Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.50.4.2
      1  1.50.4.2    martin /*	$NetBSD: kern_rwlock.c,v 1.50.4.2 2020/04/08 14:08:51 martin Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4  1.50.4.2    martin  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
      5  1.50.4.2    martin  *     The NetBSD Foundation, Inc.
      6       1.2        ad  * All rights reserved.
      7       1.2        ad  *
      8       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      9       1.2        ad  * by Jason R. Thorpe and Andrew Doran.
     10       1.2        ad  *
     11       1.2        ad  * Redistribution and use in source and binary forms, with or without
     12       1.2        ad  * modification, are permitted provided that the following conditions
     13       1.2        ad  * are met:
     14       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     15       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     16       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     18       1.2        ad  *    documentation and/or other materials provided with the distribution.
     19       1.2        ad  *
     20       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     31       1.2        ad  */
     32       1.2        ad 
     33       1.2        ad /*
     34       1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     35       1.2        ad  * found in Solaris, a description of which can be found in:
     36       1.2        ad  *
     37       1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38       1.2        ad  *	    Richard McDougall.
     39  1.50.4.2    martin  *
     40  1.50.4.2    martin  * The NetBSD implementation differs from that described in the book, in
     41  1.50.4.2    martin  * that the locks are partially adaptive.  Lock waiters spin wait while a
     42  1.50.4.2    martin  * lock is write held and the holder is still running on a CPU.  The method
     43  1.50.4.2    martin  * of choosing which threads to awaken when a lock is released also differs,
     44  1.50.4.2    martin  * mainly to take account of the partially adaptive behaviour.
     45       1.2        ad  */
     46       1.2        ad 
     47      1.10       dsl #include <sys/cdefs.h>
     48  1.50.4.2    martin __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.50.4.2 2020/04/08 14:08:51 martin Exp $");
     49  1.50.4.2    martin 
     50  1.50.4.2    martin #include "opt_lockdebug.h"
     51       1.2        ad 
     52       1.2        ad #define	__RWLOCK_PRIVATE
     53       1.2        ad 
     54       1.2        ad #include <sys/param.h>
     55       1.2        ad #include <sys/proc.h>
     56       1.2        ad #include <sys/rwlock.h>
     57       1.2        ad #include <sys/sched.h>
     58       1.2        ad #include <sys/sleepq.h>
     59       1.2        ad #include <sys/systm.h>
     60       1.2        ad #include <sys/lockdebug.h>
     61      1.11        ad #include <sys/cpu.h>
     62      1.14        ad #include <sys/atomic.h>
     63      1.15        ad #include <sys/lock.h>
     64  1.50.4.1  christos #include <sys/pserialize.h>
     65       1.2        ad 
     66       1.2        ad #include <dev/lockstat.h>
     67       1.2        ad 
     68  1.50.4.2    martin #include <machine/rwlock.h>
     69  1.50.4.2    martin 
     70       1.2        ad /*
     71       1.2        ad  * LOCKDEBUG
     72       1.2        ad  */
     73       1.2        ad 
     74  1.50.4.2    martin #define	RW_DEBUG_P(rw)		(((rw)->rw_owner & RW_NODEBUG) == 0)
     75       1.2        ad 
     76  1.50.4.2    martin #define	RW_WANTLOCK(rw, op) \
     77  1.50.4.2    martin     LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
     78  1.50.4.2    martin         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     79  1.50.4.2    martin #define	RW_LOCKED(rw, op) \
     80  1.50.4.2    martin     LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
     81  1.50.4.2    martin         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     82  1.50.4.2    martin #define	RW_UNLOCKED(rw, op) \
     83  1.50.4.2    martin     LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
     84  1.50.4.2    martin         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     85       1.2        ad 
     86       1.2        ad /*
     87       1.2        ad  * DIAGNOSTIC
     88       1.2        ad  */
     89       1.2        ad 
     90       1.2        ad #if defined(DIAGNOSTIC)
     91  1.50.4.2    martin #define	RW_ASSERT(rw, cond) \
     92  1.50.4.2    martin do { \
     93  1.50.4.2    martin 	if (__predict_false(!(cond))) \
     94      1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     95       1.2        ad } while (/* CONSTCOND */ 0)
     96       1.2        ad #else
     97       1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
     98       1.2        ad #endif	/* DIAGNOSTIC */
     99       1.2        ad 
    100  1.50.4.2    martin /*
    101  1.50.4.2    martin  * Memory barriers.
    102  1.50.4.2    martin  */
    103  1.50.4.2    martin #ifdef __HAVE_ATOMIC_AS_MEMBAR
    104  1.50.4.2    martin #define	RW_MEMBAR_ENTER()
    105  1.50.4.2    martin #define	RW_MEMBAR_EXIT()
    106  1.50.4.2    martin #define	RW_MEMBAR_PRODUCER()
    107  1.50.4.2    martin #else
    108  1.50.4.2    martin #define	RW_MEMBAR_ENTER()		membar_enter()
    109  1.50.4.2    martin #define	RW_MEMBAR_EXIT()		membar_exit()
    110  1.50.4.2    martin #define	RW_MEMBAR_PRODUCER()		membar_producer()
    111  1.50.4.2    martin #endif
    112       1.2        ad 
    113       1.2        ad /*
    114       1.2        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    115       1.2        ad  */
    116       1.2        ad #ifdef LOCKDEBUG
    117       1.2        ad #undef	__HAVE_RW_STUBS
    118       1.2        ad #endif
    119       1.2        ad 
    120       1.2        ad #ifndef __HAVE_RW_STUBS
    121       1.6     itohy __strong_alias(rw_enter,rw_vector_enter);
    122       1.6     itohy __strong_alias(rw_exit,rw_vector_exit);
    123      1.16        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    124       1.2        ad #endif
    125       1.2        ad 
    126  1.50.4.2    martin static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    127  1.50.4.2    martin static void	rw_dump(const volatile void *, lockop_printer_t);
    128  1.50.4.2    martin static lwp_t	*rw_owner(wchan_t);
    129  1.50.4.2    martin 
    130       1.2        ad lockops_t rwlock_lockops = {
    131      1.48     ozaki 	.lo_name = "Reader / writer lock",
    132      1.48     ozaki 	.lo_type = LOCKOPS_SLEEP,
    133      1.48     ozaki 	.lo_dump = rw_dump,
    134       1.2        ad };
    135       1.2        ad 
    136       1.4      yamt syncobj_t rw_syncobj = {
    137      1.49     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    138      1.49     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    139      1.49     ozaki 	.sobj_changepri	= turnstile_changepri,
    140      1.49     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    141      1.49     ozaki 	.sobj_owner	= rw_owner,
    142       1.4      yamt };
    143       1.4      yamt 
    144       1.2        ad /*
    145  1.50.4.2    martin  * rw_cas:
    146  1.50.4.2    martin  *
    147  1.50.4.2    martin  *	Do an atomic compare-and-swap on the lock word.
    148  1.50.4.2    martin  */
    149  1.50.4.2    martin static inline uintptr_t
    150  1.50.4.2    martin rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    151  1.50.4.2    martin {
    152  1.50.4.2    martin 
    153  1.50.4.2    martin 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    154  1.50.4.2    martin 	    (void *)o, (void *)n);
    155  1.50.4.2    martin }
    156  1.50.4.2    martin 
    157  1.50.4.2    martin /*
    158  1.50.4.2    martin  * rw_swap:
    159  1.50.4.2    martin  *
    160  1.50.4.2    martin  *	Do an atomic swap of the lock word.  This is used only when it's
    161  1.50.4.2    martin  *	known that the lock word is set up such that it can't be changed
    162  1.50.4.2    martin  *	behind us (assert this), so there's no point considering the result.
    163  1.50.4.2    martin  */
    164  1.50.4.2    martin static inline void
    165  1.50.4.2    martin rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    166  1.50.4.2    martin {
    167  1.50.4.2    martin 
    168  1.50.4.2    martin 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    169  1.50.4.2    martin 	    (void *)n);
    170  1.50.4.2    martin 
    171  1.50.4.2    martin 	RW_ASSERT(rw, n == o);
    172  1.50.4.2    martin 	RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
    173  1.50.4.2    martin }
    174  1.50.4.2    martin 
    175  1.50.4.2    martin /*
    176       1.2        ad  * rw_dump:
    177       1.2        ad  *
    178       1.2        ad  *	Dump the contents of a rwlock structure.
    179       1.2        ad  */
    180      1.11        ad static void
    181  1.50.4.1  christos rw_dump(const volatile void *cookie, lockop_printer_t pr)
    182       1.2        ad {
    183      1.47  christos 	const volatile krwlock_t *rw = cookie;
    184       1.2        ad 
    185  1.50.4.1  christos 	pr("owner/count  : %#018lx flags    : %#018x\n",
    186       1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    187       1.2        ad }
    188       1.2        ad 
    189       1.2        ad /*
    190      1.11        ad  * rw_abort:
    191      1.11        ad  *
    192      1.11        ad  *	Dump information about an error and panic the system.  This
    193      1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    194      1.11        ad  *	we ask the compiler to not inline it.
    195      1.11        ad  */
    196      1.26        ad static void __noinline
    197      1.46  christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    198      1.11        ad {
    199      1.11        ad 
    200      1.11        ad 	if (panicstr != NULL)
    201      1.11        ad 		return;
    202      1.11        ad 
    203      1.46  christos 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    204      1.11        ad }
    205      1.11        ad 
    206      1.11        ad /*
    207       1.2        ad  * rw_init:
    208       1.2        ad  *
    209       1.2        ad  *	Initialize a rwlock for use.
    210       1.2        ad  */
    211       1.2        ad void
    212      1.50     ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
    213       1.2        ad {
    214       1.2        ad 
    215  1.50.4.2    martin #ifdef LOCKDEBUG
    216  1.50.4.2    martin 	/* XXX only because the assembly stubs can't handle RW_NODEBUG */
    217  1.50.4.2    martin 	if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
    218  1.50.4.2    martin 		rw->rw_owner = 0;
    219  1.50.4.2    martin 	else
    220  1.50.4.2    martin 		rw->rw_owner = RW_NODEBUG;
    221  1.50.4.2    martin #else
    222  1.50.4.2    martin 	rw->rw_owner = 0;
    223  1.50.4.2    martin #endif
    224       1.2        ad }
    225       1.2        ad 
    226      1.50     ozaki void
    227      1.50     ozaki rw_init(krwlock_t *rw)
    228      1.50     ozaki {
    229      1.50     ozaki 
    230      1.50     ozaki 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    231      1.50     ozaki }
    232      1.50     ozaki 
    233       1.2        ad /*
    234       1.2        ad  * rw_destroy:
    235       1.2        ad  *
    236       1.2        ad  *	Tear down a rwlock.
    237       1.2        ad  */
    238       1.2        ad void
    239       1.2        ad rw_destroy(krwlock_t *rw)
    240       1.2        ad {
    241       1.2        ad 
    242      1.36     skrll 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    243  1.50.4.2    martin 	LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
    244       1.2        ad }
    245       1.2        ad 
    246       1.2        ad /*
    247      1.37     rmind  * rw_oncpu:
    248      1.20        ad  *
    249      1.20        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    250      1.20        ad  *	If the target is waiting on the kernel big lock, then we must
    251      1.20        ad  *	release it.  This is necessary to avoid deadlock.
    252      1.20        ad  */
    253      1.37     rmind static bool
    254      1.37     rmind rw_oncpu(uintptr_t owner)
    255      1.20        ad {
    256      1.20        ad #ifdef MULTIPROCESSOR
    257      1.20        ad 	struct cpu_info *ci;
    258      1.20        ad 	lwp_t *l;
    259      1.20        ad 
    260      1.37     rmind 	KASSERT(kpreempt_disabled());
    261      1.37     rmind 
    262      1.37     rmind 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    263      1.37     rmind 		return false;
    264      1.37     rmind 	}
    265      1.37     rmind 
    266      1.37     rmind 	/*
    267      1.37     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    268      1.37     rmind 	 * We must have kernel preemption disabled for that.
    269      1.37     rmind 	 */
    270      1.20        ad 	l = (lwp_t *)(owner & RW_THREAD);
    271      1.37     rmind 	ci = l->l_cpu;
    272      1.20        ad 
    273      1.37     rmind 	if (ci && ci->ci_curlwp == l) {
    274      1.37     rmind 		/* Target is running; do we need to block? */
    275      1.37     rmind 		return (ci->ci_biglock_wanted != l);
    276      1.37     rmind 	}
    277      1.37     rmind #endif
    278      1.37     rmind 	/* Not running.  It may be safe to block now. */
    279      1.37     rmind 	return false;
    280      1.20        ad }
    281      1.20        ad 
    282      1.20        ad /*
    283       1.2        ad  * rw_vector_enter:
    284       1.2        ad  *
    285       1.2        ad  *	Acquire a rwlock.
    286       1.2        ad  */
    287       1.2        ad void
    288       1.2        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    289       1.2        ad {
    290      1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    291       1.2        ad 	turnstile_t *ts;
    292       1.2        ad 	int queue;
    293       1.7        ad 	lwp_t *l;
    294       1.2        ad 	LOCKSTAT_TIMER(slptime);
    295      1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    296      1.19        ad 	LOCKSTAT_TIMER(spintime);
    297      1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    298       1.2        ad 	LOCKSTAT_FLAG(lsflag);
    299       1.2        ad 
    300       1.2        ad 	l = curlwp;
    301       1.2        ad 	curthread = (uintptr_t)l;
    302       1.2        ad 
    303      1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    304       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    305      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    306       1.2        ad 
    307       1.2        ad 	if (panicstr == NULL) {
    308  1.50.4.1  christos 		KDASSERT(pserialize_not_in_read_section());
    309       1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    310       1.2        ad 	}
    311       1.2        ad 
    312       1.2        ad 	/*
    313       1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    314       1.2        ad 	 * increment the read count.  If we're a writer, we want to
    315      1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    316       1.2        ad 	 *
    317       1.2        ad 	 * In the latter case, we expect those bits to be zero,
    318       1.2        ad 	 * therefore we can use an add operation to set them, which
    319       1.2        ad 	 * means an add operation for both cases.
    320       1.2        ad 	 */
    321       1.2        ad 	if (__predict_true(op == RW_READER)) {
    322       1.2        ad 		incr = RW_READ_INCR;
    323       1.2        ad 		set_wait = RW_HAS_WAITERS;
    324       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    325       1.2        ad 		queue = TS_READER_Q;
    326       1.2        ad 	} else {
    327  1.50.4.2    martin 		RW_ASSERT(rw, op == RW_WRITER);
    328       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    329       1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    330       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    331       1.2        ad 		queue = TS_WRITER_Q;
    332       1.2        ad 	}
    333       1.2        ad 
    334       1.2        ad 	LOCKSTAT_ENTER(lsflag);
    335       1.2        ad 
    336      1.37     rmind 	KPREEMPT_DISABLE(curlwp);
    337  1.50.4.2    martin 	for (owner = rw->rw_owner;;) {
    338       1.2        ad 		/*
    339       1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    340       1.2        ad 		 * indicator is clear, then try to acquire the lock.
    341       1.2        ad 		 */
    342       1.2        ad 		if ((owner & need_wait) == 0) {
    343      1.20        ad 			next = rw_cas(rw, owner, (owner + incr) &
    344      1.20        ad 			    ~RW_WRITE_WANTED);
    345      1.20        ad 			if (__predict_true(next == owner)) {
    346       1.2        ad 				/* Got it! */
    347  1.50.4.2    martin 				RW_MEMBAR_ENTER();
    348       1.2        ad 				break;
    349       1.2        ad 			}
    350       1.2        ad 
    351       1.2        ad 			/*
    352       1.2        ad 			 * Didn't get it -- spin around again (we'll
    353       1.2        ad 			 * probably sleep on the next iteration).
    354       1.2        ad 			 */
    355      1.20        ad 			owner = next;
    356       1.2        ad 			continue;
    357       1.2        ad 		}
    358      1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    359      1.46  christos 			rw_abort(__func__, __LINE__, rw,
    360      1.46  christos 			    "locking against myself");
    361      1.37     rmind 		}
    362      1.19        ad 		/*
    363      1.19        ad 		 * If the lock owner is running on another CPU, and
    364      1.19        ad 		 * there are no existing waiters, then spin.
    365      1.19        ad 		 */
    366      1.37     rmind 		if (rw_oncpu(owner)) {
    367      1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    368      1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    369      1.20        ad 			do {
    370      1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    371      1.20        ad 				SPINLOCK_BACKOFF(count);
    372      1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    373      1.19        ad 				owner = rw->rw_owner;
    374      1.37     rmind 			} while (rw_oncpu(owner));
    375      1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    376      1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    377      1.19        ad 			if ((owner & need_wait) == 0)
    378      1.19        ad 				continue;
    379      1.19        ad 		}
    380      1.19        ad 
    381       1.2        ad 		/*
    382       1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    383       1.2        ad 		 * can adjust the waiter bits and sleep queue.
    384       1.2        ad 		 */
    385       1.2        ad 		ts = turnstile_lookup(rw);
    386       1.2        ad 
    387       1.2        ad 		/*
    388       1.2        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    389       1.2        ad 		 * then we may not need to sleep and should spin again.
    390      1.20        ad 		 * Reload rw_owner because turnstile_lookup() may have
    391      1.20        ad 		 * spun on the turnstile chain lock.
    392       1.2        ad 		 */
    393      1.20        ad 		owner = rw->rw_owner;
    394      1.37     rmind 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    395      1.20        ad 			turnstile_exit(rw);
    396      1.20        ad 			continue;
    397      1.20        ad 		}
    398      1.20        ad 		next = rw_cas(rw, owner, owner | set_wait);
    399      1.20        ad 		if (__predict_false(next != owner)) {
    400       1.2        ad 			turnstile_exit(rw);
    401      1.20        ad 			owner = next;
    402       1.2        ad 			continue;
    403       1.2        ad 		}
    404       1.2        ad 
    405       1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    406       1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    407       1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    408      1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    409       1.2        ad 
    410      1.20        ad 		/*
    411      1.20        ad 		 * No need for a memory barrier because of context switch.
    412      1.20        ad 		 * If not handed the lock, then spin again.
    413      1.20        ad 		 */
    414      1.20        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    415      1.20        ad 			break;
    416      1.39      yamt 
    417      1.39      yamt 		owner = rw->rw_owner;
    418       1.2        ad 	}
    419      1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    420       1.2        ad 
    421  1.50.4.2    martin 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
    422  1.50.4.2    martin 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
    423  1.50.4.2    martin 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    424  1.50.4.2    martin 	      (uintptr_t)__builtin_return_address(0)));
    425  1.50.4.2    martin 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
    426  1.50.4.2    martin 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    427  1.50.4.2    martin 	      (uintptr_t)__builtin_return_address(0)));
    428       1.2        ad 	LOCKSTAT_EXIT(lsflag);
    429       1.2        ad 
    430  1.50.4.2    martin 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    431       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    432       1.2        ad 	RW_LOCKED(rw, op);
    433       1.2        ad }
    434       1.2        ad 
    435       1.2        ad /*
    436       1.2        ad  * rw_vector_exit:
    437       1.2        ad  *
    438       1.2        ad  *	Release a rwlock.
    439       1.2        ad  */
    440       1.2        ad void
    441       1.2        ad rw_vector_exit(krwlock_t *rw)
    442       1.2        ad {
    443      1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    444       1.2        ad 	turnstile_t *ts;
    445       1.2        ad 	int rcnt, wcnt;
    446       1.7        ad 	lwp_t *l;
    447       1.2        ad 
    448  1.50.4.2    martin 	l = curlwp;
    449  1.50.4.2    martin 	curthread = (uintptr_t)l;
    450       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    451       1.2        ad 
    452       1.2        ad 	/*
    453       1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    454       1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    455       1.2        ad 	 * them, which makes the read-release and write-release path
    456       1.2        ad 	 * the same.
    457       1.2        ad 	 */
    458       1.2        ad 	owner = rw->rw_owner;
    459       1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    460       1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    461       1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    462       1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    463       1.2        ad 	} else {
    464       1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    465       1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    466       1.2        ad 		decr = RW_READ_INCR;
    467       1.2        ad 	}
    468       1.2        ad 
    469       1.2        ad 	/*
    470       1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    471       1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    472       1.2        ad 	 * lock would become unowned.
    473       1.2        ad 	 */
    474  1.50.4.2    martin 	RW_MEMBAR_EXIT();
    475      1.20        ad 	for (;;) {
    476      1.44      matt 		newown = (owner - decr);
    477      1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    478       1.2        ad 			break;
    479      1.44      matt 		next = rw_cas(rw, owner, newown);
    480      1.20        ad 		if (__predict_true(next == owner))
    481       1.2        ad 			return;
    482      1.20        ad 		owner = next;
    483       1.2        ad 	}
    484       1.2        ad 
    485      1.20        ad 	/*
    486      1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    487      1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    488      1.20        ad 	 * waiter bits.
    489      1.20        ad 	 */
    490      1.20        ad 	ts = turnstile_lookup(rw);
    491      1.20        ad 	owner = rw->rw_owner;
    492  1.50.4.2    martin 	RW_ASSERT(rw, ts != NULL);
    493  1.50.4.2    martin 	RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    494       1.2        ad 
    495      1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    496      1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    497       1.2        ad 
    498      1.20        ad 	/*
    499      1.20        ad 	 * Give the lock away.
    500      1.20        ad 	 *
    501      1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    502      1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    503      1.20        ad 	 * are outstanding readers, or all writers if there are no
    504      1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    505      1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    506      1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    507      1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    508      1.20        ad 	 */
    509      1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    510  1.50.4.2    martin 		RW_ASSERT(rw, wcnt != 0);
    511  1.50.4.2    martin 		RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    512       1.2        ad 
    513      1.20        ad 		if (rcnt != 0) {
    514      1.20        ad 			/* Give the lock to the longest waiting writer. */
    515       1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    516  1.50.4.2    martin 			newown = (uintptr_t)l | (owner & RW_NODEBUG);
    517  1.50.4.2    martin 			newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
    518      1.28   thorpej 			if (wcnt > 1)
    519      1.44      matt 				newown |= RW_WRITE_WANTED;
    520      1.44      matt 			rw_swap(rw, owner, newown);
    521       1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    522       1.2        ad 		} else {
    523      1.20        ad 			/* Wake all writers and let them fight it out. */
    524  1.50.4.2    martin 			newown = owner & RW_NODEBUG;
    525  1.50.4.2    martin 			newown |= RW_WRITE_WANTED;
    526  1.50.4.2    martin 			rw_swap(rw, owner, newown);
    527      1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    528      1.20        ad 		}
    529      1.20        ad 	} else {
    530  1.50.4.2    martin 		RW_ASSERT(rw, rcnt != 0);
    531       1.2        ad 
    532      1.20        ad 		/*
    533      1.20        ad 		 * Give the lock to all blocked readers.  If there
    534      1.20        ad 		 * is a writer waiting, new readers that arrive
    535      1.20        ad 		 * after the release will be blocked out.
    536      1.20        ad 		 */
    537  1.50.4.2    martin 		newown = owner & RW_NODEBUG;
    538  1.50.4.2    martin 		newown += rcnt << RW_READ_COUNT_SHIFT;
    539      1.20        ad 		if (wcnt != 0)
    540      1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    541      1.12      yamt 
    542      1.20        ad 		/* Wake up all sleeping readers. */
    543      1.44      matt 		rw_swap(rw, owner, newown);
    544      1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    545       1.2        ad 	}
    546       1.2        ad }
    547       1.2        ad 
    548       1.2        ad /*
    549      1.16        ad  * rw_vector_tryenter:
    550       1.2        ad  *
    551       1.2        ad  *	Try to acquire a rwlock.
    552       1.2        ad  */
    553       1.2        ad int
    554      1.16        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    555       1.2        ad {
    556      1.20        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    557  1.50.4.2    martin 	lwp_t *l;
    558       1.2        ad 
    559  1.50.4.2    martin 	l = curlwp;
    560  1.50.4.2    martin 	curthread = (uintptr_t)l;
    561       1.2        ad 
    562       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    563       1.2        ad 
    564       1.2        ad 	if (op == RW_READER) {
    565       1.2        ad 		incr = RW_READ_INCR;
    566       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    567       1.2        ad 	} else {
    568  1.50.4.2    martin 		RW_ASSERT(rw, op == RW_WRITER);
    569       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    570       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    571       1.2        ad 	}
    572       1.2        ad 
    573      1.20        ad 	for (owner = rw->rw_owner;; owner = next) {
    574      1.20        ad 		if (__predict_false((owner & need_wait) != 0))
    575      1.20        ad 			return 0;
    576      1.20        ad 		next = rw_cas(rw, owner, owner + incr);
    577      1.20        ad 		if (__predict_true(next == owner)) {
    578      1.20        ad 			/* Got it! */
    579      1.20        ad 			break;
    580       1.2        ad 		}
    581       1.2        ad 	}
    582       1.2        ad 
    583      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    584       1.2        ad 	RW_LOCKED(rw, op);
    585  1.50.4.2    martin 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    586       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    587       1.7        ad 
    588  1.50.4.2    martin 	RW_MEMBAR_ENTER();
    589       1.2        ad 	return 1;
    590       1.2        ad }
    591       1.2        ad 
    592       1.2        ad /*
    593       1.2        ad  * rw_downgrade:
    594       1.2        ad  *
    595       1.2        ad  *	Downgrade a write lock to a read lock.
    596       1.2        ad  */
    597       1.2        ad void
    598       1.2        ad rw_downgrade(krwlock_t *rw)
    599       1.2        ad {
    600      1.44      matt 	uintptr_t owner, curthread, newown, next;
    601       1.2        ad 	turnstile_t *ts;
    602       1.2        ad 	int rcnt, wcnt;
    603  1.50.4.2    martin 	lwp_t *l;
    604       1.2        ad 
    605  1.50.4.2    martin 	l = curlwp;
    606  1.50.4.2    martin 	curthread = (uintptr_t)l;
    607       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    608  1.50.4.2    martin 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    609       1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    610       1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    611      1.42       mrg #if !defined(DIAGNOSTIC)
    612      1.42       mrg 	__USE(curthread);
    613      1.42       mrg #endif
    614      1.42       mrg 
    615  1.50.4.2    martin 	RW_MEMBAR_PRODUCER();
    616       1.2        ad 
    617  1.50.4.2    martin 	for (owner = rw->rw_owner;; owner = next) {
    618       1.2        ad 		/*
    619  1.50.4.2    martin 		 * If there are no waiters we can do this the easy way.  Try
    620  1.50.4.2    martin 		 * swapping us down to one read hold.  If it fails, the lock
    621  1.50.4.2    martin 		 * condition has changed and we most likely now have
    622       1.2        ad 		 * waiters.
    623       1.2        ad 		 */
    624  1.50.4.2    martin 		if ((owner & RW_HAS_WAITERS) == 0) {
    625  1.50.4.2    martin 			newown = (owner & RW_NODEBUG);
    626  1.50.4.2    martin 			next = rw_cas(rw, owner, newown + RW_READ_INCR);
    627  1.50.4.2    martin 			if (__predict_true(next == owner)) {
    628  1.50.4.2    martin 				RW_LOCKED(rw, RW_READER);
    629  1.50.4.2    martin 				RW_ASSERT(rw,
    630  1.50.4.2    martin 				    (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    631  1.50.4.2    martin 				RW_ASSERT(rw, RW_COUNT(rw) != 0);
    632  1.50.4.2    martin 				return;
    633  1.50.4.2    martin 			}
    634  1.50.4.2    martin 			continue;
    635       1.2        ad 		}
    636       1.2        ad 
    637  1.50.4.2    martin 		/*
    638  1.50.4.2    martin 		 * Grab the turnstile chain lock.  This gets the interlock
    639  1.50.4.2    martin 		 * on the sleep queue.  Once we have that, we can adjust the
    640  1.50.4.2    martin 		 * waiter bits.
    641  1.50.4.2    martin 		 */
    642       1.2        ad 		ts = turnstile_lookup(rw);
    643  1.50.4.2    martin 		RW_ASSERT(rw, ts != NULL);
    644       1.2        ad 
    645       1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    646       1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    647       1.2        ad 
    648       1.2        ad 		if (rcnt == 0) {
    649  1.50.4.2    martin 			/*
    650  1.50.4.2    martin 			 * If there are no readers, just preserve the
    651  1.50.4.2    martin 			 * waiters bits, swap us down to one read hold and
    652  1.50.4.2    martin 			 * return.
    653  1.50.4.2    martin 			 */
    654  1.50.4.2    martin 			RW_ASSERT(rw, wcnt != 0);
    655  1.50.4.2    martin 			RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    656  1.50.4.2    martin 			RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    657  1.50.4.2    martin 
    658  1.50.4.2    martin 			newown = owner & RW_NODEBUG;
    659  1.50.4.2    martin 			newown |= RW_READ_INCR | RW_HAS_WAITERS |
    660  1.50.4.2    martin 			    RW_WRITE_WANTED;
    661      1.44      matt 			next = rw_cas(rw, owner, newown);
    662      1.27     rmind 			turnstile_exit(rw);
    663      1.20        ad 			if (__predict_true(next == owner))
    664      1.20        ad 				break;
    665      1.20        ad 		} else {
    666      1.20        ad 			/*
    667      1.20        ad 			 * Give the lock to all blocked readers.  We may
    668  1.50.4.2    martin 			 * retain one read hold if downgrading.  If there is
    669  1.50.4.2    martin 			 * a writer waiting, new readers will be blocked
    670      1.20        ad 			 * out.
    671      1.20        ad 			 */
    672  1.50.4.2    martin 			newown = owner & RW_NODEBUG;
    673  1.50.4.2    martin 			newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    674      1.20        ad 			if (wcnt != 0)
    675      1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    676      1.20        ad 
    677      1.44      matt 			next = rw_cas(rw, owner, newown);
    678      1.20        ad 			if (__predict_true(next == owner)) {
    679      1.20        ad 				/* Wake up all sleeping readers. */
    680      1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    681      1.20        ad 				break;
    682       1.2        ad 			}
    683      1.27     rmind 			turnstile_exit(rw);
    684       1.2        ad 		}
    685       1.2        ad 	}
    686       1.2        ad 
    687      1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    688       1.2        ad 	RW_LOCKED(rw, RW_READER);
    689  1.50.4.2    martin 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    690  1.50.4.2    martin 	RW_ASSERT(rw, RW_COUNT(rw) != 0);
    691       1.2        ad }
    692       1.2        ad 
    693       1.2        ad /*
    694       1.2        ad  * rw_tryupgrade:
    695       1.2        ad  *
    696  1.50.4.2    martin  *	Try to upgrade a read lock to a write lock.  We must be the only
    697  1.50.4.2    martin  *	reader.
    698       1.2        ad  */
    699       1.2        ad int
    700       1.2        ad rw_tryupgrade(krwlock_t *rw)
    701       1.2        ad {
    702      1.44      matt 	uintptr_t owner, curthread, newown, next;
    703  1.50.4.2    martin 	struct lwp *l;
    704       1.2        ad 
    705  1.50.4.2    martin 	l = curlwp;
    706  1.50.4.2    martin 	curthread = (uintptr_t)l;
    707       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    708      1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    709       1.2        ad 
    710  1.50.4.2    martin 	for (owner = RW_READ_INCR;; owner = next) {
    711      1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    712      1.44      matt 		next = rw_cas(rw, owner, newown);
    713      1.30        ad 		if (__predict_true(next == owner)) {
    714  1.50.4.2    martin 			RW_MEMBAR_PRODUCER();
    715       1.2        ad 			break;
    716      1.30        ad 		}
    717  1.50.4.2    martin 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    718  1.50.4.2    martin 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    719  1.50.4.2    martin 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    720  1.50.4.2    martin 			return 0;
    721  1.50.4.2    martin 		}
    722       1.2        ad 	}
    723       1.2        ad 
    724       1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    725      1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    726       1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    727  1.50.4.2    martin 	RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    728  1.50.4.2    martin 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    729       1.2        ad 
    730       1.2        ad 	return 1;
    731       1.2        ad }
    732       1.2        ad 
    733       1.2        ad /*
    734       1.2        ad  * rw_read_held:
    735       1.2        ad  *
    736       1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    737       1.2        ad  *	used for diagnostic assertions, and never be used to make
    738       1.2        ad  * 	decisions about how to use a rwlock.
    739       1.2        ad  */
    740       1.2        ad int
    741       1.2        ad rw_read_held(krwlock_t *rw)
    742       1.2        ad {
    743       1.2        ad 	uintptr_t owner;
    744       1.2        ad 
    745      1.21        ad 	if (rw == NULL)
    746      1.21        ad 		return 0;
    747       1.2        ad 	owner = rw->rw_owner;
    748       1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    749       1.2        ad }
    750       1.2        ad 
    751       1.2        ad /*
    752       1.2        ad  * rw_write_held:
    753       1.2        ad  *
    754       1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    755       1.2        ad  *	used for diagnostic assertions, and never be used to make
    756       1.2        ad  *	decisions about how to use a rwlock.
    757       1.2        ad  */
    758       1.2        ad int
    759       1.2        ad rw_write_held(krwlock_t *rw)
    760       1.2        ad {
    761       1.2        ad 
    762      1.21        ad 	if (rw == NULL)
    763      1.21        ad 		return 0;
    764      1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    765      1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    766       1.2        ad }
    767       1.2        ad 
    768       1.2        ad /*
    769       1.2        ad  * rw_lock_held:
    770       1.2        ad  *
    771       1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    772       1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    773       1.2        ad  *	decisions about how to use a rwlock.
    774       1.2        ad  */
    775       1.2        ad int
    776       1.2        ad rw_lock_held(krwlock_t *rw)
    777       1.2        ad {
    778       1.2        ad 
    779      1.21        ad 	if (rw == NULL)
    780      1.21        ad 		return 0;
    781       1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    782       1.2        ad }
    783       1.4      yamt 
    784       1.5        ad /*
    785  1.50.4.2    martin  * rw_lock_op:
    786  1.50.4.2    martin  *
    787  1.50.4.2    martin  *	For a rwlock that is known to be held by the caller, return
    788  1.50.4.2    martin  *	RW_READER or RW_WRITER to describe the hold type.
    789  1.50.4.2    martin  */
    790  1.50.4.2    martin krw_t
    791  1.50.4.2    martin rw_lock_op(krwlock_t *rw)
    792  1.50.4.2    martin {
    793  1.50.4.2    martin 
    794  1.50.4.2    martin 	RW_ASSERT(rw, rw_lock_held(rw));
    795  1.50.4.2    martin 
    796  1.50.4.2    martin 	return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
    797  1.50.4.2    martin }
    798  1.50.4.2    martin 
    799  1.50.4.2    martin /*
    800       1.5        ad  * rw_owner:
    801       1.5        ad  *
    802       1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    803       1.5        ad  *	held.  Used for priority inheritance.
    804       1.5        ad  */
    805       1.7        ad static lwp_t *
    806       1.4      yamt rw_owner(wchan_t obj)
    807       1.4      yamt {
    808       1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    809       1.4      yamt 	uintptr_t owner = rw->rw_owner;
    810       1.4      yamt 
    811       1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    812       1.4      yamt 		return NULL;
    813       1.4      yamt 
    814       1.4      yamt 	return (void *)(owner & RW_THREAD);
    815       1.4      yamt }
    816  1.50.4.2    martin 
    817  1.50.4.2    martin /*
    818  1.50.4.2    martin  * rw_owner_running:
    819  1.50.4.2    martin  *
    820  1.50.4.2    martin  *	Return true if a RW lock is unheld, or write held and the owner is
    821  1.50.4.2    martin  *	running on a CPU.  For the pagedaemon.
    822  1.50.4.2    martin  */
    823  1.50.4.2    martin bool
    824  1.50.4.2    martin rw_owner_running(const krwlock_t *rw)
    825  1.50.4.2    martin {
    826  1.50.4.2    martin #ifdef MULTIPROCESSOR
    827  1.50.4.2    martin 	uintptr_t owner;
    828  1.50.4.2    martin 	bool rv;
    829  1.50.4.2    martin 
    830  1.50.4.2    martin 	kpreempt_disable();
    831  1.50.4.2    martin 	owner = rw->rw_owner;
    832  1.50.4.2    martin 	rv = (owner & RW_THREAD) == 0 || rw_oncpu(owner);
    833  1.50.4.2    martin 	kpreempt_enable();
    834  1.50.4.2    martin 	return rv;
    835  1.50.4.2    martin #else
    836  1.50.4.2    martin 	return rw_owner(rw) == curlwp;
    837  1.50.4.2    martin #endif
    838  1.50.4.2    martin }
    839