Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.59.2.4
      1  1.59.2.4        ad /*	$NetBSD: kern_rwlock.c,v 1.59.2.4 2020/01/22 11:40:17 ad Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4  1.59.2.1        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
      5  1.59.2.1        ad  *     The NetBSD Foundation, Inc.
      6       1.2        ad  * All rights reserved.
      7       1.2        ad  *
      8       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      9       1.2        ad  * by Jason R. Thorpe and Andrew Doran.
     10       1.2        ad  *
     11       1.2        ad  * Redistribution and use in source and binary forms, with or without
     12       1.2        ad  * modification, are permitted provided that the following conditions
     13       1.2        ad  * are met:
     14       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     15       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     16       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     18       1.2        ad  *    documentation and/or other materials provided with the distribution.
     19       1.2        ad  *
     20       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     31       1.2        ad  */
     32       1.2        ad 
     33       1.2        ad /*
     34       1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     35       1.2        ad  * found in Solaris, a description of which can be found in:
     36       1.2        ad  *
     37       1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38       1.2        ad  *	    Richard McDougall.
     39       1.2        ad  */
     40       1.2        ad 
     41      1.10       dsl #include <sys/cdefs.h>
     42  1.59.2.4        ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.59.2.4 2020/01/22 11:40:17 ad Exp $");
     43  1.59.2.2        ad 
     44  1.59.2.2        ad #include "opt_lockdebug.h"
     45       1.2        ad 
     46       1.2        ad #define	__RWLOCK_PRIVATE
     47       1.2        ad 
     48       1.2        ad #include <sys/param.h>
     49       1.2        ad #include <sys/proc.h>
     50       1.2        ad #include <sys/rwlock.h>
     51       1.2        ad #include <sys/sched.h>
     52       1.2        ad #include <sys/sleepq.h>
     53       1.2        ad #include <sys/systm.h>
     54       1.2        ad #include <sys/lockdebug.h>
     55      1.11        ad #include <sys/cpu.h>
     56      1.14        ad #include <sys/atomic.h>
     57      1.15        ad #include <sys/lock.h>
     58      1.51     ozaki #include <sys/pserialize.h>
     59       1.2        ad 
     60       1.2        ad #include <dev/lockstat.h>
     61       1.2        ad 
     62  1.59.2.4        ad #include <machine/rwlock.h>
     63  1.59.2.4        ad 
     64       1.2        ad /*
     65       1.2        ad  * LOCKDEBUG
     66       1.2        ad  */
     67       1.2        ad 
     68  1.59.2.2        ad #define	RW_DEBUG_P(rw)		(((rw)->rw_owner & RW_NODEBUG) == 0)
     69       1.2        ad 
     70  1.59.2.2        ad #define	RW_WANTLOCK(rw, op) \
     71  1.59.2.2        ad     LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
     72  1.59.2.2        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73  1.59.2.2        ad #define	RW_LOCKED(rw, op) \
     74  1.59.2.2        ad     LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
     75  1.59.2.2        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     76  1.59.2.2        ad #define	RW_UNLOCKED(rw, op) \
     77  1.59.2.2        ad     LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
     78  1.59.2.2        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     79       1.2        ad 
     80       1.2        ad /*
     81       1.2        ad  * DIAGNOSTIC
     82       1.2        ad  */
     83       1.2        ad 
     84       1.2        ad #if defined(DIAGNOSTIC)
     85  1.59.2.2        ad #define	RW_ASSERT(rw, cond) \
     86  1.59.2.2        ad do { \
     87  1.59.2.2        ad 	if (__predict_false(!(cond))) \
     88      1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     89       1.2        ad } while (/* CONSTCOND */ 0)
     90       1.2        ad #else
     91       1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
     92       1.2        ad #endif	/* DIAGNOSTIC */
     93       1.2        ad 
     94      1.55        ad /*
     95      1.55        ad  * Memory barriers.
     96      1.55        ad  */
     97      1.55        ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
     98      1.55        ad #define	RW_MEMBAR_ENTER()
     99      1.55        ad #define	RW_MEMBAR_EXIT()
    100      1.55        ad #define	RW_MEMBAR_PRODUCER()
    101      1.55        ad #else
    102      1.55        ad #define	RW_MEMBAR_ENTER()		membar_enter()
    103      1.55        ad #define	RW_MEMBAR_EXIT()		membar_exit()
    104      1.55        ad #define	RW_MEMBAR_PRODUCER()		membar_producer()
    105      1.55        ad #endif
    106      1.55        ad 
    107  1.59.2.4        ad /*
    108  1.59.2.4        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    109  1.59.2.4        ad  */
    110  1.59.2.4        ad #ifdef LOCKDEBUG
    111  1.59.2.4        ad #undef	__HAVE_RW_STUBS
    112  1.59.2.4        ad #endif
    113  1.59.2.4        ad 
    114  1.59.2.4        ad #ifndef __HAVE_RW_STUBS
    115  1.59.2.4        ad __strong_alias(rw_enter,rw_vector_enter);
    116  1.59.2.4        ad __strong_alias(rw_exit,rw_vector_exit);
    117  1.59.2.4        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    118  1.59.2.4        ad #endif
    119  1.59.2.4        ad 
    120  1.59.2.2        ad static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    121  1.59.2.2        ad static void	rw_dump(const volatile void *, lockop_printer_t);
    122  1.59.2.2        ad static lwp_t	*rw_owner(wchan_t);
    123  1.59.2.2        ad 
    124       1.2        ad lockops_t rwlock_lockops = {
    125      1.48     ozaki 	.lo_name = "Reader / writer lock",
    126      1.48     ozaki 	.lo_type = LOCKOPS_SLEEP,
    127      1.48     ozaki 	.lo_dump = rw_dump,
    128       1.2        ad };
    129       1.2        ad 
    130       1.4      yamt syncobj_t rw_syncobj = {
    131      1.49     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    132      1.49     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    133      1.49     ozaki 	.sobj_changepri	= turnstile_changepri,
    134      1.49     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    135      1.49     ozaki 	.sobj_owner	= rw_owner,
    136       1.4      yamt };
    137       1.4      yamt 
    138       1.2        ad /*
    139  1.59.2.2        ad  * rw_cas:
    140  1.59.2.2        ad  *
    141  1.59.2.2        ad  *	Do an atomic compare-and-swap on the lock word.
    142  1.59.2.2        ad  */
    143  1.59.2.2        ad static inline uintptr_t
    144  1.59.2.2        ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    145  1.59.2.2        ad {
    146  1.59.2.2        ad 
    147  1.59.2.2        ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    148  1.59.2.2        ad 	    (void *)o, (void *)n);
    149  1.59.2.2        ad }
    150  1.59.2.2        ad 
    151  1.59.2.2        ad /*
    152  1.59.2.2        ad  * rw_swap:
    153  1.59.2.2        ad  *
    154  1.59.2.2        ad  *	Do an atomic swap of the lock word.  This is used only when it's
    155  1.59.2.2        ad  *	known that the lock word is set up such that it can't be changed
    156  1.59.2.2        ad  *	behind us (assert this), so there's no point considering the result.
    157  1.59.2.2        ad  */
    158  1.59.2.2        ad static inline void
    159  1.59.2.2        ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    160  1.59.2.2        ad {
    161  1.59.2.2        ad 
    162  1.59.2.2        ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    163  1.59.2.2        ad 	    (void *)n);
    164  1.59.2.2        ad 
    165  1.59.2.2        ad 	RW_ASSERT(rw, n == o);
    166  1.59.2.2        ad 	RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
    167  1.59.2.2        ad }
    168  1.59.2.2        ad 
    169  1.59.2.2        ad /*
    170       1.2        ad  * rw_dump:
    171       1.2        ad  *
    172       1.2        ad  *	Dump the contents of a rwlock structure.
    173       1.2        ad  */
    174      1.11        ad static void
    175      1.54     ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
    176       1.2        ad {
    177      1.47  christos 	const volatile krwlock_t *rw = cookie;
    178       1.2        ad 
    179      1.54     ozaki 	pr("owner/count  : %#018lx flags    : %#018x\n",
    180       1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    181       1.2        ad }
    182       1.2        ad 
    183       1.2        ad /*
    184      1.11        ad  * rw_abort:
    185      1.11        ad  *
    186      1.11        ad  *	Dump information about an error and panic the system.  This
    187      1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    188      1.11        ad  *	we ask the compiler to not inline it.
    189      1.11        ad  */
    190      1.26        ad static void __noinline
    191      1.46  christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    192      1.11        ad {
    193      1.11        ad 
    194      1.11        ad 	if (panicstr != NULL)
    195      1.11        ad 		return;
    196      1.11        ad 
    197      1.46  christos 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    198      1.11        ad }
    199      1.11        ad 
    200      1.11        ad /*
    201       1.2        ad  * rw_init:
    202       1.2        ad  *
    203       1.2        ad  *	Initialize a rwlock for use.
    204       1.2        ad  */
    205       1.2        ad void
    206      1.50     ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
    207       1.2        ad {
    208       1.2        ad 
    209  1.59.2.4        ad #ifdef LOCKDEBUG
    210  1.59.2.4        ad 	/* XXX only because the assembly stubs can't handle RW_NODEBUG */
    211  1.59.2.2        ad 	if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
    212  1.59.2.4        ad 		rw->rw_owner = 0;
    213  1.59.2.2        ad 	else
    214  1.59.2.4        ad 		rw->rw_owner = RW_NODEBUG;
    215  1.59.2.4        ad #else
    216  1.59.2.4        ad 	rw->rw_owner = 0;
    217  1.59.2.4        ad #endif
    218       1.2        ad }
    219       1.2        ad 
    220      1.50     ozaki void
    221      1.50     ozaki rw_init(krwlock_t *rw)
    222      1.50     ozaki {
    223      1.50     ozaki 
    224      1.50     ozaki 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    225      1.50     ozaki }
    226      1.50     ozaki 
    227       1.2        ad /*
    228       1.2        ad  * rw_destroy:
    229       1.2        ad  *
    230       1.2        ad  *	Tear down a rwlock.
    231       1.2        ad  */
    232       1.2        ad void
    233       1.2        ad rw_destroy(krwlock_t *rw)
    234       1.2        ad {
    235       1.2        ad 
    236  1.59.2.4        ad 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    237  1.59.2.2        ad 	LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
    238       1.2        ad }
    239       1.2        ad 
    240       1.2        ad /*
    241  1.59.2.4        ad  * rw_oncpu:
    242  1.59.2.4        ad  *
    243  1.59.2.4        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    244  1.59.2.4        ad  *	If the target is waiting on the kernel big lock, then we must
    245  1.59.2.4        ad  *	release it.  This is necessary to avoid deadlock.
    246  1.59.2.4        ad  */
    247  1.59.2.4        ad static bool
    248  1.59.2.4        ad rw_oncpu(uintptr_t owner)
    249  1.59.2.4        ad {
    250  1.59.2.4        ad #ifdef MULTIPROCESSOR
    251  1.59.2.4        ad 	struct cpu_info *ci;
    252  1.59.2.4        ad 	lwp_t *l;
    253  1.59.2.4        ad 
    254  1.59.2.4        ad 	KASSERT(kpreempt_disabled());
    255  1.59.2.4        ad 
    256  1.59.2.4        ad 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    257  1.59.2.4        ad 		return false;
    258  1.59.2.4        ad 	}
    259  1.59.2.4        ad 
    260  1.59.2.4        ad 	/*
    261  1.59.2.4        ad 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    262  1.59.2.4        ad 	 * We must have kernel preemption disabled for that.
    263  1.59.2.4        ad 	 */
    264  1.59.2.4        ad 	l = (lwp_t *)(owner & RW_THREAD);
    265  1.59.2.4        ad 	ci = l->l_cpu;
    266  1.59.2.4        ad 
    267  1.59.2.4        ad 	if (ci && ci->ci_curlwp == l) {
    268  1.59.2.4        ad 		/* Target is running; do we need to block? */
    269  1.59.2.4        ad 		return (ci->ci_biglock_wanted != l);
    270  1.59.2.4        ad 	}
    271  1.59.2.4        ad #endif
    272  1.59.2.4        ad 	/* Not running.  It may be safe to block now. */
    273  1.59.2.4        ad 	return false;
    274  1.59.2.4        ad }
    275  1.59.2.4        ad 
    276  1.59.2.4        ad /*
    277       1.2        ad  * rw_vector_enter:
    278       1.2        ad  *
    279  1.59.2.4        ad  *	Acquire a rwlock.
    280       1.2        ad  */
    281  1.59.2.4        ad void
    282  1.59.2.4        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    283       1.2        ad {
    284      1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    285       1.2        ad 	turnstile_t *ts;
    286       1.2        ad 	int queue;
    287       1.7        ad 	lwp_t *l;
    288       1.2        ad 	LOCKSTAT_TIMER(slptime);
    289      1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    290      1.19        ad 	LOCKSTAT_TIMER(spintime);
    291      1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    292       1.2        ad 	LOCKSTAT_FLAG(lsflag);
    293       1.2        ad 
    294       1.2        ad 	l = curlwp;
    295       1.2        ad 	curthread = (uintptr_t)l;
    296       1.2        ad 
    297      1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    298       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    299      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    300       1.2        ad 
    301       1.2        ad 	if (panicstr == NULL) {
    302      1.53     ozaki 		KDASSERT(pserialize_not_in_read_section());
    303       1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    304       1.2        ad 	}
    305       1.2        ad 
    306       1.2        ad 	/*
    307       1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    308       1.2        ad 	 * increment the read count.  If we're a writer, we want to
    309      1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    310       1.2        ad 	 *
    311       1.2        ad 	 * In the latter case, we expect those bits to be zero,
    312       1.2        ad 	 * therefore we can use an add operation to set them, which
    313       1.2        ad 	 * means an add operation for both cases.
    314       1.2        ad 	 */
    315       1.2        ad 	if (__predict_true(op == RW_READER)) {
    316       1.2        ad 		incr = RW_READ_INCR;
    317       1.2        ad 		set_wait = RW_HAS_WAITERS;
    318       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    319       1.2        ad 		queue = TS_READER_Q;
    320       1.2        ad 	} else {
    321  1.59.2.2        ad 		RW_ASSERT(rw, op == RW_WRITER);
    322       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    323       1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    324       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    325       1.2        ad 		queue = TS_WRITER_Q;
    326       1.2        ad 	}
    327       1.2        ad 
    328       1.2        ad 	LOCKSTAT_ENTER(lsflag);
    329       1.2        ad 
    330  1.59.2.4        ad 	KPREEMPT_DISABLE(curlwp);
    331      1.55        ad 	for (owner = rw->rw_owner;;) {
    332       1.2        ad 		/*
    333       1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    334       1.2        ad 		 * indicator is clear, then try to acquire the lock.
    335       1.2        ad 		 */
    336       1.2        ad 		if ((owner & need_wait) == 0) {
    337  1.59.2.4        ad 			next = rw_cas(rw, owner, (owner + incr) &
    338  1.59.2.4        ad 			    ~RW_WRITE_WANTED);
    339      1.20        ad 			if (__predict_true(next == owner)) {
    340       1.2        ad 				/* Got it! */
    341      1.55        ad 				RW_MEMBAR_ENTER();
    342       1.2        ad 				break;
    343       1.2        ad 			}
    344       1.2        ad 
    345       1.2        ad 			/*
    346       1.2        ad 			 * Didn't get it -- spin around again (we'll
    347       1.2        ad 			 * probably sleep on the next iteration).
    348       1.2        ad 			 */
    349      1.20        ad 			owner = next;
    350       1.2        ad 			continue;
    351       1.2        ad 		}
    352      1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    353      1.46  christos 			rw_abort(__func__, __LINE__, rw,
    354      1.46  christos 			    "locking against myself");
    355      1.37     rmind 		}
    356      1.19        ad 		/*
    357  1.59.2.4        ad 		 * If the lock owner is running on another CPU, and
    358  1.59.2.4        ad 		 * there are no existing waiters, then spin.
    359      1.19        ad 		 */
    360  1.59.2.4        ad 		if (rw_oncpu(owner)) {
    361      1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    362      1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    363      1.20        ad 			do {
    364      1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    365      1.20        ad 				SPINLOCK_BACKOFF(count);
    366      1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    367      1.19        ad 				owner = rw->rw_owner;
    368  1.59.2.4        ad 			} while (rw_oncpu(owner));
    369      1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    370      1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    371      1.19        ad 			if ((owner & need_wait) == 0)
    372      1.19        ad 				continue;
    373      1.19        ad 		}
    374      1.19        ad 
    375       1.2        ad 		/*
    376       1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    377       1.2        ad 		 * can adjust the waiter bits and sleep queue.
    378       1.2        ad 		 */
    379       1.2        ad 		ts = turnstile_lookup(rw);
    380       1.2        ad 
    381       1.2        ad 		/*
    382  1.59.2.4        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    383  1.59.2.4        ad 		 * then we may not need to sleep and should spin again.
    384  1.59.2.4        ad 		 * Reload rw_owner because turnstile_lookup() may have
    385  1.59.2.4        ad 		 * spun on the turnstile chain lock.
    386       1.2        ad 		 */
    387      1.20        ad 		owner = rw->rw_owner;
    388  1.59.2.4        ad 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    389      1.20        ad 			turnstile_exit(rw);
    390      1.20        ad 			continue;
    391      1.20        ad 		}
    392  1.59.2.4        ad 		next = rw_cas(rw, owner, owner | set_wait);
    393      1.20        ad 		if (__predict_false(next != owner)) {
    394       1.2        ad 			turnstile_exit(rw);
    395      1.20        ad 			owner = next;
    396       1.2        ad 			continue;
    397       1.2        ad 		}
    398       1.2        ad 
    399       1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    400       1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    401       1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    402      1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    403       1.2        ad 
    404      1.20        ad 		/*
    405      1.20        ad 		 * No need for a memory barrier because of context switch.
    406      1.20        ad 		 * If not handed the lock, then spin again.
    407      1.20        ad 		 */
    408      1.58        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    409      1.20        ad 			break;
    410      1.58        ad 
    411      1.39      yamt 		owner = rw->rw_owner;
    412       1.2        ad 	}
    413      1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    414       1.2        ad 
    415  1.59.2.1        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
    416  1.59.2.1        ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
    417  1.59.2.4        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    418  1.59.2.4        ad 	      (uintptr_t)__builtin_return_address(0)));
    419  1.59.2.1        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
    420  1.59.2.4        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    421  1.59.2.4        ad 	      (uintptr_t)__builtin_return_address(0)));
    422       1.2        ad 	LOCKSTAT_EXIT(lsflag);
    423       1.2        ad 
    424  1.59.2.2        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    425       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    426       1.2        ad 	RW_LOCKED(rw, op);
    427       1.2        ad }
    428       1.2        ad 
    429       1.2        ad /*
    430  1.59.2.3        ad  * rw_vector_exit:
    431  1.59.2.3        ad  *
    432  1.59.2.4        ad  *	Release a rwlock.
    433  1.59.2.3        ad  */
    434  1.59.2.4        ad void
    435       1.2        ad rw_vector_exit(krwlock_t *rw)
    436       1.2        ad {
    437      1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    438       1.2        ad 	turnstile_t *ts;
    439       1.2        ad 	int rcnt, wcnt;
    440       1.7        ad 	lwp_t *l;
    441       1.2        ad 
    442  1.59.2.2        ad 	l = curlwp;
    443  1.59.2.2        ad 	curthread = (uintptr_t)l;
    444       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    445       1.2        ad 
    446       1.2        ad 	/*
    447       1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    448       1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    449       1.2        ad 	 * them, which makes the read-release and write-release path
    450       1.2        ad 	 * the same.
    451       1.2        ad 	 */
    452       1.2        ad 	owner = rw->rw_owner;
    453       1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    454       1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    455       1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    456       1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    457       1.2        ad 	} else {
    458       1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    459       1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    460       1.2        ad 		decr = RW_READ_INCR;
    461       1.2        ad 	}
    462       1.2        ad 
    463       1.2        ad 	/*
    464       1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    465       1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    466       1.2        ad 	 * lock would become unowned.
    467       1.2        ad 	 */
    468      1.55        ad 	RW_MEMBAR_EXIT();
    469      1.58        ad 	for (;;) {
    470      1.44      matt 		newown = (owner - decr);
    471      1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    472       1.2        ad 			break;
    473      1.44      matt 		next = rw_cas(rw, owner, newown);
    474  1.59.2.4        ad 		if (__predict_true(next == owner))
    475       1.2        ad 			return;
    476      1.58        ad 		owner = next;
    477       1.2        ad 	}
    478       1.2        ad 
    479      1.20        ad 	/*
    480      1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    481      1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    482      1.20        ad 	 * waiter bits.
    483      1.20        ad 	 */
    484      1.20        ad 	ts = turnstile_lookup(rw);
    485      1.20        ad 	owner = rw->rw_owner;
    486  1.59.2.2        ad 	RW_ASSERT(rw, ts != NULL);
    487  1.59.2.2        ad 	RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    488       1.2        ad 
    489      1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    490      1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    491       1.2        ad 
    492      1.20        ad 	/*
    493      1.20        ad 	 * Give the lock away.
    494      1.20        ad 	 *
    495      1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    496      1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    497      1.20        ad 	 * are outstanding readers, or all writers if there are no
    498      1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    499      1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    500      1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    501      1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    502      1.20        ad 	 */
    503      1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    504  1.59.2.2        ad 		RW_ASSERT(rw, wcnt != 0);
    505  1.59.2.2        ad 		RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    506       1.2        ad 
    507      1.20        ad 		if (rcnt != 0) {
    508      1.20        ad 			/* Give the lock to the longest waiting writer. */
    509       1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    510  1.59.2.2        ad 			newown = (uintptr_t)l | (owner & RW_NODEBUG);
    511  1.59.2.2        ad 			newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
    512      1.28   thorpej 			if (wcnt > 1)
    513      1.44      matt 				newown |= RW_WRITE_WANTED;
    514      1.44      matt 			rw_swap(rw, owner, newown);
    515       1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    516       1.2        ad 		} else {
    517      1.20        ad 			/* Wake all writers and let them fight it out. */
    518  1.59.2.2        ad 			newown = owner & RW_NODEBUG;
    519  1.59.2.2        ad 			newown |= RW_WRITE_WANTED;
    520  1.59.2.2        ad 			rw_swap(rw, owner, newown);
    521      1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    522      1.20        ad 		}
    523      1.20        ad 	} else {
    524  1.59.2.2        ad 		RW_ASSERT(rw, rcnt != 0);
    525       1.2        ad 
    526      1.20        ad 		/*
    527      1.20        ad 		 * Give the lock to all blocked readers.  If there
    528      1.20        ad 		 * is a writer waiting, new readers that arrive
    529      1.20        ad 		 * after the release will be blocked out.
    530      1.20        ad 		 */
    531  1.59.2.2        ad 		newown = owner & RW_NODEBUG;
    532  1.59.2.2        ad 		newown += rcnt << RW_READ_COUNT_SHIFT;
    533      1.20        ad 		if (wcnt != 0)
    534      1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    535      1.12      yamt 
    536      1.20        ad 		/* Wake up all sleeping readers. */
    537      1.44      matt 		rw_swap(rw, owner, newown);
    538      1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    539       1.2        ad 	}
    540  1.59.2.3        ad }
    541  1.59.2.3        ad 
    542  1.59.2.3        ad /*
    543  1.59.2.4        ad  * rw_vector_tryenter:
    544       1.2        ad  *
    545       1.2        ad  *	Try to acquire a rwlock.
    546       1.2        ad  */
    547       1.2        ad int
    548  1.59.2.4        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    549       1.2        ad {
    550  1.59.2.4        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    551  1.59.2.2        ad 	lwp_t *l;
    552       1.2        ad 
    553  1.59.2.2        ad 	l = curlwp;
    554  1.59.2.2        ad 	curthread = (uintptr_t)l;
    555       1.2        ad 
    556       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    557       1.2        ad 
    558       1.2        ad 	if (op == RW_READER) {
    559       1.2        ad 		incr = RW_READ_INCR;
    560       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    561       1.2        ad 	} else {
    562  1.59.2.2        ad 		RW_ASSERT(rw, op == RW_WRITER);
    563       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    564       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    565       1.2        ad 	}
    566       1.2        ad 
    567      1.58        ad 	for (owner = rw->rw_owner;; owner = next) {
    568  1.59.2.4        ad 		if (__predict_false((owner & need_wait) != 0))
    569      1.58        ad 			return 0;
    570  1.59.2.4        ad 		next = rw_cas(rw, owner, owner + incr);
    571      1.20        ad 		if (__predict_true(next == owner)) {
    572      1.20        ad 			/* Got it! */
    573      1.20        ad 			break;
    574       1.2        ad 		}
    575       1.2        ad 	}
    576       1.2        ad 
    577      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    578       1.2        ad 	RW_LOCKED(rw, op);
    579  1.59.2.2        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    580       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    581       1.7        ad 
    582  1.59.2.2        ad 	RW_MEMBAR_ENTER();
    583       1.2        ad 	return 1;
    584       1.2        ad }
    585       1.2        ad 
    586       1.2        ad /*
    587       1.2        ad  * rw_downgrade:
    588       1.2        ad  *
    589  1.59.2.2        ad  *	Downgrade a write lock to a read lock.
    590       1.2        ad  */
    591       1.2        ad void
    592       1.2        ad rw_downgrade(krwlock_t *rw)
    593       1.2        ad {
    594      1.44      matt 	uintptr_t owner, curthread, newown, next;
    595       1.2        ad 	turnstile_t *ts;
    596       1.2        ad 	int rcnt, wcnt;
    597  1.59.2.2        ad 	lwp_t *l;
    598       1.2        ad 
    599  1.59.2.2        ad 	l = curlwp;
    600  1.59.2.2        ad 	curthread = (uintptr_t)l;
    601       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    602  1.59.2.2        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    603       1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    604       1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    605      1.42       mrg #if !defined(DIAGNOSTIC)
    606      1.42       mrg 	__USE(curthread);
    607      1.42       mrg #endif
    608      1.42       mrg 
    609      1.55        ad 	RW_MEMBAR_PRODUCER();
    610       1.2        ad 
    611  1.59.2.2        ad 	for (owner = rw->rw_owner;; owner = next) {
    612  1.59.2.2        ad 		/*
    613  1.59.2.2        ad 		 * If there are no waiters we can do this the easy way.  Try
    614  1.59.2.2        ad 		 * swapping us down to one read hold.  If it fails, the lock
    615  1.59.2.2        ad 		 * condition has changed and we most likely now have
    616  1.59.2.2        ad 		 * waiters.
    617  1.59.2.2        ad 		 */
    618  1.59.2.2        ad 		if ((owner & RW_HAS_WAITERS) == 0) {
    619  1.59.2.4        ad 			newown = (owner & RW_NODEBUG);
    620  1.59.2.2        ad 			next = rw_cas(rw, owner, newown + RW_READ_INCR);
    621  1.59.2.2        ad 			if (__predict_true(next == owner)) {
    622  1.59.2.2        ad 				RW_LOCKED(rw, RW_READER);
    623  1.59.2.2        ad 				RW_ASSERT(rw,
    624  1.59.2.2        ad 				    (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    625  1.59.2.2        ad 				RW_ASSERT(rw, RW_COUNT(rw) != 0);
    626  1.59.2.2        ad 				return;
    627  1.59.2.2        ad 			}
    628  1.59.2.2        ad 			continue;
    629  1.59.2.2        ad 		}
    630  1.59.2.2        ad 
    631  1.59.2.2        ad 		/*
    632  1.59.2.2        ad 		 * Grab the turnstile chain lock.  This gets the interlock
    633  1.59.2.2        ad 		 * on the sleep queue.  Once we have that, we can adjust the
    634  1.59.2.2        ad 		 * waiter bits.
    635  1.59.2.2        ad 		 */
    636       1.2        ad 		ts = turnstile_lookup(rw);
    637  1.59.2.2        ad 		RW_ASSERT(rw, ts != NULL);
    638       1.2        ad 
    639       1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    640       1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    641       1.2        ad 
    642       1.2        ad 		if (rcnt == 0) {
    643  1.59.2.2        ad 			/*
    644  1.59.2.2        ad 			 * If there are no readers, just preserve the
    645  1.59.2.2        ad 			 * waiters bits, swap us down to one read hold and
    646  1.59.2.4        ad 			 * return.
    647  1.59.2.2        ad 			 */
    648  1.59.2.2        ad 			RW_ASSERT(rw, wcnt != 0);
    649  1.59.2.2        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    650  1.59.2.2        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    651  1.59.2.2        ad 
    652  1.59.2.2        ad 			newown = owner & RW_NODEBUG;
    653  1.59.2.4        ad 			newown |= RW_READ_INCR | RW_HAS_WAITERS |
    654  1.59.2.2        ad 			    RW_WRITE_WANTED;
    655      1.44      matt 			next = rw_cas(rw, owner, newown);
    656      1.27     rmind 			turnstile_exit(rw);
    657      1.20        ad 			if (__predict_true(next == owner))
    658      1.20        ad 				break;
    659      1.20        ad 		} else {
    660      1.20        ad 			/*
    661      1.20        ad 			 * Give the lock to all blocked readers.  We may
    662  1.59.2.2        ad 			 * retain one read hold if downgrading.  If there is
    663  1.59.2.2        ad 			 * a writer waiting, new readers will be blocked
    664  1.59.2.4        ad 			 * out.
    665      1.20        ad 			 */
    666  1.59.2.2        ad 			newown = owner & RW_NODEBUG;
    667  1.59.2.2        ad 			newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    668      1.20        ad 			if (wcnt != 0)
    669      1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    670      1.20        ad 
    671      1.44      matt 			next = rw_cas(rw, owner, newown);
    672      1.20        ad 			if (__predict_true(next == owner)) {
    673      1.20        ad 				/* Wake up all sleeping readers. */
    674      1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    675      1.20        ad 				break;
    676       1.2        ad 			}
    677      1.27     rmind 			turnstile_exit(rw);
    678       1.2        ad 		}
    679       1.2        ad 	}
    680       1.2        ad 
    681      1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    682       1.2        ad 	RW_LOCKED(rw, RW_READER);
    683  1.59.2.2        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    684  1.59.2.2        ad 	RW_ASSERT(rw, RW_COUNT(rw) != 0);
    685       1.2        ad }
    686       1.2        ad 
    687       1.2        ad /*
    688       1.2        ad  * rw_tryupgrade:
    689       1.2        ad  *
    690      1.55        ad  *	Try to upgrade a read lock to a write lock.  We must be the only
    691  1.59.2.2        ad  *	reader.
    692       1.2        ad  */
    693       1.2        ad int
    694       1.2        ad rw_tryupgrade(krwlock_t *rw)
    695       1.2        ad {
    696      1.44      matt 	uintptr_t owner, curthread, newown, next;
    697  1.59.2.2        ad 	struct lwp *l;
    698       1.2        ad 
    699  1.59.2.2        ad 	l = curlwp;
    700  1.59.2.2        ad 	curthread = (uintptr_t)l;
    701       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    702      1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    703       1.2        ad 
    704      1.55        ad 	for (owner = RW_READ_INCR;; owner = next) {
    705      1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    706      1.44      matt 		next = rw_cas(rw, owner, newown);
    707      1.30        ad 		if (__predict_true(next == owner)) {
    708      1.55        ad 			RW_MEMBAR_PRODUCER();
    709       1.2        ad 			break;
    710      1.30        ad 		}
    711      1.55        ad 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    712      1.55        ad 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    713      1.55        ad 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    714      1.55        ad 			return 0;
    715      1.55        ad 		}
    716       1.2        ad 	}
    717       1.2        ad 
    718       1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    719      1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    720       1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    721  1.59.2.2        ad 	RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    722  1.59.2.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    723       1.2        ad 
    724       1.2        ad 	return 1;
    725       1.2        ad }
    726       1.2        ad 
    727       1.2        ad /*
    728       1.2        ad  * rw_read_held:
    729       1.2        ad  *
    730       1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    731       1.2        ad  *	used for diagnostic assertions, and never be used to make
    732       1.2        ad  * 	decisions about how to use a rwlock.
    733       1.2        ad  */
    734       1.2        ad int
    735       1.2        ad rw_read_held(krwlock_t *rw)
    736       1.2        ad {
    737       1.2        ad 	uintptr_t owner;
    738       1.2        ad 
    739      1.21        ad 	if (rw == NULL)
    740      1.21        ad 		return 0;
    741       1.2        ad 	owner = rw->rw_owner;
    742       1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    743       1.2        ad }
    744       1.2        ad 
    745       1.2        ad /*
    746       1.2        ad  * rw_write_held:
    747       1.2        ad  *
    748       1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    749       1.2        ad  *	used for diagnostic assertions, and never be used to make
    750       1.2        ad  *	decisions about how to use a rwlock.
    751       1.2        ad  */
    752       1.2        ad int
    753       1.2        ad rw_write_held(krwlock_t *rw)
    754       1.2        ad {
    755       1.2        ad 
    756      1.21        ad 	if (rw == NULL)
    757      1.21        ad 		return 0;
    758      1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    759      1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    760       1.2        ad }
    761       1.2        ad 
    762       1.2        ad /*
    763       1.2        ad  * rw_lock_held:
    764       1.2        ad  *
    765       1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    766       1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    767       1.2        ad  *	decisions about how to use a rwlock.
    768       1.2        ad  */
    769       1.2        ad int
    770       1.2        ad rw_lock_held(krwlock_t *rw)
    771       1.2        ad {
    772       1.2        ad 
    773      1.21        ad 	if (rw == NULL)
    774      1.21        ad 		return 0;
    775       1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    776       1.2        ad }
    777       1.4      yamt 
    778       1.5        ad /*
    779       1.5        ad  * rw_owner:
    780       1.5        ad  *
    781       1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    782       1.5        ad  *	held.  Used for priority inheritance.
    783       1.5        ad  */
    784       1.7        ad static lwp_t *
    785       1.4      yamt rw_owner(wchan_t obj)
    786       1.4      yamt {
    787       1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    788       1.4      yamt 	uintptr_t owner = rw->rw_owner;
    789       1.4      yamt 
    790       1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    791       1.4      yamt 		return NULL;
    792       1.4      yamt 
    793       1.4      yamt 	return (void *)(owner & RW_THREAD);
    794       1.4      yamt }
    795  1.59.2.3        ad 
    796  1.59.2.3        ad /*
    797  1.59.2.3        ad  * rw_owner_running:
    798  1.59.2.3        ad  *
    799  1.59.2.4        ad  *	Return true if a RW lock is unheld, or write held and the owner is
    800  1.59.2.4        ad  *	running on a CPU.  For the pagedaemon.
    801  1.59.2.3        ad  */
    802  1.59.2.3        ad bool
    803  1.59.2.3        ad rw_owner_running(const krwlock_t *rw)
    804  1.59.2.3        ad {
    805  1.59.2.4        ad #ifdef MULTIPROCESSOR
    806  1.59.2.4        ad 	uintptr_t owner;
    807  1.59.2.4        ad 	bool rv;
    808  1.59.2.3        ad 
    809  1.59.2.4        ad 	kpreempt_disable();
    810  1.59.2.4        ad 	owner = rw->rw_owner;
    811  1.59.2.4        ad 	rv = (owner & RW_THREAD) == 0 || rw_oncpu(owner);
    812  1.59.2.4        ad 	kpreempt_enable();
    813  1.59.2.4        ad 	return rv;
    814  1.59.2.4        ad #else
    815  1.59.2.4        ad 	return rw_owner(rw) == curlwp;
    816  1.59.2.4        ad #endif
    817  1.59.2.3        ad }
    818