Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.59.2.5
      1  1.59.2.5        ad /*	$NetBSD: kern_rwlock.c,v 1.59.2.5 2020/01/25 21:45:00 ad Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4  1.59.2.1        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
      5  1.59.2.1        ad  *     The NetBSD Foundation, Inc.
      6       1.2        ad  * All rights reserved.
      7       1.2        ad  *
      8       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      9       1.2        ad  * by Jason R. Thorpe and Andrew Doran.
     10       1.2        ad  *
     11       1.2        ad  * Redistribution and use in source and binary forms, with or without
     12       1.2        ad  * modification, are permitted provided that the following conditions
     13       1.2        ad  * are met:
     14       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     15       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     16       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     18       1.2        ad  *    documentation and/or other materials provided with the distribution.
     19       1.2        ad  *
     20       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     31       1.2        ad  */
     32       1.2        ad 
     33       1.2        ad /*
     34       1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     35       1.2        ad  * found in Solaris, a description of which can be found in:
     36       1.2        ad  *
     37       1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38       1.2        ad  *	    Richard McDougall.
     39       1.2        ad  */
     40       1.2        ad 
     41      1.10       dsl #include <sys/cdefs.h>
     42  1.59.2.5        ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.59.2.5 2020/01/25 21:45:00 ad Exp $");
     43  1.59.2.2        ad 
     44  1.59.2.2        ad #include "opt_lockdebug.h"
     45       1.2        ad 
     46       1.2        ad #define	__RWLOCK_PRIVATE
     47       1.2        ad 
     48       1.2        ad #include <sys/param.h>
     49       1.2        ad #include <sys/proc.h>
     50       1.2        ad #include <sys/rwlock.h>
     51       1.2        ad #include <sys/sched.h>
     52       1.2        ad #include <sys/sleepq.h>
     53       1.2        ad #include <sys/systm.h>
     54       1.2        ad #include <sys/lockdebug.h>
     55      1.11        ad #include <sys/cpu.h>
     56      1.14        ad #include <sys/atomic.h>
     57      1.15        ad #include <sys/lock.h>
     58      1.51     ozaki #include <sys/pserialize.h>
     59       1.2        ad 
     60       1.2        ad #include <dev/lockstat.h>
     61       1.2        ad 
     62  1.59.2.4        ad #include <machine/rwlock.h>
     63  1.59.2.4        ad 
     64       1.2        ad /*
     65       1.2        ad  * LOCKDEBUG
     66       1.2        ad  */
     67       1.2        ad 
     68  1.59.2.2        ad #define	RW_DEBUG_P(rw)		(((rw)->rw_owner & RW_NODEBUG) == 0)
     69       1.2        ad 
     70  1.59.2.2        ad #define	RW_WANTLOCK(rw, op) \
     71  1.59.2.2        ad     LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
     72  1.59.2.2        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73  1.59.2.2        ad #define	RW_LOCKED(rw, op) \
     74  1.59.2.2        ad     LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
     75  1.59.2.2        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     76  1.59.2.2        ad #define	RW_UNLOCKED(rw, op) \
     77  1.59.2.2        ad     LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
     78  1.59.2.2        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     79       1.2        ad 
     80       1.2        ad /*
     81       1.2        ad  * DIAGNOSTIC
     82       1.2        ad  */
     83       1.2        ad 
     84       1.2        ad #if defined(DIAGNOSTIC)
     85  1.59.2.2        ad #define	RW_ASSERT(rw, cond) \
     86  1.59.2.2        ad do { \
     87  1.59.2.2        ad 	if (__predict_false(!(cond))) \
     88      1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     89       1.2        ad } while (/* CONSTCOND */ 0)
     90       1.2        ad #else
     91       1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
     92       1.2        ad #endif	/* DIAGNOSTIC */
     93       1.2        ad 
     94      1.55        ad /*
     95      1.55        ad  * Memory barriers.
     96      1.55        ad  */
     97      1.55        ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
     98      1.55        ad #define	RW_MEMBAR_ENTER()
     99      1.55        ad #define	RW_MEMBAR_EXIT()
    100      1.55        ad #define	RW_MEMBAR_PRODUCER()
    101      1.55        ad #else
    102      1.55        ad #define	RW_MEMBAR_ENTER()		membar_enter()
    103      1.55        ad #define	RW_MEMBAR_EXIT()		membar_exit()
    104      1.55        ad #define	RW_MEMBAR_PRODUCER()		membar_producer()
    105      1.55        ad #endif
    106      1.55        ad 
    107  1.59.2.4        ad /*
    108  1.59.2.4        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    109  1.59.2.4        ad  */
    110  1.59.2.4        ad #ifdef LOCKDEBUG
    111  1.59.2.4        ad #undef	__HAVE_RW_STUBS
    112  1.59.2.4        ad #endif
    113  1.59.2.4        ad 
    114  1.59.2.4        ad #ifndef __HAVE_RW_STUBS
    115  1.59.2.4        ad __strong_alias(rw_enter,rw_vector_enter);
    116  1.59.2.4        ad __strong_alias(rw_exit,rw_vector_exit);
    117  1.59.2.4        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    118  1.59.2.4        ad #endif
    119  1.59.2.4        ad 
    120  1.59.2.2        ad static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    121  1.59.2.2        ad static void	rw_dump(const volatile void *, lockop_printer_t);
    122  1.59.2.2        ad static lwp_t	*rw_owner(wchan_t);
    123  1.59.2.2        ad 
    124       1.2        ad lockops_t rwlock_lockops = {
    125      1.48     ozaki 	.lo_name = "Reader / writer lock",
    126      1.48     ozaki 	.lo_type = LOCKOPS_SLEEP,
    127      1.48     ozaki 	.lo_dump = rw_dump,
    128       1.2        ad };
    129       1.2        ad 
    130       1.4      yamt syncobj_t rw_syncobj = {
    131      1.49     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    132      1.49     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    133      1.49     ozaki 	.sobj_changepri	= turnstile_changepri,
    134      1.49     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    135      1.49     ozaki 	.sobj_owner	= rw_owner,
    136       1.4      yamt };
    137       1.4      yamt 
    138       1.2        ad /*
    139  1.59.2.2        ad  * rw_cas:
    140  1.59.2.2        ad  *
    141  1.59.2.2        ad  *	Do an atomic compare-and-swap on the lock word.
    142  1.59.2.2        ad  */
    143  1.59.2.2        ad static inline uintptr_t
    144  1.59.2.2        ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    145  1.59.2.2        ad {
    146  1.59.2.2        ad 
    147  1.59.2.2        ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    148  1.59.2.2        ad 	    (void *)o, (void *)n);
    149  1.59.2.2        ad }
    150  1.59.2.2        ad 
    151  1.59.2.2        ad /*
    152  1.59.2.2        ad  * rw_swap:
    153  1.59.2.2        ad  *
    154  1.59.2.2        ad  *	Do an atomic swap of the lock word.  This is used only when it's
    155  1.59.2.2        ad  *	known that the lock word is set up such that it can't be changed
    156  1.59.2.2        ad  *	behind us (assert this), so there's no point considering the result.
    157  1.59.2.2        ad  */
    158  1.59.2.2        ad static inline void
    159  1.59.2.2        ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    160  1.59.2.2        ad {
    161  1.59.2.2        ad 
    162  1.59.2.2        ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    163  1.59.2.2        ad 	    (void *)n);
    164  1.59.2.2        ad 
    165  1.59.2.2        ad 	RW_ASSERT(rw, n == o);
    166  1.59.2.2        ad 	RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
    167  1.59.2.2        ad }
    168  1.59.2.2        ad 
    169  1.59.2.2        ad /*
    170       1.2        ad  * rw_dump:
    171       1.2        ad  *
    172       1.2        ad  *	Dump the contents of a rwlock structure.
    173       1.2        ad  */
    174      1.11        ad static void
    175      1.54     ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
    176       1.2        ad {
    177      1.47  christos 	const volatile krwlock_t *rw = cookie;
    178       1.2        ad 
    179      1.54     ozaki 	pr("owner/count  : %#018lx flags    : %#018x\n",
    180       1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    181       1.2        ad }
    182       1.2        ad 
    183       1.2        ad /*
    184      1.11        ad  * rw_abort:
    185      1.11        ad  *
    186      1.11        ad  *	Dump information about an error and panic the system.  This
    187      1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    188      1.11        ad  *	we ask the compiler to not inline it.
    189      1.11        ad  */
    190      1.26        ad static void __noinline
    191      1.46  christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    192      1.11        ad {
    193      1.11        ad 
    194      1.11        ad 	if (panicstr != NULL)
    195      1.11        ad 		return;
    196      1.11        ad 
    197      1.46  christos 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    198      1.11        ad }
    199      1.11        ad 
    200      1.11        ad /*
    201       1.2        ad  * rw_init:
    202       1.2        ad  *
    203       1.2        ad  *	Initialize a rwlock for use.
    204       1.2        ad  */
    205       1.2        ad void
    206      1.50     ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
    207       1.2        ad {
    208       1.2        ad 
    209  1.59.2.2        ad 	if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
    210  1.59.2.4        ad 		rw->rw_owner = 0;
    211  1.59.2.2        ad 	else
    212  1.59.2.4        ad 		rw->rw_owner = RW_NODEBUG;
    213       1.2        ad }
    214       1.2        ad 
    215      1.50     ozaki void
    216      1.50     ozaki rw_init(krwlock_t *rw)
    217      1.50     ozaki {
    218      1.50     ozaki 
    219      1.50     ozaki 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    220      1.50     ozaki }
    221      1.50     ozaki 
    222       1.2        ad /*
    223       1.2        ad  * rw_destroy:
    224       1.2        ad  *
    225       1.2        ad  *	Tear down a rwlock.
    226       1.2        ad  */
    227       1.2        ad void
    228       1.2        ad rw_destroy(krwlock_t *rw)
    229       1.2        ad {
    230       1.2        ad 
    231  1.59.2.4        ad 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    232  1.59.2.2        ad 	LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
    233       1.2        ad }
    234       1.2        ad 
    235       1.2        ad /*
    236  1.59.2.4        ad  * rw_oncpu:
    237  1.59.2.4        ad  *
    238  1.59.2.4        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    239  1.59.2.4        ad  *	If the target is waiting on the kernel big lock, then we must
    240  1.59.2.4        ad  *	release it.  This is necessary to avoid deadlock.
    241  1.59.2.4        ad  */
    242  1.59.2.4        ad static bool
    243  1.59.2.4        ad rw_oncpu(uintptr_t owner)
    244  1.59.2.4        ad {
    245  1.59.2.4        ad #ifdef MULTIPROCESSOR
    246  1.59.2.4        ad 	struct cpu_info *ci;
    247  1.59.2.4        ad 	lwp_t *l;
    248  1.59.2.4        ad 
    249  1.59.2.4        ad 	KASSERT(kpreempt_disabled());
    250  1.59.2.4        ad 
    251  1.59.2.4        ad 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    252  1.59.2.4        ad 		return false;
    253  1.59.2.4        ad 	}
    254  1.59.2.4        ad 
    255  1.59.2.4        ad 	/*
    256  1.59.2.4        ad 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    257  1.59.2.4        ad 	 * We must have kernel preemption disabled for that.
    258  1.59.2.4        ad 	 */
    259  1.59.2.4        ad 	l = (lwp_t *)(owner & RW_THREAD);
    260  1.59.2.4        ad 	ci = l->l_cpu;
    261  1.59.2.4        ad 
    262  1.59.2.4        ad 	if (ci && ci->ci_curlwp == l) {
    263  1.59.2.4        ad 		/* Target is running; do we need to block? */
    264  1.59.2.4        ad 		return (ci->ci_biglock_wanted != l);
    265  1.59.2.4        ad 	}
    266  1.59.2.4        ad #endif
    267  1.59.2.4        ad 	/* Not running.  It may be safe to block now. */
    268  1.59.2.4        ad 	return false;
    269  1.59.2.4        ad }
    270  1.59.2.4        ad 
    271  1.59.2.4        ad /*
    272       1.2        ad  * rw_vector_enter:
    273       1.2        ad  *
    274  1.59.2.4        ad  *	Acquire a rwlock.
    275       1.2        ad  */
    276  1.59.2.4        ad void
    277  1.59.2.4        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    278       1.2        ad {
    279      1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    280       1.2        ad 	turnstile_t *ts;
    281       1.2        ad 	int queue;
    282       1.7        ad 	lwp_t *l;
    283       1.2        ad 	LOCKSTAT_TIMER(slptime);
    284      1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    285      1.19        ad 	LOCKSTAT_TIMER(spintime);
    286      1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    287       1.2        ad 	LOCKSTAT_FLAG(lsflag);
    288       1.2        ad 
    289       1.2        ad 	l = curlwp;
    290       1.2        ad 	curthread = (uintptr_t)l;
    291       1.2        ad 
    292      1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    293       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    294      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    295       1.2        ad 
    296       1.2        ad 	if (panicstr == NULL) {
    297      1.53     ozaki 		KDASSERT(pserialize_not_in_read_section());
    298       1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    299       1.2        ad 	}
    300       1.2        ad 
    301       1.2        ad 	/*
    302       1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    303       1.2        ad 	 * increment the read count.  If we're a writer, we want to
    304      1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    305       1.2        ad 	 *
    306       1.2        ad 	 * In the latter case, we expect those bits to be zero,
    307       1.2        ad 	 * therefore we can use an add operation to set them, which
    308       1.2        ad 	 * means an add operation for both cases.
    309       1.2        ad 	 */
    310       1.2        ad 	if (__predict_true(op == RW_READER)) {
    311       1.2        ad 		incr = RW_READ_INCR;
    312       1.2        ad 		set_wait = RW_HAS_WAITERS;
    313       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    314       1.2        ad 		queue = TS_READER_Q;
    315       1.2        ad 	} else {
    316  1.59.2.2        ad 		RW_ASSERT(rw, op == RW_WRITER);
    317       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    318       1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    319       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    320       1.2        ad 		queue = TS_WRITER_Q;
    321       1.2        ad 	}
    322       1.2        ad 
    323       1.2        ad 	LOCKSTAT_ENTER(lsflag);
    324       1.2        ad 
    325  1.59.2.4        ad 	KPREEMPT_DISABLE(curlwp);
    326      1.55        ad 	for (owner = rw->rw_owner;;) {
    327       1.2        ad 		/*
    328       1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    329       1.2        ad 		 * indicator is clear, then try to acquire the lock.
    330       1.2        ad 		 */
    331       1.2        ad 		if ((owner & need_wait) == 0) {
    332  1.59.2.4        ad 			next = rw_cas(rw, owner, (owner + incr) &
    333  1.59.2.4        ad 			    ~RW_WRITE_WANTED);
    334      1.20        ad 			if (__predict_true(next == owner)) {
    335       1.2        ad 				/* Got it! */
    336      1.55        ad 				RW_MEMBAR_ENTER();
    337       1.2        ad 				break;
    338       1.2        ad 			}
    339       1.2        ad 
    340       1.2        ad 			/*
    341       1.2        ad 			 * Didn't get it -- spin around again (we'll
    342       1.2        ad 			 * probably sleep on the next iteration).
    343       1.2        ad 			 */
    344      1.20        ad 			owner = next;
    345       1.2        ad 			continue;
    346       1.2        ad 		}
    347      1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    348      1.46  christos 			rw_abort(__func__, __LINE__, rw,
    349      1.46  christos 			    "locking against myself");
    350      1.37     rmind 		}
    351      1.19        ad 		/*
    352  1.59.2.4        ad 		 * If the lock owner is running on another CPU, and
    353  1.59.2.4        ad 		 * there are no existing waiters, then spin.
    354      1.19        ad 		 */
    355  1.59.2.4        ad 		if (rw_oncpu(owner)) {
    356      1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    357      1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    358      1.20        ad 			do {
    359      1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    360      1.20        ad 				SPINLOCK_BACKOFF(count);
    361      1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    362      1.19        ad 				owner = rw->rw_owner;
    363  1.59.2.4        ad 			} while (rw_oncpu(owner));
    364      1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    365      1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    366      1.19        ad 			if ((owner & need_wait) == 0)
    367      1.19        ad 				continue;
    368      1.19        ad 		}
    369      1.19        ad 
    370       1.2        ad 		/*
    371       1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    372       1.2        ad 		 * can adjust the waiter bits and sleep queue.
    373       1.2        ad 		 */
    374       1.2        ad 		ts = turnstile_lookup(rw);
    375       1.2        ad 
    376       1.2        ad 		/*
    377  1.59.2.4        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    378  1.59.2.4        ad 		 * then we may not need to sleep and should spin again.
    379  1.59.2.4        ad 		 * Reload rw_owner because turnstile_lookup() may have
    380  1.59.2.4        ad 		 * spun on the turnstile chain lock.
    381       1.2        ad 		 */
    382      1.20        ad 		owner = rw->rw_owner;
    383  1.59.2.4        ad 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    384      1.20        ad 			turnstile_exit(rw);
    385      1.20        ad 			continue;
    386      1.20        ad 		}
    387  1.59.2.4        ad 		next = rw_cas(rw, owner, owner | set_wait);
    388      1.20        ad 		if (__predict_false(next != owner)) {
    389       1.2        ad 			turnstile_exit(rw);
    390      1.20        ad 			owner = next;
    391       1.2        ad 			continue;
    392       1.2        ad 		}
    393       1.2        ad 
    394       1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    395       1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    396       1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    397      1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    398       1.2        ad 
    399      1.20        ad 		/*
    400      1.20        ad 		 * No need for a memory barrier because of context switch.
    401      1.20        ad 		 * If not handed the lock, then spin again.
    402      1.20        ad 		 */
    403      1.58        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    404      1.20        ad 			break;
    405      1.58        ad 
    406      1.39      yamt 		owner = rw->rw_owner;
    407       1.2        ad 	}
    408      1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    409       1.2        ad 
    410  1.59.2.1        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
    411  1.59.2.1        ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
    412  1.59.2.4        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    413  1.59.2.4        ad 	      (uintptr_t)__builtin_return_address(0)));
    414  1.59.2.1        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
    415  1.59.2.4        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    416  1.59.2.4        ad 	      (uintptr_t)__builtin_return_address(0)));
    417       1.2        ad 	LOCKSTAT_EXIT(lsflag);
    418       1.2        ad 
    419  1.59.2.2        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    420       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    421       1.2        ad 	RW_LOCKED(rw, op);
    422       1.2        ad }
    423       1.2        ad 
    424       1.2        ad /*
    425  1.59.2.3        ad  * rw_vector_exit:
    426  1.59.2.3        ad  *
    427  1.59.2.4        ad  *	Release a rwlock.
    428  1.59.2.3        ad  */
    429  1.59.2.4        ad void
    430       1.2        ad rw_vector_exit(krwlock_t *rw)
    431       1.2        ad {
    432      1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    433       1.2        ad 	turnstile_t *ts;
    434       1.2        ad 	int rcnt, wcnt;
    435       1.7        ad 	lwp_t *l;
    436       1.2        ad 
    437  1.59.2.2        ad 	l = curlwp;
    438  1.59.2.2        ad 	curthread = (uintptr_t)l;
    439       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    440       1.2        ad 
    441       1.2        ad 	/*
    442       1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    443       1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    444       1.2        ad 	 * them, which makes the read-release and write-release path
    445       1.2        ad 	 * the same.
    446       1.2        ad 	 */
    447       1.2        ad 	owner = rw->rw_owner;
    448       1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    449       1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    450       1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    451       1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    452       1.2        ad 	} else {
    453       1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    454       1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    455       1.2        ad 		decr = RW_READ_INCR;
    456       1.2        ad 	}
    457       1.2        ad 
    458       1.2        ad 	/*
    459       1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    460       1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    461       1.2        ad 	 * lock would become unowned.
    462       1.2        ad 	 */
    463      1.55        ad 	RW_MEMBAR_EXIT();
    464      1.58        ad 	for (;;) {
    465      1.44      matt 		newown = (owner - decr);
    466      1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    467       1.2        ad 			break;
    468      1.44      matt 		next = rw_cas(rw, owner, newown);
    469  1.59.2.4        ad 		if (__predict_true(next == owner))
    470       1.2        ad 			return;
    471      1.58        ad 		owner = next;
    472       1.2        ad 	}
    473       1.2        ad 
    474      1.20        ad 	/*
    475      1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    476      1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    477      1.20        ad 	 * waiter bits.
    478      1.20        ad 	 */
    479      1.20        ad 	ts = turnstile_lookup(rw);
    480      1.20        ad 	owner = rw->rw_owner;
    481  1.59.2.2        ad 	RW_ASSERT(rw, ts != NULL);
    482  1.59.2.2        ad 	RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    483       1.2        ad 
    484      1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    485      1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    486       1.2        ad 
    487      1.20        ad 	/*
    488      1.20        ad 	 * Give the lock away.
    489      1.20        ad 	 *
    490      1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    491      1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    492      1.20        ad 	 * are outstanding readers, or all writers if there are no
    493      1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    494      1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    495      1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    496      1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    497      1.20        ad 	 */
    498      1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    499  1.59.2.2        ad 		RW_ASSERT(rw, wcnt != 0);
    500  1.59.2.2        ad 		RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    501       1.2        ad 
    502      1.20        ad 		if (rcnt != 0) {
    503      1.20        ad 			/* Give the lock to the longest waiting writer. */
    504       1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    505  1.59.2.2        ad 			newown = (uintptr_t)l | (owner & RW_NODEBUG);
    506  1.59.2.2        ad 			newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
    507      1.28   thorpej 			if (wcnt > 1)
    508      1.44      matt 				newown |= RW_WRITE_WANTED;
    509      1.44      matt 			rw_swap(rw, owner, newown);
    510       1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    511       1.2        ad 		} else {
    512      1.20        ad 			/* Wake all writers and let them fight it out. */
    513  1.59.2.2        ad 			newown = owner & RW_NODEBUG;
    514  1.59.2.2        ad 			newown |= RW_WRITE_WANTED;
    515  1.59.2.2        ad 			rw_swap(rw, owner, newown);
    516      1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    517      1.20        ad 		}
    518      1.20        ad 	} else {
    519  1.59.2.2        ad 		RW_ASSERT(rw, rcnt != 0);
    520       1.2        ad 
    521      1.20        ad 		/*
    522      1.20        ad 		 * Give the lock to all blocked readers.  If there
    523      1.20        ad 		 * is a writer waiting, new readers that arrive
    524      1.20        ad 		 * after the release will be blocked out.
    525      1.20        ad 		 */
    526  1.59.2.2        ad 		newown = owner & RW_NODEBUG;
    527  1.59.2.2        ad 		newown += rcnt << RW_READ_COUNT_SHIFT;
    528      1.20        ad 		if (wcnt != 0)
    529      1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    530      1.12      yamt 
    531      1.20        ad 		/* Wake up all sleeping readers. */
    532      1.44      matt 		rw_swap(rw, owner, newown);
    533      1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    534       1.2        ad 	}
    535  1.59.2.3        ad }
    536  1.59.2.3        ad 
    537  1.59.2.3        ad /*
    538  1.59.2.4        ad  * rw_vector_tryenter:
    539       1.2        ad  *
    540       1.2        ad  *	Try to acquire a rwlock.
    541       1.2        ad  */
    542       1.2        ad int
    543  1.59.2.4        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    544       1.2        ad {
    545  1.59.2.4        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    546  1.59.2.2        ad 	lwp_t *l;
    547       1.2        ad 
    548  1.59.2.2        ad 	l = curlwp;
    549  1.59.2.2        ad 	curthread = (uintptr_t)l;
    550       1.2        ad 
    551       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    552       1.2        ad 
    553       1.2        ad 	if (op == RW_READER) {
    554       1.2        ad 		incr = RW_READ_INCR;
    555       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    556       1.2        ad 	} else {
    557  1.59.2.2        ad 		RW_ASSERT(rw, op == RW_WRITER);
    558       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    559       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    560       1.2        ad 	}
    561       1.2        ad 
    562      1.58        ad 	for (owner = rw->rw_owner;; owner = next) {
    563  1.59.2.4        ad 		if (__predict_false((owner & need_wait) != 0))
    564      1.58        ad 			return 0;
    565  1.59.2.4        ad 		next = rw_cas(rw, owner, owner + incr);
    566      1.20        ad 		if (__predict_true(next == owner)) {
    567      1.20        ad 			/* Got it! */
    568      1.20        ad 			break;
    569       1.2        ad 		}
    570       1.2        ad 	}
    571       1.2        ad 
    572      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    573       1.2        ad 	RW_LOCKED(rw, op);
    574  1.59.2.2        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    575       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    576       1.7        ad 
    577  1.59.2.2        ad 	RW_MEMBAR_ENTER();
    578       1.2        ad 	return 1;
    579       1.2        ad }
    580       1.2        ad 
    581       1.2        ad /*
    582       1.2        ad  * rw_downgrade:
    583       1.2        ad  *
    584  1.59.2.2        ad  *	Downgrade a write lock to a read lock.
    585       1.2        ad  */
    586       1.2        ad void
    587       1.2        ad rw_downgrade(krwlock_t *rw)
    588       1.2        ad {
    589      1.44      matt 	uintptr_t owner, curthread, newown, next;
    590       1.2        ad 	turnstile_t *ts;
    591       1.2        ad 	int rcnt, wcnt;
    592  1.59.2.2        ad 	lwp_t *l;
    593       1.2        ad 
    594  1.59.2.2        ad 	l = curlwp;
    595  1.59.2.2        ad 	curthread = (uintptr_t)l;
    596       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    597  1.59.2.2        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    598       1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    599       1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    600      1.42       mrg #if !defined(DIAGNOSTIC)
    601      1.42       mrg 	__USE(curthread);
    602      1.42       mrg #endif
    603      1.42       mrg 
    604      1.55        ad 	RW_MEMBAR_PRODUCER();
    605       1.2        ad 
    606  1.59.2.2        ad 	for (owner = rw->rw_owner;; owner = next) {
    607  1.59.2.2        ad 		/*
    608  1.59.2.2        ad 		 * If there are no waiters we can do this the easy way.  Try
    609  1.59.2.2        ad 		 * swapping us down to one read hold.  If it fails, the lock
    610  1.59.2.2        ad 		 * condition has changed and we most likely now have
    611  1.59.2.2        ad 		 * waiters.
    612  1.59.2.2        ad 		 */
    613  1.59.2.2        ad 		if ((owner & RW_HAS_WAITERS) == 0) {
    614  1.59.2.4        ad 			newown = (owner & RW_NODEBUG);
    615  1.59.2.2        ad 			next = rw_cas(rw, owner, newown + RW_READ_INCR);
    616  1.59.2.2        ad 			if (__predict_true(next == owner)) {
    617  1.59.2.2        ad 				RW_LOCKED(rw, RW_READER);
    618  1.59.2.2        ad 				RW_ASSERT(rw,
    619  1.59.2.2        ad 				    (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    620  1.59.2.2        ad 				RW_ASSERT(rw, RW_COUNT(rw) != 0);
    621  1.59.2.2        ad 				return;
    622  1.59.2.2        ad 			}
    623  1.59.2.2        ad 			continue;
    624  1.59.2.2        ad 		}
    625  1.59.2.2        ad 
    626  1.59.2.2        ad 		/*
    627  1.59.2.2        ad 		 * Grab the turnstile chain lock.  This gets the interlock
    628  1.59.2.2        ad 		 * on the sleep queue.  Once we have that, we can adjust the
    629  1.59.2.2        ad 		 * waiter bits.
    630  1.59.2.2        ad 		 */
    631       1.2        ad 		ts = turnstile_lookup(rw);
    632  1.59.2.2        ad 		RW_ASSERT(rw, ts != NULL);
    633       1.2        ad 
    634       1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    635       1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    636       1.2        ad 
    637       1.2        ad 		if (rcnt == 0) {
    638  1.59.2.2        ad 			/*
    639  1.59.2.2        ad 			 * If there are no readers, just preserve the
    640  1.59.2.2        ad 			 * waiters bits, swap us down to one read hold and
    641  1.59.2.4        ad 			 * return.
    642  1.59.2.2        ad 			 */
    643  1.59.2.2        ad 			RW_ASSERT(rw, wcnt != 0);
    644  1.59.2.2        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    645  1.59.2.2        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    646  1.59.2.2        ad 
    647  1.59.2.2        ad 			newown = owner & RW_NODEBUG;
    648  1.59.2.5        ad 			newown = RW_READ_INCR | RW_HAS_WAITERS |
    649  1.59.2.2        ad 			    RW_WRITE_WANTED;
    650      1.44      matt 			next = rw_cas(rw, owner, newown);
    651      1.27     rmind 			turnstile_exit(rw);
    652      1.20        ad 			if (__predict_true(next == owner))
    653      1.20        ad 				break;
    654      1.20        ad 		} else {
    655      1.20        ad 			/*
    656      1.20        ad 			 * Give the lock to all blocked readers.  We may
    657  1.59.2.2        ad 			 * retain one read hold if downgrading.  If there is
    658  1.59.2.2        ad 			 * a writer waiting, new readers will be blocked
    659  1.59.2.4        ad 			 * out.
    660      1.20        ad 			 */
    661  1.59.2.2        ad 			newown = owner & RW_NODEBUG;
    662  1.59.2.2        ad 			newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    663      1.20        ad 			if (wcnt != 0)
    664      1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    665      1.20        ad 
    666      1.44      matt 			next = rw_cas(rw, owner, newown);
    667      1.20        ad 			if (__predict_true(next == owner)) {
    668      1.20        ad 				/* Wake up all sleeping readers. */
    669      1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    670      1.20        ad 				break;
    671       1.2        ad 			}
    672      1.27     rmind 			turnstile_exit(rw);
    673       1.2        ad 		}
    674       1.2        ad 	}
    675       1.2        ad 
    676      1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    677       1.2        ad 	RW_LOCKED(rw, RW_READER);
    678  1.59.2.2        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    679  1.59.2.2        ad 	RW_ASSERT(rw, RW_COUNT(rw) != 0);
    680       1.2        ad }
    681       1.2        ad 
    682       1.2        ad /*
    683       1.2        ad  * rw_tryupgrade:
    684       1.2        ad  *
    685      1.55        ad  *	Try to upgrade a read lock to a write lock.  We must be the only
    686  1.59.2.2        ad  *	reader.
    687       1.2        ad  */
    688       1.2        ad int
    689       1.2        ad rw_tryupgrade(krwlock_t *rw)
    690       1.2        ad {
    691      1.44      matt 	uintptr_t owner, curthread, newown, next;
    692  1.59.2.2        ad 	struct lwp *l;
    693       1.2        ad 
    694  1.59.2.2        ad 	l = curlwp;
    695  1.59.2.2        ad 	curthread = (uintptr_t)l;
    696       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    697      1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    698       1.2        ad 
    699      1.55        ad 	for (owner = RW_READ_INCR;; owner = next) {
    700      1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    701      1.44      matt 		next = rw_cas(rw, owner, newown);
    702      1.30        ad 		if (__predict_true(next == owner)) {
    703      1.55        ad 			RW_MEMBAR_PRODUCER();
    704       1.2        ad 			break;
    705      1.30        ad 		}
    706      1.55        ad 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    707      1.55        ad 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    708      1.55        ad 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    709      1.55        ad 			return 0;
    710      1.55        ad 		}
    711       1.2        ad 	}
    712       1.2        ad 
    713       1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    714      1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    715       1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    716  1.59.2.2        ad 	RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    717  1.59.2.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    718       1.2        ad 
    719       1.2        ad 	return 1;
    720       1.2        ad }
    721       1.2        ad 
    722       1.2        ad /*
    723       1.2        ad  * rw_read_held:
    724       1.2        ad  *
    725       1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    726       1.2        ad  *	used for diagnostic assertions, and never be used to make
    727       1.2        ad  * 	decisions about how to use a rwlock.
    728       1.2        ad  */
    729       1.2        ad int
    730       1.2        ad rw_read_held(krwlock_t *rw)
    731       1.2        ad {
    732       1.2        ad 	uintptr_t owner;
    733       1.2        ad 
    734      1.21        ad 	if (rw == NULL)
    735      1.21        ad 		return 0;
    736       1.2        ad 	owner = rw->rw_owner;
    737       1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    738       1.2        ad }
    739       1.2        ad 
    740       1.2        ad /*
    741       1.2        ad  * rw_write_held:
    742       1.2        ad  *
    743       1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    744       1.2        ad  *	used for diagnostic assertions, and never be used to make
    745       1.2        ad  *	decisions about how to use a rwlock.
    746       1.2        ad  */
    747       1.2        ad int
    748       1.2        ad rw_write_held(krwlock_t *rw)
    749       1.2        ad {
    750       1.2        ad 
    751      1.21        ad 	if (rw == NULL)
    752      1.21        ad 		return 0;
    753      1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    754      1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    755       1.2        ad }
    756       1.2        ad 
    757       1.2        ad /*
    758       1.2        ad  * rw_lock_held:
    759       1.2        ad  *
    760       1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    761       1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    762       1.2        ad  *	decisions about how to use a rwlock.
    763       1.2        ad  */
    764       1.2        ad int
    765       1.2        ad rw_lock_held(krwlock_t *rw)
    766       1.2        ad {
    767       1.2        ad 
    768      1.21        ad 	if (rw == NULL)
    769      1.21        ad 		return 0;
    770       1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    771       1.2        ad }
    772       1.4      yamt 
    773       1.5        ad /*
    774       1.5        ad  * rw_owner:
    775       1.5        ad  *
    776       1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    777       1.5        ad  *	held.  Used for priority inheritance.
    778       1.5        ad  */
    779       1.7        ad static lwp_t *
    780       1.4      yamt rw_owner(wchan_t obj)
    781       1.4      yamt {
    782       1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    783       1.4      yamt 	uintptr_t owner = rw->rw_owner;
    784       1.4      yamt 
    785       1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    786       1.4      yamt 		return NULL;
    787       1.4      yamt 
    788       1.4      yamt 	return (void *)(owner & RW_THREAD);
    789       1.4      yamt }
    790