lockops_t rwlock_lockops = {
    151  1.48     ozaki 	.lo_name = "Reader / writer lock",
    152  1.48     ozaki 	.lo_type = LOCKOPS_SLEEP,
    153  1.48     ozaki 	.lo_dump = rw_dump,
    154   1.2        ad };
    155   1.2        ad 
    156   1.4      yamt syncobj_t rw_syncobj = {
    157  1.49     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    158  1.49     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    159  1.49     ozaki 	.sobj_changepri	= turnstile_changepri,
    160  1.49     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    161  1.49     ozaki 	.sobj_owner	= rw_owner,
    162   1.4      yamt };
    163   1.4      yamt 
    164   1.2        ad /*
    165   1.2        ad  * rw_dump:
    166   1.2        ad  *
    167   1.2        ad  *	Dump the contents of a rwlock structure.
    168   1.2        ad  */
    169  1.11        ad static void
    170  1.47  christos rw_dump(const volatile void *cookie)
    171   1.2        ad {
    172  1.47  christos 	const volatile krwlock_t *rw = cookie;
    173   1.2        ad 
    174   1.2        ad 	printf_nolog("owner/count  : %#018lx flags    : %#018x\n",
    175   1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    176   1.2        ad }
    177   1.2        ad 
    178   1.2        ad /*
    179  1.11        ad  * rw_abort:
    180  1.11        ad  *
    181  1.11        ad  *	Dump information about an error and panic the system.  This
    182  1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    183  1.11        ad  *	we ask the compiler to not inline it.
    184  1.11        ad  */
    185  1.26        ad static void __noinline
    186  1.46  christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    187  1.11        ad {
    188  1.11        ad 
    189  1.11        ad 	if (panicstr != NULL)
    190  1.11        ad 		return;
    191  1.11        ad 
    192  1.46  christos 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    193  1.11        ad }
    194  1.11        ad 
    195  1.11        ad /*
    196   1.2        ad  * rw_init:
    197   1.2        ad  *
    198   1.2        ad  *	Initialize a rwlock for use.
    199   1.2        ad  */
    200   1.2        ad void
    201   1.2        ad rw_init(krwlock_t *rw)
    202   1.2        ad {
    203  1.12      yamt 	bool dodebug;
    204   1.2        ad 
    205   1.2        ad 	memset(rw, 0, sizeof(*rw));
    206   1.2        ad 
    207  1.12      yamt 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
    208  1.11        ad 	    (uintptr_t)__builtin_return_address(0));
    209  1.12      yamt 	RW_SETDEBUG(rw, dodebug);
    210   1.2        ad }
    211   1.2        ad 
    212   1.2        ad /*
    213   1.2        ad  * rw_destroy:
    214   1.2        ad  *
    215   1.2        ad  *	Tear down a rwlock.
    216   1.2        ad  */
    217   1.2        ad void
    218   1.2        ad rw_destroy(krwlock_t *rw)
    219   1.2        ad {
    220   1.2        ad 
    221  1.36     skrll 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    222  1.12      yamt 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    223   1.2        ad }
    224   1.2        ad 
    225   1.2        ad /*
    226  1.37     rmind  * rw_oncpu:
    227  1.20        ad  *
    228  1.20        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    229  1.20        ad  *	If the target is waiting on the kernel big lock, then we must
    230  1.20        ad  *	release it.  This is necessary to avoid deadlock.
    231  1.20        ad  */
    232  1.37     rmind static bool
    233  1.37     rmind rw_oncpu(uintptr_t owner)
    234  1.20        ad {
    235  1.20        ad #ifdef MULTIPROCESSOR
    236  1.20        ad 	struct cpu_info *ci;
    237  1.20        ad 	lwp_t *l;
    238  1.20        ad 
    239  1.37     rmind 	KASSERT(kpreempt_disabled());
    240  1.37     rmind 
    241  1.37     rmind 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    242  1.37     rmind 		return false;
    243  1.37     rmind 	}
    244  1.37     rmind 
    245  1.37     rmind 	/*
    246  1.37     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    247  1.37     rmind 	 * We must have kernel preemption disabled for that.
    248  1.37     rmind 	 */
    249  1.20        ad 	l = (lwp_t *)(owner & RW_THREAD);
    250  1.37     rmind 	ci = l->l_cpu;
    251  1.20        ad 
    252  1.37     rmind 	if (ci && ci->ci_curlwp == l) {
    253  1.37     rmind 		/* Target is running; do we need to block? */
    254  1.37     rmind 		return (ci->ci_biglock_wanted != l);
    255  1.37     rmind 	}
    256  1.37     rmind #endif
    257  1.37     rmind 	/* Not running.  It may be safe to block now. */
    258  1.37     rmind 	return false;
    259  1.20        ad }
    260  1.20        ad 
    261  1.20        ad /*
    262   1.2        ad  * rw_vector_enter:
    263   1.2        ad  *
    264   1.2        ad  *	Acquire a rwlock.
    265   1.2        ad  */
    266   1.2        ad void
    267   1.2        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    268   1.2        ad {
    269  1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    270   1.2        ad 	turnstile_t *ts;
    271   1.2        ad 	int queue;
    272   1.7        ad 	lwp_t *l;
    273   1.2        ad 	LOCKSTAT_TIMER(slptime);
    274  1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    275  1.19        ad 	LOCKSTAT_TIMER(spintime);
    276  1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    277   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    278   1.2        ad 
    279   1.2        ad 	l = curlwp;
    280   1.2        ad 	curthread = (uintptr_t)l;
    281   1.2        ad 
    282  1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    283   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    284  1.40   mlelstv 	RW_WANTLOCK(rw, op);
    285   1.2        ad 
    286   1.2        ad 	if (panicstr == NULL) {
    287   1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    288   1.2        ad 	}
    289   1.2        ad 
    290   1.2        ad 	/*
    291   1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    292   1.2        ad 	 * increment the read count.  If we're a writer, we want to
    293  1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    294   1.2        ad 	 *
    295   1.2        ad 	 * In the latter case, we expect those bits to be zero,
    296   1.2        ad 	 * therefore we can use an add operation to set them, which
    297   1.2        ad 	 * means an add operation for both cases.
    298   1.2        ad 	 */
    299   1.2        ad 	if (__predict_true(op == RW_READER)) {
    300   1.2        ad 		incr = RW_READ_INCR;
    301   1.2        ad 		set_wait = RW_HAS_WAITERS;
    302   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    303   1.2        ad 		queue = TS_READER_Q;
    304   1.2        ad 	} else {
    305   1.2        ad 		RW_DASSERT(rw, op == RW_WRITER);
    306   1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    307   1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    308   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    309   1.2        ad 		queue = TS_WRITER_Q;
    310   1.2        ad 	}
    311   1.2        ad 
    312   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    313   1.2        ad 
    314  1.37     rmind 	KPREEMPT_DISABLE(curlwp);
    315  1.37     rmind 	for (owner = rw->rw_owner; ;) {
    316   1.2        ad 		/*
    317   1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    318   1.2        ad 		 * indicator is clear, then try to acquire the lock.
    319   1.2        ad 		 */
    320   1.2        ad 		if ((owner & need_wait) == 0) {
    321  1.20        ad 			next = rw_cas(rw, owner, (owner + incr) &
    322  1.20        ad 			    ~RW_WRITE_WANTED);
    323  1.20        ad 			if (__predict_true(next == owner)) {
    324   1.2        ad 				/* Got it! */
    325  1.20        ad 				membar_enter();
    326   1.2        ad 				break;
    327   1.2        ad 			}
    328   1.2        ad 
    329   1.2        ad 			/*
    330   1.2        ad 			 * Didn't get it -- spin around again (we'll
    331   1.2        ad 			 * probably sleep on the next iteration).
    332   1.2        ad 			 */
    333  1.20        ad 			owner = next;
    334   1.2        ad 			continue;
    335   1.2        ad 		}
    336  1.37     rmind 		if (__predict_false(panicstr != NULL)) {
    337  1.45  uebayasi 			KPREEMPT_ENABLE(curlwp);
    338   1.2        ad 			return;
    339  1.37     rmind 		}
    340  1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    341  1.46  christos 			rw_abort(__func__, __LINE__, rw,
    342  1.46  christos 			    "locking against myself");
    343  1.37     rmind 		}
    344  1.19        ad 		/*
    345  1.19        ad 		 * If the lock owner is running on another CPU, and
    346  1.19        ad 		 * there are no existing waiters, then spin.
    347  1.19        ad 		 */
    348  1.37     rmind 		if (rw_oncpu(owner)) {
    349  1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    350  1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    351  1.20        ad 			do {
    352  1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    353  1.20        ad 				SPINLOCK_BACKOFF(count);
    354  1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    355  1.19        ad 				owner = rw->rw_owner;
    356  1.37     rmind 			} while (rw_oncpu(owner));
    357  1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    358  1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    359  1.19        ad 			if ((owner & need_wait) == 0)
    360  1.19        ad 				continue;
    361  1.19        ad 		}
    362  1.19        ad 
    363   1.2        ad 		/*
    364   1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    365   1.2        ad 		 * can adjust the waiter bits and sleep queue.
    366   1.2        ad 		 */
    367   1.2        ad 		ts = turnstile_lookup(rw);
    368   1.2        ad 
    369   1.2        ad 		/*
    370   1.2        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    371   1.2        ad 		 * then we may not need to sleep and should spin again.
    372  1.20        ad 		 * Reload rw_owner because turnstile_lookup() may have
    373  1.20        ad 		 * spun on the turnstile chain lock.
    374   1.2        ad 		 */
    375  1.20        ad 		owner = rw->rw_owner;
    376  1.37     rmind 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    377  1.20        ad 			turnstile_exit(rw);
    378  1.20        ad 			continue;
    379  1.20        ad 		}
    380  1.20        ad 		next = rw_cas(rw, owner, owner | set_wait);
    381  1.20        ad 		if (__predict_false(next != owner)) {
    382   1.2        ad 			turnstile_exit(rw);
    383  1.20        ad 			owner = next;
    384   1.2        ad 			continue;
    385   1.2        ad 		}
    386   1.2        ad 
    387   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    388   1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    389   1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    390  1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    391   1.2        ad 
    392  1.20        ad 		/*
    393  1.20        ad 		 * No need for a memory barrier because of context switch.
    394  1.20        ad 		 * If not handed the lock, then spin again.
    395  1.20        ad 		 */
    396  1.20        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    397  1.20        ad 			break;
    398  1.39      yamt 
    399  1.39      yamt 		owner = rw->rw_owner;
    400   1.2        ad 	}
    401  1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    402   1.2        ad 
    403  1.20        ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    404  1.20        ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    405  1.19        ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    406   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    407   1.2        ad 
    408   1.2        ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    409   1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    410   1.2        ad 	RW_LOCKED(rw, op);
    411   1.2        ad }
    412   1.2        ad 
    413   1.2        ad /*
    414   1.2        ad  * rw_vector_exit:
    415   1.2        ad  *
    416   1.2        ad  *	Release a rwlock.
    417   1.2        ad  */
    418   1.2        ad void
    419   1.2        ad rw_vector_exit(krwlock_t *rw)
    420   1.2        ad {
    421  1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    422   1.2        ad 	turnstile_t *ts;
    423   1.2        ad 	int rcnt, wcnt;
    424   1.7        ad 	lwp_t *l;
    425   1.2        ad 
    426   1.2        ad 	curthread = (uintptr_t)curlwp;
    427   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    428   1.2        ad 
    429  1.20        ad 	if (__predict_false(panicstr != NULL))
    430   1.2        ad 		return;
    431   1.2        ad 
    432   1.2        ad 	/*
    433   1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    434   1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    435   1.2        ad 	 * them, which makes the read-release and write-release path
    436   1.2        ad 	 * the same.
    437   1.2        ad 	 */
    438   1.2        ad 	owner = rw->rw_owner;
    439   1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    440   1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    441   1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    442   1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    443   1.2        ad 	} else {
    444   1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    445   1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    446   1.2        ad 		decr = RW_READ_INCR;
    447   1.2        ad 	}
    448   1.2        ad 
    449   1.2        ad 	/*
    450   1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    451   1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    452   1.2        ad 	 * lock would become unowned.
    453   1.2        ad 	 */
    454  1.20        ad 	membar_exit();
    455  1.20        ad 	for (;;) {
    456  1.44      matt 		newown = (owner - decr);
    457  1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    458   1.2        ad 			break;
    459  1.44      matt 		next = rw_cas(rw, owner, newown);
    460  1.20        ad 		if (__predict_true(next == owner))
    461   1.2        ad 			return;
    462  1.20        ad 		owner = next;
    463   1.2        ad 	}
    464   1.2        ad 
    465  1.20        ad 	/*
    466  1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    467  1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    468  1.20        ad 	 * waiter bits.
    469  1.20        ad 	 */
    470  1.20        ad 	ts = turnstile_lookup(rw);
    471  1.20        ad 	owner = rw->rw_owner;
    472  1.20        ad 	RW_DASSERT(rw, ts != NULL);
    473  1.20        ad 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    474   1.2        ad 
    475  1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    476  1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    477   1.2        ad 
    478  1.20        ad 	/*
    479  1.20        ad 	 * Give the lock away.
    480  1.20        ad 	 *
    481  1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    482  1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    483  1.20        ad 	 * are outstanding readers, or all writers if there are no
    484  1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    485  1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    486  1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    487  1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    488  1.20        ad 	 */
    489  1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    490  1.20        ad 		RW_DASSERT(rw, wcnt != 0);
    491  1.20        ad 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    492   1.2        ad 
    493  1.20        ad 		if (rcnt != 0) {
    494  1.20        ad 			/* Give the lock to the longest waiting writer. */
    495   1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    496  1.44      matt 			newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    497  1.28   thorpej 			if (wcnt > 1)
    498  1.44      matt 				newown |= RW_WRITE_WANTED;
    499  1.44      matt 			rw_swap(rw, owner, newown);
    500   1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    501   1.2        ad 		} else {
    502  1.20        ad 			/* Wake all writers and let them fight it out. */
    503  1.20        ad 			rw_swap(rw, owner, RW_WRITE_WANTED);
    504  1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    505  1.20        ad 		}
    506  1.20        ad 	} else {
    507  1.20        ad 		RW_DASSERT(rw, rcnt != 0);
    508   1.2        ad 
    509  1.20        ad 		/*
    510  1.20        ad 		 * Give the lock to all blocked readers.  If there
    511  1.20        ad 		 * is a writer waiting, new readers that arrive
    512  1.20        ad 		 * after the release will be blocked out.
    513  1.20        ad 		 */
    514  1.44      matt 		newown = rcnt << RW_READ_COUNT_SHIFT;
    515  1.20        ad 		if (wcnt != 0)
    516  1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    517  1.12      yamt 
    518  1.20        ad 		/* Wake up all sleeping readers. */
    519  1.44      matt 		rw_swap(rw, owner, newown);
    520  1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    521   1.2        ad 	}
    522   1.2        ad }
    523   1.2        ad 
    524   1.2        ad /*
    525  1.16        ad  * rw_vector_tryenter:
    526   1.2        ad  *
    527   1.2        ad  *	Try to acquire a rwlock.
    528   1.2        ad  */
    529   1.2        ad int
    530  1.16        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    531   1.2        ad {
    532  1.20        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    533   1.2        ad 
    534   1.2        ad 	curthread = (uintptr_t)curlwp;
    535   1.2        ad 
    536   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    537   1.2        ad 
    538   1.2        ad 	if (op == RW_READER) {
    539   1.2        ad 		incr = RW_READ_INCR;
    540   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    541   1.2        ad 	} else {
    542   1.2        ad 		RW_DASSERT(rw, op == RW_WRITER);
    543   1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    544   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    545   1.2        ad 	}
    546   1.2        ad 
    547  1.20        ad 	for (owner = rw->rw_owner;; owner = next) {
    548   1.2        ad 		owner = rw->rw_owner;
    549  1.20        ad 		if (__predict_false((owner & need_wait) != 0))
    550  1.20        ad 			return 0;
    551  1.20        ad 		next = rw_cas(rw, owner, owner + incr);
    552  1.20        ad 		if (__predict_true(next == owner)) {
    553  1.20        ad 			/* Got it! */
    554  1.30        ad 			membar_enter();
    555  1.20        ad 			break;
    556   1.2        ad 		}
    557   1.2        ad 	}
    558   1.2        ad 
    559  1.40   mlelstv 	RW_WANTLOCK(rw, op);
    560   1.2        ad 	RW_LOCKED(rw, op);
    561   1.2        ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    562   1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    563   1.7        ad 
    564   1.2        ad 	return 1;
    565   1.2        ad }
    566   1.2        ad 
    567   1.2        ad /*
    568   1.2        ad  * rw_downgrade:
    569   1.2        ad  *
    570   1.2        ad  *	Downgrade a write lock to a read lock.
    571   1.2        ad  */
    572   1.2        ad void
    573   1.2        ad rw_downgrade(krwlock_t *rw)
    574   1.2        ad {
    575  1.44      matt 	uintptr_t owner, curthread, newown, next;
    576   1.2        ad 	turnstile_t *ts;
    577   1.2        ad 	int rcnt, wcnt;
    578   1.2        ad 
    579   1.2        ad 	curthread = (uintptr_t)curlwp;
    580   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    581   1.2        ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    582   1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    583   1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    584  1.42       mrg #if !defined(DIAGNOSTIC)
    585  1.42       mrg 	__USE(curthread);
    586  1.42       mrg #endif
    587  1.42       mrg 
    588   1.2        ad 
    589  1.20        ad 	membar_producer();
    590   1.2        ad 	owner = rw->rw_owner;
    591   1.2        ad 	if ((owner & RW_HAS_WAITERS) == 0) {
    592   1.2        ad 		/*
    593   1.2        ad 		 * There are no waiters, so we can do this the easy way.
    594   1.2        ad 		 * Try swapping us down to one read hold.  If it fails, the
    595   1.2        ad 		 * lock condition has changed and we most likely now have
    596   1.2        ad 		 * waiters.
    597   1.2        ad 		 */
    598  1.20        ad 		next = rw_cas(rw, owner, RW_READ_INCR);
    599  1.20        ad 		if (__predict_true(next == owner)) {
    600   1.2        ad 			RW_LOCKED(rw, RW_READER);
    601   1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    602   1.2        ad 			RW_DASSERT(rw, RW_COUNT(rw) != 0);
    603   1.2        ad 			return;
    604   1.2        ad 		}
    605  1.20        ad 		owner = next;
    606   1.2        ad 	}
    607   1.2        ad 
    608   1.2        ad 	/*
    609   1.2        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    610   1.2        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    611   1.2        ad 	 * waiter bits.
    612   1.2        ad 	 */
    613  1.20        ad 	for (;; owner = next) {
    614   1.2        ad 		ts = turnstile_lookup(rw);
    615   1.2        ad 		RW_DASSERT(rw, ts != NULL);
    616   1.2        ad 
    617   1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    618   1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    619   1.2        ad 
    620   1.2        ad 		/*
    621   1.2        ad 		 * If there are no readers, just preserve the waiters
    622   1.2        ad 		 * bits, swap us down to one read hold and return.
    623   1.2        ad 		 */
    624   1.2        ad 		if (rcnt == 0) {
    625   1.2        ad 			RW_DASSERT(rw, wcnt != 0);
    626   1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    627   1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    628   1.2        ad 
    629  1.44      matt 			newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    630  1.44      matt 			next = rw_cas(rw, owner, newown);
    631  1.27     rmind 			turnstile_exit(rw);
    632  1.20        ad 			if (__predict_true(next == owner))
    633  1.20        ad 				break;
    634  1.20        ad 		} else {
    635  1.20        ad 			/*
    636  1.20        ad 			 * Give the lock to all blocked readers.  We may
    637  1.20        ad 			 * retain one read hold if downgrading.  If there
    638  1.20        ad 			 * is a writer waiting, new readers will be blocked
    639  1.20        ad 			 * out.
    640  1.20        ad 			 */
    641  1.44      matt 			newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    642  1.20        ad 			if (wcnt != 0)
    643  1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    644  1.20        ad 
    645  1.44      matt 			next = rw_cas(rw, owner, newown);
    646  1.20        ad 			if (__predict_true(next == owner)) {
    647  1.20        ad 				/* Wake up all sleeping readers. */
    648  1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    649  1.20        ad 				break;
    650   1.2        ad 			}
    651  1.27     rmind 			turnstile_exit(rw);
    652   1.2        ad 		}
    653   1.2        ad 	}
    654   1.2        ad 
    655  1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    656   1.2        ad 	RW_LOCKED(rw, RW_READER);
    657   1.2        ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    658   1.2        ad 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    659   1.2        ad }
    660   1.2        ad 
    661   1.2        ad /*
    662   1.2        ad  * rw_tryupgrade:
    663   1.2        ad  *
    664   1.2        ad  *	Try to upgrade a read lock to a write lock.  We must be the
    665   1.2        ad  *	only reader.
    666   1.2        ad  */
    667   1.2        ad int
    668   1.2        ad rw_tryupgrade(krwlock_t *rw)
    669   1.2        ad {
    670  1.44      matt 	uintptr_t owner, curthread, newown, next;
    671   1.2        ad 
    672   1.2        ad 	curthread = (uintptr_t)curlwp;
    673   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    674  1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    675   1.2        ad 
    676  1.20        ad 	for (owner = rw->rw_owner;; owner = next) {
    677   1.2        ad 		RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
    678  1.20        ad 		if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
    679   1.2        ad 			RW_ASSERT(rw, (owner & RW_THREAD) != 0);
    680   1.2        ad 			return 0;
    681   1.2        ad 		}
    682  1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    683  1.44      matt 		next = rw_cas(rw, owner, newown);
    684  1.30        ad 		if (__predict_true(next == owner)) {
    685  1.30        ad 			membar_producer();
    686   1.2        ad 			break;
    687  1.30        ad 		}
    688   1.2        ad 	}
    689   1.2        ad 
    690   1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    691  1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    692   1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    693   1.2        ad 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    694   1.2        ad 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    695   1.2        ad 
    696   1.2        ad 	return 1;
    697   1.2        ad }
    698   1.2        ad 
    699   1.2        ad /*
    700   1.2        ad  * rw_read_held:
    701   1.2        ad  *
    702   1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    703   1.2        ad  *	used for diagnostic assertions, and never be used to make
    704   1.2        ad  * 	decisions about how to use a rwlock.
    705   1.2        ad  */
    706   1.2        ad int
    707   1.2        ad rw_read_held(krwlock_t *rw)
    708   1.2        ad {
    709   1.2        ad 	uintptr_t owner;
    710   1.2        ad 
    711   1.2        ad 	if (panicstr != NULL)
    712   1.2        ad 		return 1;
    713  1.21        ad 	if (rw == NULL)
    714  1.21        ad 		return 0;
    715   1.2        ad 	owner = rw->rw_owner;
    716   1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    717   1.2        ad }
    718   1.2        ad 
    719   1.2        ad /*
    720   1.2        ad  * rw_write_held:
    721   1.2        ad  *
    722   1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    723   1.2        ad  *	used for diagnostic assertions, and never be used to make
    724   1.2        ad  *	decisions about how to use a rwlock.
    725   1.2        ad  */
    726   1.2        ad int
    727   1.2        ad rw_write_held(krwlock_t *rw)
    728   1.2        ad {
    729   1.2        ad 
    730   1.2        ad 	if (panicstr != NULL)
    731   1.2        ad 		return 1;
    732  1.21        ad 	if (rw == NULL)
    733  1.21        ad 		return 0;
    734  1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    735  1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    736   1.2        ad }
    737   1.2        ad 
    738   1.2        ad /*
    739   1.2        ad  * rw_lock_held:
    740   1.2        ad  *
    741   1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    742   1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    743   1.2        ad  *	decisions about how to use a rwlock.
    744   1.2        ad  */
    745   1.2        ad int
    746   1.2        ad rw_lock_held(krwlock_t *rw)
    747   1.2        ad {
    748   1.2        ad 
    749   1.2        ad 	if (panicstr != NULL)
    750   1.2        ad 		return 1;
    751  1.21        ad 	if (rw == NULL)
    752  1.21        ad 		return 0;
    753   1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    754   1.2        ad }
    755   1.4      yamt 
    756   1.5        ad /*
    757   1.5        ad  * rw_owner:
    758   1.5        ad  *
    759   1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    760   1.5        ad  *	held.  Used for priority inheritance.
    761   1.5        ad  */
    762   1.7        ad static lwp_t *
    763   1.4      yamt rw_owner(wchan_t obj)
    764   1.4      yamt {
    765   1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    766   1.4      yamt 	uintptr_t owner = rw->rw_owner;
    767   1.4      yamt 
    768   1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    769   1.4      yamt 		return NULL;
    770   1.4      yamt 
    771   1.4      yamt 	return (void *)(owner & RW_THREAD);
    772   1.4      yamt }
    773