Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.59.2.1
      1  1.59.2.1        ad /*	$NetBSD: kern_rwlock.c,v 1.59.2.1 2020/01/17 21:47:35 ad Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4  1.59.2.1        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
      5  1.59.2.1        ad  *     The NetBSD Foundation, Inc.
      6       1.2        ad  * All rights reserved.
      7       1.2        ad  *
      8       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      9       1.2        ad  * by Jason R. Thorpe and Andrew Doran.
     10       1.2        ad  *
     11       1.2        ad  * Redistribution and use in source and binary forms, with or without
     12       1.2        ad  * modification, are permitted provided that the following conditions
     13       1.2        ad  * are met:
     14       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     15       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     16       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     18       1.2        ad  *    documentation and/or other materials provided with the distribution.
     19       1.2        ad  *
     20       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     31       1.2        ad  */
     32       1.2        ad 
     33       1.2        ad /*
     34       1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     35       1.2        ad  * found in Solaris, a description of which can be found in:
     36       1.2        ad  *
     37       1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38       1.2        ad  *	    Richard McDougall.
     39       1.2        ad  */
     40       1.2        ad 
     41      1.10       dsl #include <sys/cdefs.h>
     42  1.59.2.1        ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.59.2.1 2020/01/17 21:47:35 ad Exp $");
     43       1.2        ad 
     44       1.2        ad #define	__RWLOCK_PRIVATE
     45       1.2        ad 
     46       1.2        ad #include <sys/param.h>
     47       1.2        ad #include <sys/proc.h>
     48       1.2        ad #include <sys/rwlock.h>
     49       1.2        ad #include <sys/sched.h>
     50       1.2        ad #include <sys/sleepq.h>
     51       1.2        ad #include <sys/systm.h>
     52       1.2        ad #include <sys/lockdebug.h>
     53      1.11        ad #include <sys/cpu.h>
     54      1.14        ad #include <sys/atomic.h>
     55      1.15        ad #include <sys/lock.h>
     56      1.51     ozaki #include <sys/pserialize.h>
     57       1.2        ad 
     58       1.2        ad #include <dev/lockstat.h>
     59       1.2        ad 
     60      1.56  riastrad #include <machine/rwlock.h>
     61      1.56  riastrad 
     62       1.2        ad /*
     63       1.2        ad  * LOCKDEBUG
     64       1.2        ad  */
     65       1.2        ad 
     66       1.2        ad #if defined(LOCKDEBUG)
     67       1.2        ad 
     68      1.40   mlelstv #define	RW_WANTLOCK(rw, op)						\
     69      1.12      yamt 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     70      1.40   mlelstv 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     71       1.2        ad #define	RW_LOCKED(rw, op)						\
     72      1.25        ad 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     73       1.2        ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     74       1.2        ad #define	RW_UNLOCKED(rw, op)						\
     75      1.12      yamt 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     76       1.2        ad 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     77       1.2        ad #define	RW_DASSERT(rw, cond)						\
     78       1.2        ad do {									\
     79      1.52     ozaki 	if (__predict_false(!(cond)))					\
     80      1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     81       1.2        ad } while (/* CONSTCOND */ 0);
     82       1.2        ad 
     83       1.2        ad #else	/* LOCKDEBUG */
     84       1.2        ad 
     85      1.40   mlelstv #define	RW_WANTLOCK(rw, op)	/* nothing */
     86       1.2        ad #define	RW_LOCKED(rw, op)	/* nothing */
     87       1.2        ad #define	RW_UNLOCKED(rw, op)	/* nothing */
     88       1.2        ad #define	RW_DASSERT(rw, cond)	/* nothing */
     89       1.2        ad 
     90       1.2        ad #endif	/* LOCKDEBUG */
     91       1.2        ad 
     92       1.2        ad /*
     93       1.2        ad  * DIAGNOSTIC
     94       1.2        ad  */
     95       1.2        ad 
     96       1.2        ad #if defined(DIAGNOSTIC)
     97       1.2        ad 
     98       1.2        ad #define	RW_ASSERT(rw, cond)						\
     99       1.2        ad do {									\
    100      1.52     ozaki 	if (__predict_false(!(cond)))					\
    101      1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
    102       1.2        ad } while (/* CONSTCOND */ 0)
    103       1.2        ad 
    104       1.2        ad #else
    105       1.2        ad 
    106       1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
    107       1.2        ad 
    108       1.2        ad #endif	/* DIAGNOSTIC */
    109       1.2        ad 
    110      1.36     skrll #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
    111      1.36     skrll #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_NODEBUG) == 0)
    112      1.12      yamt #if defined(LOCKDEBUG)
    113      1.44      matt #define	RW_INHERITDEBUG(n, o)		(n) |= (o) & RW_NODEBUG
    114      1.12      yamt #else /* defined(LOCKDEBUG) */
    115      1.44      matt #define	RW_INHERITDEBUG(n, o)		/* nothing */
    116      1.12      yamt #endif /* defined(LOCKDEBUG) */
    117      1.12      yamt 
    118      1.55        ad /*
    119      1.55        ad  * Memory barriers.
    120      1.55        ad  */
    121      1.55        ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
    122      1.55        ad #define	RW_MEMBAR_ENTER()
    123      1.55        ad #define	RW_MEMBAR_EXIT()
    124      1.55        ad #define	RW_MEMBAR_PRODUCER()
    125      1.55        ad #else
    126      1.55        ad #define	RW_MEMBAR_ENTER()		membar_enter()
    127      1.55        ad #define	RW_MEMBAR_EXIT()		membar_exit()
    128      1.55        ad #define	RW_MEMBAR_PRODUCER()		membar_producer()
    129      1.55        ad #endif
    130      1.55        ad 
    131      1.46  christos static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    132      1.54     ozaki static void	rw_dump(const volatile void *, lockop_printer_t);
    133      1.20        ad static lwp_t	*rw_owner(wchan_t);
    134      1.20        ad 
    135      1.20        ad static inline uintptr_t
    136      1.20        ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    137      1.12      yamt {
    138      1.12      yamt 
    139      1.20        ad 	RW_INHERITDEBUG(n, o);
    140      1.20        ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    141      1.20        ad 	    (void *)o, (void *)n);
    142      1.12      yamt }
    143       1.2        ad 
    144      1.20        ad static inline void
    145      1.20        ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    146       1.2        ad {
    147       1.2        ad 
    148      1.20        ad 	RW_INHERITDEBUG(n, o);
    149      1.20        ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    150      1.20        ad 	    (void *)n);
    151      1.20        ad 	RW_DASSERT(rw, n == o);
    152       1.2        ad }
    153       1.2        ad 
    154       1.2        ad /*
    155       1.2        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    156       1.2        ad  */
    157       1.2        ad #ifdef LOCKDEBUG
    158       1.2        ad #undef	__HAVE_RW_STUBS
    159       1.2        ad #endif
    160       1.2        ad 
    161       1.2        ad #ifndef __HAVE_RW_STUBS
    162       1.6     itohy __strong_alias(rw_enter,rw_vector_enter);
    163       1.6     itohy __strong_alias(rw_exit,rw_vector_exit);
    164      1.16        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    165       1.2        ad #endif
    166       1.2        ad 
    167       1.2        ad lockops_t rwlock_lockops = {
    168      1.48     ozaki 	.lo_name = "Reader / writer lock",
    169      1.48     ozaki 	.lo_type = LOCKOPS_SLEEP,
    170      1.48     ozaki 	.lo_dump = rw_dump,
    171       1.2        ad };
    172       1.2        ad 
    173       1.4      yamt syncobj_t rw_syncobj = {
    174      1.49     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    175      1.49     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    176      1.49     ozaki 	.sobj_changepri	= turnstile_changepri,
    177      1.49     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    178      1.49     ozaki 	.sobj_owner	= rw_owner,
    179       1.4      yamt };
    180       1.4      yamt 
    181       1.2        ad /*
    182       1.2        ad  * rw_dump:
    183       1.2        ad  *
    184       1.2        ad  *	Dump the contents of a rwlock structure.
    185       1.2        ad  */
    186      1.11        ad static void
    187      1.54     ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
    188       1.2        ad {
    189      1.47  christos 	const volatile krwlock_t *rw = cookie;
    190       1.2        ad 
    191      1.54     ozaki 	pr("owner/count  : %#018lx flags    : %#018x\n",
    192       1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    193       1.2        ad }
    194       1.2        ad 
    195       1.2        ad /*
    196      1.11        ad  * rw_abort:
    197      1.11        ad  *
    198      1.11        ad  *	Dump information about an error and panic the system.  This
    199      1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    200      1.11        ad  *	we ask the compiler to not inline it.
    201      1.11        ad  */
    202      1.26        ad static void __noinline
    203      1.46  christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    204      1.11        ad {
    205      1.11        ad 
    206      1.11        ad 	if (panicstr != NULL)
    207      1.11        ad 		return;
    208      1.11        ad 
    209      1.46  christos 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    210      1.11        ad }
    211      1.11        ad 
    212      1.11        ad /*
    213       1.2        ad  * rw_init:
    214       1.2        ad  *
    215       1.2        ad  *	Initialize a rwlock for use.
    216       1.2        ad  */
    217      1.50     ozaki void _rw_init(krwlock_t *, uintptr_t);
    218       1.2        ad void
    219      1.50     ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
    220       1.2        ad {
    221      1.12      yamt 	bool dodebug;
    222       1.2        ad 
    223       1.2        ad 	memset(rw, 0, sizeof(*rw));
    224       1.2        ad 
    225      1.50     ozaki 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address);
    226      1.12      yamt 	RW_SETDEBUG(rw, dodebug);
    227       1.2        ad }
    228       1.2        ad 
    229      1.50     ozaki void
    230      1.50     ozaki rw_init(krwlock_t *rw)
    231      1.50     ozaki {
    232      1.50     ozaki 
    233      1.50     ozaki 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    234      1.50     ozaki }
    235      1.50     ozaki 
    236       1.2        ad /*
    237       1.2        ad  * rw_destroy:
    238       1.2        ad  *
    239       1.2        ad  *	Tear down a rwlock.
    240       1.2        ad  */
    241       1.2        ad void
    242       1.2        ad rw_destroy(krwlock_t *rw)
    243       1.2        ad {
    244       1.2        ad 
    245      1.36     skrll 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    246      1.12      yamt 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    247       1.2        ad }
    248       1.2        ad 
    249       1.2        ad /*
    250      1.37     rmind  * rw_oncpu:
    251      1.20        ad  *
    252      1.20        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    253      1.20        ad  *	If the target is waiting on the kernel big lock, then we must
    254      1.20        ad  *	release it.  This is necessary to avoid deadlock.
    255      1.20        ad  */
    256      1.37     rmind static bool
    257      1.37     rmind rw_oncpu(uintptr_t owner)
    258      1.20        ad {
    259      1.20        ad #ifdef MULTIPROCESSOR
    260      1.20        ad 	struct cpu_info *ci;
    261      1.20        ad 	lwp_t *l;
    262      1.20        ad 
    263      1.37     rmind 	KASSERT(kpreempt_disabled());
    264      1.37     rmind 
    265      1.37     rmind 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    266      1.37     rmind 		return false;
    267      1.37     rmind 	}
    268      1.37     rmind 
    269      1.37     rmind 	/*
    270      1.37     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    271      1.37     rmind 	 * We must have kernel preemption disabled for that.
    272      1.37     rmind 	 */
    273      1.20        ad 	l = (lwp_t *)(owner & RW_THREAD);
    274      1.37     rmind 	ci = l->l_cpu;
    275      1.20        ad 
    276      1.37     rmind 	if (ci && ci->ci_curlwp == l) {
    277      1.37     rmind 		/* Target is running; do we need to block? */
    278      1.37     rmind 		return (ci->ci_biglock_wanted != l);
    279      1.37     rmind 	}
    280      1.37     rmind #endif
    281      1.37     rmind 	/* Not running.  It may be safe to block now. */
    282      1.37     rmind 	return false;
    283      1.20        ad }
    284      1.20        ad 
    285      1.20        ad /*
    286       1.2        ad  * rw_vector_enter:
    287       1.2        ad  *
    288       1.2        ad  *	Acquire a rwlock.
    289       1.2        ad  */
    290       1.2        ad void
    291       1.2        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    292       1.2        ad {
    293      1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    294       1.2        ad 	turnstile_t *ts;
    295       1.2        ad 	int queue;
    296       1.7        ad 	lwp_t *l;
    297       1.2        ad 	LOCKSTAT_TIMER(slptime);
    298      1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    299      1.19        ad 	LOCKSTAT_TIMER(spintime);
    300      1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    301       1.2        ad 	LOCKSTAT_FLAG(lsflag);
    302       1.2        ad 
    303       1.2        ad 	l = curlwp;
    304       1.2        ad 	curthread = (uintptr_t)l;
    305       1.2        ad 
    306      1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    307       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    308      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    309       1.2        ad 
    310       1.2        ad 	if (panicstr == NULL) {
    311      1.53     ozaki 		KDASSERT(pserialize_not_in_read_section());
    312       1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    313       1.2        ad 	}
    314       1.2        ad 
    315       1.2        ad 	/*
    316       1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    317       1.2        ad 	 * increment the read count.  If we're a writer, we want to
    318      1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    319       1.2        ad 	 *
    320       1.2        ad 	 * In the latter case, we expect those bits to be zero,
    321       1.2        ad 	 * therefore we can use an add operation to set them, which
    322       1.2        ad 	 * means an add operation for both cases.
    323       1.2        ad 	 */
    324       1.2        ad 	if (__predict_true(op == RW_READER)) {
    325       1.2        ad 		incr = RW_READ_INCR;
    326       1.2        ad 		set_wait = RW_HAS_WAITERS;
    327       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    328       1.2        ad 		queue = TS_READER_Q;
    329       1.2        ad 	} else {
    330       1.2        ad 		RW_DASSERT(rw, op == RW_WRITER);
    331       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    332       1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    333       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    334       1.2        ad 		queue = TS_WRITER_Q;
    335       1.2        ad 	}
    336       1.2        ad 
    337       1.2        ad 	LOCKSTAT_ENTER(lsflag);
    338       1.2        ad 
    339      1.37     rmind 	KPREEMPT_DISABLE(curlwp);
    340      1.55        ad 	for (owner = rw->rw_owner;;) {
    341       1.2        ad 		/*
    342       1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    343       1.2        ad 		 * indicator is clear, then try to acquire the lock.
    344       1.2        ad 		 */
    345       1.2        ad 		if ((owner & need_wait) == 0) {
    346      1.20        ad 			next = rw_cas(rw, owner, (owner + incr) &
    347      1.20        ad 			    ~RW_WRITE_WANTED);
    348      1.20        ad 			if (__predict_true(next == owner)) {
    349       1.2        ad 				/* Got it! */
    350      1.55        ad 				RW_MEMBAR_ENTER();
    351       1.2        ad 				break;
    352       1.2        ad 			}
    353       1.2        ad 
    354       1.2        ad 			/*
    355       1.2        ad 			 * Didn't get it -- spin around again (we'll
    356       1.2        ad 			 * probably sleep on the next iteration).
    357       1.2        ad 			 */
    358      1.20        ad 			owner = next;
    359       1.2        ad 			continue;
    360       1.2        ad 		}
    361      1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    362      1.46  christos 			rw_abort(__func__, __LINE__, rw,
    363      1.46  christos 			    "locking against myself");
    364      1.37     rmind 		}
    365      1.19        ad 		/*
    366      1.19        ad 		 * If the lock owner is running on another CPU, and
    367      1.19        ad 		 * there are no existing waiters, then spin.
    368      1.19        ad 		 */
    369      1.37     rmind 		if (rw_oncpu(owner)) {
    370      1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    371      1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    372      1.20        ad 			do {
    373      1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    374      1.20        ad 				SPINLOCK_BACKOFF(count);
    375      1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    376      1.19        ad 				owner = rw->rw_owner;
    377      1.37     rmind 			} while (rw_oncpu(owner));
    378      1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    379      1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    380      1.19        ad 			if ((owner & need_wait) == 0)
    381      1.19        ad 				continue;
    382      1.19        ad 		}
    383      1.19        ad 
    384       1.2        ad 		/*
    385       1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    386       1.2        ad 		 * can adjust the waiter bits and sleep queue.
    387       1.2        ad 		 */
    388       1.2        ad 		ts = turnstile_lookup(rw);
    389       1.2        ad 
    390       1.2        ad 		/*
    391       1.2        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    392       1.2        ad 		 * then we may not need to sleep and should spin again.
    393      1.20        ad 		 * Reload rw_owner because turnstile_lookup() may have
    394      1.20        ad 		 * spun on the turnstile chain lock.
    395       1.2        ad 		 */
    396      1.20        ad 		owner = rw->rw_owner;
    397      1.37     rmind 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    398      1.20        ad 			turnstile_exit(rw);
    399      1.20        ad 			continue;
    400      1.20        ad 		}
    401      1.20        ad 		next = rw_cas(rw, owner, owner | set_wait);
    402      1.20        ad 		if (__predict_false(next != owner)) {
    403       1.2        ad 			turnstile_exit(rw);
    404      1.20        ad 			owner = next;
    405       1.2        ad 			continue;
    406       1.2        ad 		}
    407       1.2        ad 
    408       1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    409       1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    410       1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    411      1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    412       1.2        ad 
    413      1.20        ad 		/*
    414      1.20        ad 		 * No need for a memory barrier because of context switch.
    415      1.20        ad 		 * If not handed the lock, then spin again.
    416      1.20        ad 		 */
    417      1.58        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    418      1.20        ad 			break;
    419      1.58        ad 
    420      1.39      yamt 		owner = rw->rw_owner;
    421       1.2        ad 	}
    422      1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    423       1.2        ad 
    424  1.59.2.1        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
    425  1.59.2.1        ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
    426  1.59.2.1        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    427  1.59.2.1        ad 	      (uintptr_t)__builtin_return_address(0)));
    428  1.59.2.1        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
    429  1.59.2.1        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    430  1.59.2.1        ad 	      (uintptr_t)__builtin_return_address(0)));
    431       1.2        ad 	LOCKSTAT_EXIT(lsflag);
    432       1.2        ad 
    433       1.2        ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    434       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    435       1.2        ad 	RW_LOCKED(rw, op);
    436       1.2        ad }
    437       1.2        ad 
    438       1.2        ad /*
    439       1.2        ad  * rw_vector_exit:
    440       1.2        ad  *
    441       1.2        ad  *	Release a rwlock.
    442       1.2        ad  */
    443       1.2        ad void
    444       1.2        ad rw_vector_exit(krwlock_t *rw)
    445       1.2        ad {
    446      1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    447       1.2        ad 	turnstile_t *ts;
    448       1.2        ad 	int rcnt, wcnt;
    449       1.7        ad 	lwp_t *l;
    450       1.2        ad 
    451       1.2        ad 	curthread = (uintptr_t)curlwp;
    452       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    453       1.2        ad 
    454       1.2        ad 	/*
    455       1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    456       1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    457       1.2        ad 	 * them, which makes the read-release and write-release path
    458       1.2        ad 	 * the same.
    459       1.2        ad 	 */
    460       1.2        ad 	owner = rw->rw_owner;
    461       1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    462       1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    463       1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    464       1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    465       1.2        ad 	} else {
    466       1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    467       1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    468       1.2        ad 		decr = RW_READ_INCR;
    469       1.2        ad 	}
    470       1.2        ad 
    471       1.2        ad 	/*
    472       1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    473       1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    474       1.2        ad 	 * lock would become unowned.
    475       1.2        ad 	 */
    476      1.55        ad 	RW_MEMBAR_EXIT();
    477      1.58        ad 	for (;;) {
    478      1.44      matt 		newown = (owner - decr);
    479      1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    480       1.2        ad 			break;
    481      1.44      matt 		next = rw_cas(rw, owner, newown);
    482      1.20        ad 		if (__predict_true(next == owner))
    483       1.2        ad 			return;
    484      1.58        ad 		owner = next;
    485       1.2        ad 	}
    486       1.2        ad 
    487      1.20        ad 	/*
    488      1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    489      1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    490      1.20        ad 	 * waiter bits.
    491      1.20        ad 	 */
    492      1.20        ad 	ts = turnstile_lookup(rw);
    493      1.20        ad 	owner = rw->rw_owner;
    494      1.20        ad 	RW_DASSERT(rw, ts != NULL);
    495      1.20        ad 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    496       1.2        ad 
    497      1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    498      1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    499       1.2        ad 
    500      1.20        ad 	/*
    501      1.20        ad 	 * Give the lock away.
    502      1.20        ad 	 *
    503      1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    504      1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    505      1.20        ad 	 * are outstanding readers, or all writers if there are no
    506      1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    507      1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    508      1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    509      1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    510      1.20        ad 	 */
    511      1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    512      1.20        ad 		RW_DASSERT(rw, wcnt != 0);
    513      1.20        ad 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    514       1.2        ad 
    515      1.20        ad 		if (rcnt != 0) {
    516      1.20        ad 			/* Give the lock to the longest waiting writer. */
    517       1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    518      1.44      matt 			newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    519      1.28   thorpej 			if (wcnt > 1)
    520      1.44      matt 				newown |= RW_WRITE_WANTED;
    521      1.44      matt 			rw_swap(rw, owner, newown);
    522       1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    523       1.2        ad 		} else {
    524      1.20        ad 			/* Wake all writers and let them fight it out. */
    525      1.20        ad 			rw_swap(rw, owner, RW_WRITE_WANTED);
    526      1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    527      1.20        ad 		}
    528      1.20        ad 	} else {
    529      1.20        ad 		RW_DASSERT(rw, rcnt != 0);
    530       1.2        ad 
    531      1.20        ad 		/*
    532      1.20        ad 		 * Give the lock to all blocked readers.  If there
    533      1.20        ad 		 * is a writer waiting, new readers that arrive
    534      1.20        ad 		 * after the release will be blocked out.
    535      1.20        ad 		 */
    536      1.44      matt 		newown = rcnt << RW_READ_COUNT_SHIFT;
    537      1.20        ad 		if (wcnt != 0)
    538      1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    539      1.12      yamt 
    540      1.20        ad 		/* Wake up all sleeping readers. */
    541      1.44      matt 		rw_swap(rw, owner, newown);
    542      1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    543       1.2        ad 	}
    544       1.2        ad }
    545       1.2        ad 
    546       1.2        ad /*
    547      1.16        ad  * rw_vector_tryenter:
    548       1.2        ad  *
    549       1.2        ad  *	Try to acquire a rwlock.
    550       1.2        ad  */
    551       1.2        ad int
    552      1.16        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    553       1.2        ad {
    554      1.20        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    555       1.2        ad 
    556       1.2        ad 	curthread = (uintptr_t)curlwp;
    557       1.2        ad 
    558       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    559       1.2        ad 
    560       1.2        ad 	if (op == RW_READER) {
    561       1.2        ad 		incr = RW_READ_INCR;
    562       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    563       1.2        ad 	} else {
    564       1.2        ad 		RW_DASSERT(rw, op == RW_WRITER);
    565       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    566       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    567       1.2        ad 	}
    568       1.2        ad 
    569      1.58        ad 	for (owner = rw->rw_owner;; owner = next) {
    570      1.58        ad 		if (__predict_false((owner & need_wait) != 0))
    571      1.58        ad 			return 0;
    572      1.20        ad 		next = rw_cas(rw, owner, owner + incr);
    573      1.20        ad 		if (__predict_true(next == owner)) {
    574      1.20        ad 			/* Got it! */
    575      1.55        ad 			RW_MEMBAR_ENTER();
    576      1.20        ad 			break;
    577       1.2        ad 		}
    578       1.2        ad 	}
    579       1.2        ad 
    580      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    581       1.2        ad 	RW_LOCKED(rw, op);
    582       1.2        ad 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    583       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    584       1.7        ad 
    585       1.2        ad 	return 1;
    586       1.2        ad }
    587       1.2        ad 
    588       1.2        ad /*
    589       1.2        ad  * rw_downgrade:
    590       1.2        ad  *
    591      1.55        ad  *	Downgrade a write lock to a read lock.  Optimise memory accesses for
    592      1.55        ad  *	the uncontended case.
    593       1.2        ad  */
    594       1.2        ad void
    595       1.2        ad rw_downgrade(krwlock_t *rw)
    596       1.2        ad {
    597      1.44      matt 	uintptr_t owner, curthread, newown, next;
    598       1.2        ad 	turnstile_t *ts;
    599       1.2        ad 	int rcnt, wcnt;
    600       1.2        ad 
    601       1.2        ad 	curthread = (uintptr_t)curlwp;
    602       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    603       1.2        ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    604       1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    605       1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    606      1.42       mrg #if !defined(DIAGNOSTIC)
    607      1.42       mrg 	__USE(curthread);
    608      1.42       mrg #endif
    609      1.42       mrg 
    610      1.55        ad 	/*
    611      1.55        ad 	 * If there are no waiters, so we can do this the easy way.
    612      1.55        ad 	 * Try swapping us down to one read hold.  If it fails, the
    613      1.55        ad 	 * lock condition has changed and we most likely now have
    614      1.55        ad 	 * waiters.
    615      1.55        ad 	 */
    616      1.55        ad 	RW_MEMBAR_PRODUCER();
    617      1.55        ad 	owner = curthread | RW_WRITE_LOCKED;
    618      1.55        ad 	next = rw_cas(rw, owner, RW_READ_INCR);
    619      1.55        ad 	if (__predict_true(next == owner)) {
    620      1.55        ad 		RW_LOCKED(rw, RW_READER);
    621      1.55        ad 		RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    622      1.55        ad 		RW_DASSERT(rw, RW_COUNT(rw) != 0);
    623      1.55        ad 		return;
    624       1.2        ad 	}
    625       1.2        ad 
    626       1.2        ad 	/*
    627       1.2        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    628       1.2        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    629       1.2        ad 	 * waiter bits.
    630       1.2        ad 	 */
    631      1.55        ad 	for (;;) {
    632      1.55        ad 		owner = next;
    633       1.2        ad 		ts = turnstile_lookup(rw);
    634       1.2        ad 		RW_DASSERT(rw, ts != NULL);
    635       1.2        ad 
    636       1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    637       1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    638       1.2        ad 
    639       1.2        ad 		/*
    640       1.2        ad 		 * If there are no readers, just preserve the waiters
    641       1.2        ad 		 * bits, swap us down to one read hold and return.
    642       1.2        ad 		 */
    643       1.2        ad 		if (rcnt == 0) {
    644       1.2        ad 			RW_DASSERT(rw, wcnt != 0);
    645       1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    646       1.2        ad 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    647       1.2        ad 
    648      1.44      matt 			newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    649      1.44      matt 			next = rw_cas(rw, owner, newown);
    650      1.27     rmind 			turnstile_exit(rw);
    651      1.20        ad 			if (__predict_true(next == owner))
    652      1.20        ad 				break;
    653      1.20        ad 		} else {
    654      1.20        ad 			/*
    655      1.20        ad 			 * Give the lock to all blocked readers.  We may
    656      1.20        ad 			 * retain one read hold if downgrading.  If there
    657      1.20        ad 			 * is a writer waiting, new readers will be blocked
    658      1.20        ad 			 * out.
    659      1.20        ad 			 */
    660      1.44      matt 			newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    661      1.20        ad 			if (wcnt != 0)
    662      1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    663      1.20        ad 
    664      1.44      matt 			next = rw_cas(rw, owner, newown);
    665      1.20        ad 			if (__predict_true(next == owner)) {
    666      1.20        ad 				/* Wake up all sleeping readers. */
    667      1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    668      1.20        ad 				break;
    669       1.2        ad 			}
    670      1.27     rmind 			turnstile_exit(rw);
    671       1.2        ad 		}
    672       1.2        ad 	}
    673       1.2        ad 
    674      1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    675       1.2        ad 	RW_LOCKED(rw, RW_READER);
    676       1.2        ad 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    677       1.2        ad 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    678       1.2        ad }
    679       1.2        ad 
    680       1.2        ad /*
    681       1.2        ad  * rw_tryupgrade:
    682       1.2        ad  *
    683      1.55        ad  *	Try to upgrade a read lock to a write lock.  We must be the only
    684      1.55        ad  *	reader.  Optimise memory accesses for the uncontended case.
    685       1.2        ad  */
    686       1.2        ad int
    687       1.2        ad rw_tryupgrade(krwlock_t *rw)
    688       1.2        ad {
    689      1.44      matt 	uintptr_t owner, curthread, newown, next;
    690       1.2        ad 
    691       1.2        ad 	curthread = (uintptr_t)curlwp;
    692       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    693      1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    694       1.2        ad 
    695      1.55        ad 	for (owner = RW_READ_INCR;; owner = next) {
    696      1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    697      1.44      matt 		next = rw_cas(rw, owner, newown);
    698      1.30        ad 		if (__predict_true(next == owner)) {
    699      1.55        ad 			RW_MEMBAR_PRODUCER();
    700       1.2        ad 			break;
    701      1.30        ad 		}
    702      1.55        ad 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    703      1.55        ad 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    704      1.55        ad 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    705      1.55        ad 			return 0;
    706      1.55        ad 		}
    707       1.2        ad 	}
    708       1.2        ad 
    709       1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    710      1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    711       1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    712       1.2        ad 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    713       1.2        ad 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    714       1.2        ad 
    715       1.2        ad 	return 1;
    716       1.2        ad }
    717       1.2        ad 
    718       1.2        ad /*
    719       1.2        ad  * rw_read_held:
    720       1.2        ad  *
    721       1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    722       1.2        ad  *	used for diagnostic assertions, and never be used to make
    723       1.2        ad  * 	decisions about how to use a rwlock.
    724       1.2        ad  */
    725       1.2        ad int
    726       1.2        ad rw_read_held(krwlock_t *rw)
    727       1.2        ad {
    728       1.2        ad 	uintptr_t owner;
    729       1.2        ad 
    730      1.21        ad 	if (rw == NULL)
    731      1.21        ad 		return 0;
    732       1.2        ad 	owner = rw->rw_owner;
    733       1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    734       1.2        ad }
    735       1.2        ad 
    736       1.2        ad /*
    737       1.2        ad  * rw_write_held:
    738       1.2        ad  *
    739       1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    740       1.2        ad  *	used for diagnostic assertions, and never be used to make
    741       1.2        ad  *	decisions about how to use a rwlock.
    742       1.2        ad  */
    743       1.2        ad int
    744       1.2        ad rw_write_held(krwlock_t *rw)
    745       1.2        ad {
    746       1.2        ad 
    747      1.21        ad 	if (rw == NULL)
    748      1.21        ad 		return 0;
    749      1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    750      1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    751       1.2        ad }
    752       1.2        ad 
    753       1.2        ad /*
    754       1.2        ad  * rw_lock_held:
    755       1.2        ad  *
    756       1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    757       1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    758       1.2        ad  *	decisions about how to use a rwlock.
    759       1.2        ad  */
    760       1.2        ad int
    761       1.2        ad rw_lock_held(krwlock_t *rw)
    762       1.2        ad {
    763       1.2        ad 
    764      1.21        ad 	if (rw == NULL)
    765      1.21        ad 		return 0;
    766       1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    767       1.2        ad }
    768       1.4      yamt 
    769       1.5        ad /*
    770       1.5        ad  * rw_owner:
    771       1.5        ad  *
    772       1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    773       1.5        ad  *	held.  Used for priority inheritance.
    774       1.5        ad  */
    775       1.7        ad static lwp_t *
    776       1.4      yamt rw_owner(wchan_t obj)
    777       1.4      yamt {
    778       1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    779       1.4      yamt 	uintptr_t owner = rw->rw_owner;
    780       1.4      yamt 
    781       1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    782       1.4      yamt 		return NULL;
    783       1.4      yamt 
    784       1.4      yamt 	return (void *)(owner & RW_THREAD);
    785       1.4      yamt }
    786