Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.56
      1  1.56  riastrad /*	$NetBSD: kern_rwlock.c,v 1.56 2019/11/29 20:04:54 riastradh Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.55        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     34   1.2        ad  * found in Solaris, a description of which can be found in:
     35   1.2        ad  *
     36   1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37   1.2        ad  *	    Richard McDougall.
     38   1.2        ad  */
     39   1.2        ad 
     40  1.10       dsl #include <sys/cdefs.h>
     41  1.56  riastrad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.56 2019/11/29 20:04:54 riastradh Exp $");
     42   1.2        ad 
     43   1.2        ad #define	__RWLOCK_PRIVATE
     44   1.2        ad 
     45   1.2        ad #include <sys/param.h>
     46   1.2        ad #include <sys/proc.h>
     47   1.2        ad #include <sys/rwlock.h>
     48   1.2        ad #include <sys/sched.h>
     49   1.2        ad #include <sys/sleepq.h>
     50   1.2        ad #include <sys/systm.h>
     51   1.2        ad #include <sys/lockdebug.h>
     52  1.11        ad #include <sys/cpu.h>
     53  1.14        ad #include <sys/atomic.h>
     54  1.15        ad #include <sys/lock.h>
     55  1.51     ozaki #include <sys/pserialize.h>
     56   1.2        ad 
     57   1.2        ad #include <dev/lockstat.h>
     58   1.2        ad 
     59  1.56  riastrad #include <machine/rwlock.h>
     60  1.56  riastrad 
     61   1.2        ad /*
     62   1.2        ad  * LOCKDEBUG
     63   1.2        ad  */
     64   1.2        ad 
     65   1.2        ad #if defined(LOCKDEBUG)
     66   1.2        ad 
     67  1.40   mlelstv #define	RW_WANTLOCK(rw, op)						\
     68  1.12      yamt 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     69  1.40   mlelstv 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     70   1.2        ad #define	RW_LOCKED(rw, op)						\
     71  1.25        ad 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     72   1.2        ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73   1.2        ad #define	RW_UNLOCKED(rw, op)						\
     74  1.12      yamt 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     75   1.2        ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     76   1.2        ad #define	RW_DASSERT(rw, cond)						\
     77   1.2        ad do {									\
     78  1.52     ozaki 	if (__predict_false(!(cond)))					\
     79  1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     80   1.2        ad } while (/* CONSTCOND */ 0);
     81   1.2        ad 
     82   1.2        ad #else	/* LOCKDEBUG */
     83   1.2        ad 
     84  1.40   mlelstv #define	RW_WANTLOCK(rw, op)	/* nothing */
     85   1.2        ad #define	RW_LOCKED(rw, op)	/* nothing */
     86   1.2        ad #define	RW_UNLOCKED(rw, op)	/* nothing */
     87   1.2        ad #define	RW_DASSERT(rw, cond)	/* nothing */
     88   1.2        ad 
     89   1.2        ad #endif	/* LOCKDEBUG */
     90   1.2        ad 
     91   1.2        ad /*
     92   1.2        ad  * DIAGNOSTIC
     93   1.2        ad  */
     94   1.2        ad 
     95   1.2        ad #if defined(DIAGNOSTIC)
     96   1.2        ad 
     97   1.2        ad #define	RW_ASSERT(rw, cond)						\
     98   1.2        ad do {									\
     99  1.52     ozaki 	if (__predict_false(!(cond)))					\
    100  1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
    101   1.2        ad } while (/* CONSTCOND */ 0)
    102   1.2        ad 
    103   1.2        ad #else
    104   1.2        ad 
    105   1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
    106   1.2        ad 
    107   1.2        ad #endif	/* DIAGNOSTIC */
    108   1.2        ad 
    109  1.36     skrll #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
    110  1.36     skrll #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_NODEBUG) == 0)
    111  1.12      yamt #if defined(LOCKDEBUG)
    112  1.44      matt #define	RW_INHERITDEBUG(n, o)		(n) |= (o) & RW_NODEBUG
    113  1.12      yamt #else /* defined(LOCKDEBUG) */
    114  1.44      matt #define	RW_INHERITDEBUG(n, o)		/* nothing */
    115  1.12      yamt #endif /* defined(LOCKDEBUG) */
    116  1.12      yamt 
    117  1.55        ad /*
    118  1.55        ad  * Memory barriers.
    119  1.55        ad  */
    120  1.55        ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
    121  1.55        ad #define	RW_MEMBAR_ENTER()
    122  1.55        ad #define	RW_MEMBAR_EXIT()
    123  1.55        ad #define	RW_MEMBAR_PRODUCER()
    124  1.55        ad #else
    125  1.55        ad #define	RW_MEMBAR_ENTER()		membar_enter()
    126  1.55        ad #define	RW_MEMBAR_EXIT()		membar_exit()
    127  1.55        ad #define	RW_MEMBAR_PRODUCER()		membar_producer()
    128  1.55        ad #endif
    129  1.55        ad 
    130  1.46  christos static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    131  1.54     ozaki static void	rw_dump(const volatile void *, lockop_printer_t);
    132  1.20        ad static lwp_t	*rw_owner(wchan_t);
    133  1.20        ad 
    134  1.20        ad static inline uintptr_t
    135  1.20        ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    136  1.12      yamt {
    137  1.12      yamt 
    138  1.20        ad 	RW_INHERITDEBUG(n, o);
    139  1.20        ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    140  1.20        ad 	    (void *)o, (void *)n);
    141  1.12      yamt }
    142   1.2        ad 
    143  1.20        ad static inline void
    144  1.20        ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    145   1.2        ad {
    146   1.2        ad 
    147  1.20        ad 	RW_INHERITDEBUG(n, o);
    148  1.20        ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    149  1.20        ad 	    (void *)n);
    150  1.20        ad 	RW_DASSERT(rw, n == o);
    151   1.2        ad }
    152   1.2        ad 
    153   1.2        ad /*
    154   1.2        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    155   1.2        ad  */
    156   1.2        ad #ifdef LOCKDEBUG
    157   1.2        ad #undef	__HAVE_RW_STUBS
    158   1.2        ad #endif
    159   1.2        ad 
    160   1.2        ad #ifndef __HAVE_RW_STUBS
    161   1.6     itohy __strong_alias(rw_enter,rw_vector_enter);
    162   1.6     itohy __strong_alias(rw_exit,rw_vector_exit);
    163  1.16        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    164   1.2        ad #endif
    165   1.2        ad 
    166   1.2        ad lockops_t rwlock_lockops = {
    167  1.48     ozaki 	.lo_name = "Reader / writer lock",
    168  1.48     ozaki 	.lo_type = LOCKOPS_SLEEP,
    169  1.48     ozaki 	.lo_dump = rw_dump,
    170   1.2        ad };
    171   1.2        ad 
    172   1.4      yamt syncobj_t rw_syncobj = {
    173  1.49     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    174  1.49     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    175  1.49     ozaki 	.sobj_changepri	= turnstile_changepri,
    176  1.49     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    177  1.49     ozaki 	.sobj_owner	= rw_owner,
    178   1.4      yamt };
    179   1.4      yamt 
    180   1.2        ad /*
    181   1.2        ad  * rw_dump:
    182   1.2        ad  *
    183   1.2        ad  *	Dump the contents of a rwlock structure.
    184   1.2        ad  */
    185  1.11        ad static void
    186  1.54     ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
    187   1.2        ad {
    188  1.47  christos 	const volatile krwlock_t *rw = cookie;
    189   1.2        ad 
    190  1.54     ozaki 	pr("owner/count  : %#018lx flags    : %#018x\n",
    191   1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    192   1.2        ad }
    193   1.2        ad 
    194   1.2        ad /*
    195  1.11        ad  * rw_abort:
    196  1.11        ad  *
    197  1.11        ad  *	Dump information about an error and panic the system.  This
    198  1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    199  1.11        ad  *	we ask the compiler to not inline it.
    200  1.11        ad  */
    201  1.26        ad static void __noinline
    202  1.46  christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    203  1.11        ad {
    204  1.11        ad 
    205  1.11        ad 	if (panicstr != NULL)
    206  1.11        ad 		return;
    207  1.11        ad 
    208  1.46  christos 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    209  1.11        ad }
    210  1.11        ad 
    211  1.11        ad /*
    212   1.2        ad  * rw_init:
    213   1.2        ad  *
    214   1.2        ad  *	Initialize a rwlock for use.
    215   1.2        ad  */
    216  1.50     ozaki void _rw_init(krwlock_t *, uintptr_t);
    217   1.2        ad void
    218  1.50     ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
    219   1.2        ad {
    220  1.12      yamt 	bool dodebug;
    221   1.2        ad 
    222   1.2        ad 	memset(rw, 0, sizeof(*rw));
    223   1.2        ad 
    224  1.50     ozaki 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address);
    225  1.12      yamt 	RW_SETDEBUG(rw, dodebug);
    226   1.2        ad }
    227   1.2        ad 
    228  1.50     ozaki void
    229  1.50     ozaki rw_init(krwlock_t *rw)
    230  1.50     ozaki {
    231  1.50     ozaki 
    232  1.50     ozaki 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    233  1.50     ozaki }
    234  1.50     ozaki 
    235   1.2        ad /*
    236   1.2        ad  * rw_destroy:
    237   1.2        ad  *
    238   1.2        ad  *	Tear down a rwlock.
    239   1.2        ad  */
    240   1.2        ad void
    241   1.2        ad rw_destroy(krwlock_t *rw)
    242   1.2        ad {
    243   1.2        ad 
    244  1.36     skrll 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    245  1.12      yamt 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    246   1.2        ad }
    247   1.2        ad 
    248   1.2        ad /*
    249  1.37     rmind  * rw_oncpu:
    250  1.20        ad  *
    251  1.20        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    252  1.20        ad  *	If the target is waiting on the kernel big lock, then we must
    253  1.20        ad  *	release it.  This is necessary to avoid deadlock.
    254  1.20        ad  */
    255  1.37     rmind static bool
    256  1.37     rmind rw_oncpu(uintptr_t owner)
    257  1.20        ad {
    258  1.20        ad #ifdef MULTIPROCESSOR
    259  1.20        ad 	struct cpu_info *ci;
    260  1.20        ad 	lwp_t *l;
    261  1.20        ad 
    262  1.37     rmind 	KASSERT(kpreempt_disabled());
    263  1.37     rmind 
    264  1.37     rmind 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    265  1.37     rmind 		return false;
    266  1.37     rmind 	}
    267  1.37     rmind 
    268  1.37     rmind 	/*
    269  1.37     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    270  1.37     rmind 	 * We must have kernel preemption disabled for that.
    271  1.37     rmind 	 */
    272  1.20        ad 	l = (lwp_t *)(owner & RW_THREAD);
    273  1.37     rmind 	ci = l->l_cpu;
    274  1.20        ad 
    275  1.37     rmind 	if (ci && ci->ci_curlwp == l) {
    276  1.37     rmind 		/* Target is running; do we need to block? */
    277  1.37     rmind 		return (ci->ci_biglock_wanted != l);
    278  1.37     rmind 	}
    279  1.37     rmind #endif
    280  1.37     rmind 	/* Not running.  It may be safe to block now. */
    281  1.37     rmind 	return false;
    282  1.20        ad }
    283  1.20        ad 
    284  1.20        ad /*
    285   1.2        ad  * rw_vector_enter:
    286   1.2        ad  *
    287   1.2        ad  *	Acquire a rwlock.
    288   1.2        ad  */
    289   1.2        ad void
    290   1.2        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    291   1.2        ad {
    292  1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    293   1.2        ad 	turnstile_t *ts;
    294   1.2        ad 	int queue;
    295   1.7        ad 	lwp_t *l;
    296   1.2        ad 	LOCKSTAT_TIMER(slptime);
    297  1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    298  1.19        ad 	LOCKSTAT_TIMER(spintime);
    299  1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    300   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    301   1.2        ad 
    302   1.2        ad 	l = curlwp;
    303   1.2        ad 	curthread = (uintptr_t)l;
    304   1.2        ad 
    305  1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    306   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    307  1.40   mlelstv 	RW_WANTLOCK(rw, op);
    308   1.2        ad 
    309   1.2        ad 	if (panicstr == NULL) {
    310  1.53     ozaki 		KDASSERT(pserialize_not_in_read_section());
    311   1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    312   1.2        ad 	}
    313   1.2        ad 
    314   1.2        ad 	/*
    315   1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    316   1.2        ad 	 * increment the read count.  If we're a writer, we want to
    317  1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    318   1.2        ad 	 *
    319   1.2        ad 	 * In the latter case, we expect those bits to be zero,
    320   1.2        ad 	 * therefore we can use an add operation to set them, which
    321   1.2        ad 	 * means an add operation for both cases.
    322   1.2        ad 	 */
    323   1.2        ad 	if (__predict_true(op == RW_READER)) {
    324   1.2        ad 		incr = RW_READ_INCR;
    325   1.2        ad 		set_wait = RW_HAS_WAITERS;
    326   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    327   1.2        ad 		queue = TS_READER_Q;
    328   1.2        ad 	} else {
    329   1.2        ad 		RW_DASSERT(rw, op == RW_WRITER);
    330   1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    331   1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    332   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    333   1.2        ad 		queue = TS_WRITER_Q;
    334   1.2        ad 	}
    335   1.2        ad 
    336   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    337   1.2        ad 
    338  1.37     rmind 	KPREEMPT_DISABLE(curlwp);
    339  1.55        ad 	for (owner = rw->rw_owner;;) {
    340   1.2        ad 		/*
    341   1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    342   1.2        ad 		 * indicator is clear, then try to acquire the lock.
    343   1.2        ad 		 */
    344   1.2        ad 		if ((owner & need_wait) == 0) {
    345  1.20        ad 			next = rw_cas(rw, owner, (owner + incr) &
    346  1.20        ad 			    ~RW_WRITE_WANTED);
    347  1.20        ad 			if (__predict_true(next == owner)) {
    348   1.2        ad 				/* Got it! */
    349  1.55        ad 				RW_MEMBAR_ENTER();
    350   1.2        ad 				break;
    351   1.2        ad 			}
    352   1.2        ad 
    353   1.2        ad 			/*
    354   1.2        ad 			 * Didn't get it -- spin around again (we'll
    355   1.2        ad 			 * probably sleep on the next iteration).
    356   1.2        ad 			 */
    357  1.20        ad 			owner = next;
    358   1.2        ad 			continue;
    359   1.2        ad 		}
    360  1.37     rmind 		if (__predict_false(panicstr != NULL)) {
    361  1.45  uebayasi 			KPREEMPT_ENABLE(curlwp);
    362   1.2        ad 			return;
    363  1.37     rmind 		}
    364  1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    365  1.46  christos 			rw_abort(__func__, __LINE__, rw,
    366  1.46  christos 			    "locking against myself");
    367  1.37     rmind 		}
    368  1.19        ad 		/*
    369  1.19        ad 		 * If the lock owner is running on another CPU, and
    370  1.19        ad 		 * there are no existing waiters, then spin.
    371  1.19        ad 		 */
    372  1.37     rmind 		if (rw_oncpu(owner)) {
    373  1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    374  1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    375  1.20        ad 			do {
    376  1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    377  1.20        ad 				SPINLOCK_BACKOFF(count);
    378  1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    379  1.19        ad 				owner = rw->rw_owner;
    380  1.37     rmind 			} while (rw_oncpu(owner));
    381  1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    382  1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    383  1.19        ad 			if ((owner & need_wait) == 0)
    384  1.19        ad 				continue;
    385  1.19        ad 		}
    386  1.19        ad 
    387   1.2        ad 		/*
    388   1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    389   1.2        ad 		 * can adjust the waiter bits and sleep queue.
    390   1.2        ad 		 */
    391   1.2        ad 		ts = turnstile_lookup(rw);
    392   1.2        ad 
    393   1.2        ad 		/*
    394   1.2        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    395   1.2        ad 		 * then we may not need to sleep and should spin again.
    396  1.20        ad 		 * Reload rw_owner because turnstile_lookup() may have
    397  1.20        ad 		 * spun on the turnstile chain lock.
    398   1.2        ad 		 */
    399  1.20        ad 		owner = rw->rw_owner;
    400  1.37     rmind 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    401  1.20        ad 			turnstile_exit(rw);
    402  1.20        ad 			continue;
    403  1.20        ad 		}
    404  1.20        ad 		next = rw_cas(rw, owner, owner | set_wait);
    405  1.20        ad 		if (__predict_false(next != owner)) {
    406   1.2        ad 			turnstile_exit(rw);
    407  1.20        ad 			owner = next;
    408   1.2        ad 			continue;
    409   1.2        ad 		}
    410   1.2        ad 
    411   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    412   1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    413   1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    414  1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    415   1.2        ad 
    416  1.20        ad 		/*
    417  1.20        ad 		 * No need for a memory barrier because of context switch.
    418  1.20        ad 		 * If not handed the lock, then spin again.
    419  1.20        ad 		 */
    420  1.20        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    421  1.20        ad 			break;
    422  1.39      yamt 
    423  1.39      yamt 		owner = rw->rw_owner;
    424   1.2        ad 	}
    425  1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    426   1.2        ad 
    427  1.20        ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    428  1.20        ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    429  1.19        ad 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    430   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    431   1.2        ad 
    432   1.2        ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    433   1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    434   1.2        ad 	RW_LOCKED(rw, op);
    435   1.2        ad }
    436   1.2        ad 
    437   1.2        ad /*
    438   1.2        ad  * rw_vector_exit:
    439   1.2        ad  *
    440   1.2        ad  *	Release a rwlock.
    441   1.2        ad  */
    442   1.2        ad void
    443   1.2        ad rw_vector_exit(krwlock_t *rw)
    444   1.2        ad {
    445  1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    446   1.2        ad 	turnstile_t *ts;
    447   1.2        ad 	int rcnt, wcnt;
    448   1.7        ad 	lwp_t *l;
    449   1.2        ad 
    450   1.2        ad 	curthread = (uintptr_t)curlwp;
    451   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    452   1.2        ad 
    453  1.20        ad 	if (__predict_false(panicstr != NULL))
    454   1.2        ad 		return;
    455   1.2        ad 
    456   1.2        ad 	/*
    457   1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    458   1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    459   1.2        ad 	 * them, which makes the read-release and write-release path
    460   1.2        ad 	 * the same.
    461   1.2        ad 	 */
    462   1.2        ad 	owner = rw->rw_owner;
    463   1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    464   1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    465   1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    466   1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    467   1.2        ad 	} else {
    468   1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    469   1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    470   1.2        ad 		decr = RW_READ_INCR;
    471   1.2        ad 	}
    472   1.2        ad 
    473   1.2        ad 	/*
    474   1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    475   1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    476   1.2        ad 	 * lock would become unowned.
    477   1.2        ad 	 */
    478  1.55        ad 	RW_MEMBAR_EXIT();
    479  1.20        ad 	for (;;) {
    480  1.44      matt 		newown = (owner - decr);
    481  1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    482   1.2        ad 			break;
    483  1.44      matt 		next = rw_cas(rw, owner, newown);
    484  1.20        ad 		if (__predict_true(next == owner))
    485   1.2        ad 			return;
    486  1.20        ad 		owner = next;
    487   1.2        ad 	}
    488   1.2        ad 
    489  1.20        ad 	/*
    490  1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    491  1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    492  1.20        ad 	 * waiter bits.
    493  1.20        ad 	 */
    494  1.20        ad 	ts = turnstile_lookup(rw);
    495  1.20        ad 	owner = rw->rw_owner;
    496  1.20        ad 	RW_DASSERT(rw, ts != NULL);
    497  1.20        ad 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    498   1.2        ad 
    499  1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    500  1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    501   1.2        ad 
    502  1.20        ad 	/*
    503  1.20        ad 	 * Give the lock away.
    504  1.20        ad 	 *
    505  1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    506  1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    507  1.20        ad 	 * are outstanding readers, or all writers if there are no
    508  1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    509  1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    510  1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    511  1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    512  1.20        ad 	 */
    513  1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    514  1.20        ad 		RW_DASSERT(rw, wcnt != 0);
    515  1.20        ad 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    516   1.2        ad 
    517  1.20        ad 		if (rcnt != 0) {
    518  1.20        ad 			/* Give the lock to the longest waiting writer. */
    519   1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    520  1.44      matt 			newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    521  1.28   thorpej 			if (wcnt > 1)
    522  1.44      matt 				newown |= RW_WRITE_WANTED;
    523  1.44      matt 			rw_swap(rw, owner, newown);
    524   1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    525   1.2        ad 		} else {
    526  1.20        ad 			/* Wake all writers and let them fight it out. */
    527  1.20        ad 			rw_swap(rw, owner, RW_WRITE_WANTED);
    528  1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    529  1.20        ad 		}
    530  1.20        ad 	} else {
    531  1.20        ad 		RW_DASSERT(rw, rcnt != 0);
    532   1.2        ad 
    533  1.20        ad 		/*
    534  1.20        ad 		 * Give the lock to all blocked readers.  If there
    535  1.20        ad 		 * is a writer waiting, new readers that arrive
    536  1.20        ad 		 * after the release will be blocked out.
    537  1.20        ad 		 */
    538  1.44      matt 		newown = rcnt << RW_READ_COUNT_SHIFT;
    539  1.20        ad 		if (wcnt != 0)
    540  1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    541  1.12      yamt 
    542  1.20        ad 		/* Wake up all sleeping readers. */
    543  1.44      matt 		rw_swap(rw, owner, newown);
    544  1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    545   1.2        ad 	}
    546   1.2        ad }
    547   1.2        ad 
    548   1.2        ad /*
    549  1.16        ad  * rw_vector_tryenter:
    550   1.2        ad  *
    551   1.2        ad  *	Try to acquire a rwlock.
    552   1.2        ad  */
    553   1.2        ad int
    554  1.16        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    555   1.2        ad {
    556  1.20        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    557   1.2        ad 
    558   1.2        ad 	curthread = (uintptr_t)curlwp;
    559   1.2        ad 
    560   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    561   1.2        ad 
    562   1.2        ad 	if (op == RW_READER) {
    563   1.2        ad 		incr = RW_READ_INCR;
    564   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    565   1.2        ad 	} else {
    566   1.2        ad 		RW_DASSERT(rw, op == RW_WRITER);
    567   1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    568   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    569   1.2        ad 	}
    570   1.2        ad 
    571  1.20        ad 	for (owner = rw->rw_owner;; owner = next) {
    572  1.20        ad 		if (__predict_false((owner & need_wait) != 0))
    573  1.20        ad 			return 0;
    574  1.20        ad 		next = rw_cas(rw, owner, owner + incr);
    575  1.20        ad 		if (__predict_true(next == owner)) {
    576  1.20        ad 			/* Got it! */
    577  1.55        ad 			RW_MEMBAR_ENTER();
    578  1.20        ad 			break;
    579   1.2        ad 		}
    580   1.2        ad 	}
    581   1.2        ad 
    582  1.40   mlelstv 	RW_WANTLOCK(rw, op);
    583   1.2        ad 	RW_LOCKED(rw, op);
    584   1.2        ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    585   1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    586   1.7        ad 
    587   1.2        ad 	return 1;
    588   1.2        ad }
    589   1.2        ad 
    590   1.2        ad /*
    591   1.2        ad  * rw_downgrade:
    592   1.2        ad  *
    593  1.55        ad  *	Downgrade a write lock to a read lock.  Optimise memory accesses for
    594  1.55        ad  *	the uncontended case.
    595   1.2        ad  */
    596   1.2        ad void
    597   1.2        ad rw_downgrade(krwlock_t *rw)
    598   1.2        ad {
    599  1.44      matt 	uintptr_t owner, curthread, newown, next;
    600   1.2        ad 	turnstile_t *ts;
    601   1.2        ad 	int rcnt, wcnt;
    602   1.2        ad 
    603   1.2        ad 	curthread = (uintptr_t)curlwp;
    604   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    605   1.2        ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    606   1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    607   1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    608  1.42       mrg #if !defined(DIAGNOSTIC)
    609  1.42       mrg 	__USE(curthread);
    610  1.42       mrg #endif
    611  1.42       mrg 
    612  1.55        ad 	/*
    613  1.55        ad 	 * If there are no waiters, so we can do this the easy way.
    614  1.55        ad 	 * Try swapping us down to one read hold.  If it fails, the
    615  1.55        ad 	 * lock condition has changed and we most likely now have
    616  1.55        ad 	 * waiters.
    617  1.55        ad 	 */
    618  1.55        ad 	RW_MEMBAR_PRODUCER();
    619  1.55        ad 	owner = curthread | RW_WRITE_LOCKED;
    620  1.55        ad 	next = rw_cas(rw, owner, RW_READ_INCR);
    621  1.55        ad 	if (__predict_true(next == owner)) {
    622  1.55        ad 		RW_LOCKED(rw, RW_READER);
    623  1.55        ad 		RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    624  1.55        ad 		RW_DASSERT(rw, RW_COUNT(rw) != 0);
    625  1.55        ad 		return;
    626   1.2        ad 	}
    627   1.2        ad 
    628   1.2        ad 	/*
    629   1.2        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    630   1.2        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    631   1.2        ad 	 * waiter bits.
    632   1.2        ad 	 */
    633  1.55        ad 	for (;;) {
    634  1.55        ad 		owner = next;
    635   1.2        ad 		ts = turnstile_lookup(rw);
    636   1.2        ad 		RW_DASSERT(rw, ts != NULL);
    637   1.2        ad 
    638   1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    639   1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    640   1.2        ad 
    641   1.2        ad 		/*
    642   1.2        ad 		 * If there are no readers, just preserve the waiters
    643   1.2        ad 		 * bits, swap us down to one read hold and return.
    644   1.2        ad 		 */
    645   1.2        ad 		if (rcnt == 0) {
    646   1.2        ad 			RW_DASSERT(rw, wcnt != 0);
    647   1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    648   1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    649   1.2        ad 
    650  1.44      matt 			newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    651  1.44      matt 			next = rw_cas(rw, owner, newown);
    652  1.27     rmind 			turnstile_exit(rw);
    653  1.20        ad 			if (__predict_true(next == owner))
    654  1.20        ad 				break;
    655  1.20        ad 		} else {
    656  1.20        ad 			/*
    657  1.20        ad 			 * Give the lock to all blocked readers.  We may
    658  1.20        ad 			 * retain one read hold if downgrading.  If there
    659  1.20        ad 			 * is a writer waiting, new readers will be blocked
    660  1.20        ad 			 * out.
    661  1.20        ad 			 */
    662  1.44      matt 			newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    663  1.20        ad 			if (wcnt != 0)
    664  1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    665  1.20        ad 
    666  1.44      matt 			next = rw_cas(rw, owner, newown);
    667  1.20        ad 			if (__predict_true(next == owner)) {
    668  1.20        ad 				/* Wake up all sleeping readers. */
    669  1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    670  1.20        ad 				break;
    671   1.2        ad 			}
    672  1.27     rmind 			turnstile_exit(rw);
    673   1.2        ad 		}
    674   1.2        ad 	}
    675   1.2        ad 
    676  1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    677   1.2        ad 	RW_LOCKED(rw, RW_READER);
    678   1.2        ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    679   1.2        ad 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    680   1.2        ad }
    681   1.2        ad 
    682   1.2        ad /*
    683   1.2        ad  * rw_tryupgrade:
    684   1.2        ad  *
    685  1.55        ad  *	Try to upgrade a read lock to a write lock.  We must be the only
    686  1.55        ad  *	reader.  Optimise memory accesses for the uncontended case.
    687   1.2        ad  */
    688   1.2        ad int
    689   1.2        ad rw_tryupgrade(krwlock_t *rw)
    690   1.2        ad {
    691  1.44      matt 	uintptr_t owner, curthread, newown, next;
    692   1.2        ad 
    693   1.2        ad 	curthread = (uintptr_t)curlwp;
    694   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    695  1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    696   1.2        ad 
    697  1.55        ad 	for (owner = RW_READ_INCR;; owner = next) {
    698  1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    699  1.44      matt 		next = rw_cas(rw, owner, newown);
    700  1.30        ad 		if (__predict_true(next == owner)) {
    701  1.55        ad 			RW_MEMBAR_PRODUCER();
    702   1.2        ad 			break;
    703  1.30        ad 		}
    704  1.55        ad 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    705  1.55        ad 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    706  1.55        ad 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    707  1.55        ad 			return 0;
    708  1.55        ad 		}
    709   1.2        ad 	}
    710   1.2        ad 
    711   1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    712  1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    713   1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    714   1.2        ad 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    715   1.2        ad 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    716   1.2        ad 
    717   1.2        ad 	return 1;
    718   1.2        ad }
    719   1.2        ad 
    720   1.2        ad /*
    721   1.2        ad  * rw_read_held:
    722   1.2        ad  *
    723   1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    724   1.2        ad  *	used for diagnostic assertions, and never be used to make
    725   1.2        ad  * 	decisions about how to use a rwlock.
    726   1.2        ad  */
    727   1.2        ad int
    728   1.2        ad rw_read_held(krwlock_t *rw)
    729   1.2        ad {
    730   1.2        ad 	uintptr_t owner;
    731   1.2        ad 
    732   1.2        ad 	if (panicstr != NULL)
    733   1.2        ad 		return 1;
    734  1.21        ad 	if (rw == NULL)
    735  1.21        ad 		return 0;
    736   1.2        ad 	owner = rw->rw_owner;
    737   1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    738   1.2        ad }
    739   1.2        ad 
    740   1.2        ad /*
    741   1.2        ad  * rw_write_held:
    742   1.2        ad  *
    743   1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    744   1.2        ad  *	used for diagnostic assertions, and never be used to make
    745   1.2        ad  *	decisions about how to use a rwlock.
    746   1.2        ad  */
    747   1.2        ad int
    748   1.2        ad rw_write_held(krwlock_t *rw)
    749   1.2        ad {
    750   1.2        ad 
    751   1.2        ad 	if (panicstr != NULL)
    752   1.2        ad 		return 1;
    753  1.21        ad 	if (rw == NULL)
    754  1.21        ad 		return 0;
    755  1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    756  1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    757   1.2        ad }
    758   1.2        ad 
    759   1.2        ad /*
    760   1.2        ad  * rw_lock_held:
    761   1.2        ad  *
    762   1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    763   1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    764   1.2        ad  *	decisions about how to use a rwlock.
    765   1.2        ad  */
    766   1.2        ad int
    767   1.2        ad rw_lock_held(krwlock_t *rw)
    768   1.2        ad {
    769   1.2        ad 
    770   1.2        ad 	if (panicstr != NULL)
    771   1.2        ad 		return 1;
    772  1.21        ad 	if (rw == NULL)
    773  1.21        ad 		return 0;
    774   1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    775   1.2        ad }
    776   1.4      yamt 
    777   1.5        ad /*
    778   1.5        ad  * rw_owner:
    779   1.5        ad  *
    780   1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    781   1.5        ad  *	held.  Used for priority inheritance.
    782   1.5        ad  */
    783   1.7        ad static lwp_t *
    784   1.4      yamt rw_owner(wchan_t obj)
    785   1.4      yamt {
    786   1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    787   1.4      yamt 	uintptr_t owner = rw->rw_owner;
    788   1.4      yamt 
    789   1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    790   1.4      yamt 		return NULL;
    791   1.4      yamt 
    792   1.4      yamt 	return (void *)(owner & RW_THREAD);
    793   1.4      yamt }
    794