kern_rwlock.c revision 1.60 1 1.60 ad /* $NetBSD: kern_rwlock.c,v 1.60 2020/01/12 18:37:10 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.60 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
5 1.60 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Jason R. Thorpe and Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.2 ad * Kernel reader/writer lock implementation, modeled after those
35 1.2 ad * found in Solaris, a description of which can be found in:
36 1.2 ad *
37 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
38 1.2 ad * Richard McDougall.
39 1.2 ad */
40 1.2 ad
41 1.10 dsl #include <sys/cdefs.h>
42 1.60 ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.60 2020/01/12 18:37:10 ad Exp $");
43 1.2 ad
44 1.2 ad #define __RWLOCK_PRIVATE
45 1.2 ad
46 1.2 ad #include <sys/param.h>
47 1.2 ad #include <sys/proc.h>
48 1.2 ad #include <sys/rwlock.h>
49 1.2 ad #include <sys/sched.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/systm.h>
52 1.2 ad #include <sys/lockdebug.h>
53 1.11 ad #include <sys/cpu.h>
54 1.14 ad #include <sys/atomic.h>
55 1.15 ad #include <sys/lock.h>
56 1.51 ozaki #include <sys/pserialize.h>
57 1.2 ad
58 1.2 ad #include <dev/lockstat.h>
59 1.2 ad
60 1.56 riastrad #include <machine/rwlock.h>
61 1.56 riastrad
62 1.2 ad /*
63 1.2 ad * LOCKDEBUG
64 1.2 ad */
65 1.2 ad
66 1.2 ad #if defined(LOCKDEBUG)
67 1.2 ad
68 1.40 mlelstv #define RW_WANTLOCK(rw, op) \
69 1.12 yamt LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
70 1.40 mlelstv (uintptr_t)__builtin_return_address(0), op == RW_READER);
71 1.2 ad #define RW_LOCKED(rw, op) \
72 1.25 ad LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
73 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
74 1.2 ad #define RW_UNLOCKED(rw, op) \
75 1.12 yamt LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
76 1.2 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
77 1.2 ad #define RW_DASSERT(rw, cond) \
78 1.2 ad do { \
79 1.52 ozaki if (__predict_false(!(cond))) \
80 1.46 christos rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
81 1.2 ad } while (/* CONSTCOND */ 0);
82 1.2 ad
83 1.2 ad #else /* LOCKDEBUG */
84 1.2 ad
85 1.40 mlelstv #define RW_WANTLOCK(rw, op) /* nothing */
86 1.2 ad #define RW_LOCKED(rw, op) /* nothing */
87 1.2 ad #define RW_UNLOCKED(rw, op) /* nothing */
88 1.2 ad #define RW_DASSERT(rw, cond) /* nothing */
89 1.2 ad
90 1.2 ad #endif /* LOCKDEBUG */
91 1.2 ad
92 1.2 ad /*
93 1.2 ad * DIAGNOSTIC
94 1.2 ad */
95 1.2 ad
96 1.2 ad #if defined(DIAGNOSTIC)
97 1.2 ad
98 1.2 ad #define RW_ASSERT(rw, cond) \
99 1.2 ad do { \
100 1.52 ozaki if (__predict_false(!(cond))) \
101 1.46 christos rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
102 1.2 ad } while (/* CONSTCOND */ 0)
103 1.2 ad
104 1.2 ad #else
105 1.2 ad
106 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
107 1.2 ad
108 1.2 ad #endif /* DIAGNOSTIC */
109 1.2 ad
110 1.36 skrll #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
111 1.36 skrll #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
112 1.12 yamt #if defined(LOCKDEBUG)
113 1.44 matt #define RW_INHERITDEBUG(n, o) (n) |= (o) & RW_NODEBUG
114 1.12 yamt #else /* defined(LOCKDEBUG) */
115 1.44 matt #define RW_INHERITDEBUG(n, o) /* nothing */
116 1.12 yamt #endif /* defined(LOCKDEBUG) */
117 1.12 yamt
118 1.55 ad /*
119 1.55 ad * Memory barriers.
120 1.55 ad */
121 1.55 ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
122 1.55 ad #define RW_MEMBAR_ENTER()
123 1.55 ad #define RW_MEMBAR_EXIT()
124 1.55 ad #define RW_MEMBAR_PRODUCER()
125 1.55 ad #else
126 1.55 ad #define RW_MEMBAR_ENTER() membar_enter()
127 1.55 ad #define RW_MEMBAR_EXIT() membar_exit()
128 1.55 ad #define RW_MEMBAR_PRODUCER() membar_producer()
129 1.55 ad #endif
130 1.55 ad
131 1.46 christos static void rw_abort(const char *, size_t, krwlock_t *, const char *);
132 1.54 ozaki static void rw_dump(const volatile void *, lockop_printer_t);
133 1.20 ad static lwp_t *rw_owner(wchan_t);
134 1.20 ad
135 1.20 ad static inline uintptr_t
136 1.20 ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
137 1.12 yamt {
138 1.12 yamt
139 1.20 ad RW_INHERITDEBUG(n, o);
140 1.20 ad return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
141 1.20 ad (void *)o, (void *)n);
142 1.12 yamt }
143 1.2 ad
144 1.20 ad static inline void
145 1.20 ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
146 1.2 ad {
147 1.2 ad
148 1.20 ad RW_INHERITDEBUG(n, o);
149 1.20 ad n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
150 1.20 ad (void *)n);
151 1.20 ad RW_DASSERT(rw, n == o);
152 1.2 ad }
153 1.2 ad
154 1.2 ad /*
155 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
156 1.2 ad */
157 1.2 ad #ifdef LOCKDEBUG
158 1.2 ad #undef __HAVE_RW_STUBS
159 1.2 ad #endif
160 1.2 ad
161 1.2 ad #ifndef __HAVE_RW_STUBS
162 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
163 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
164 1.16 ad __strong_alias(rw_tryenter,rw_vector_tryenter);
165 1.2 ad #endif
166 1.2 ad
167 1.2 ad lockops_t rwlock_lockops = {
168 1.48 ozaki .lo_name = "Reader / writer lock",
169 1.48 ozaki .lo_type = LOCKOPS_SLEEP,
170 1.48 ozaki .lo_dump = rw_dump,
171 1.2 ad };
172 1.2 ad
173 1.4 yamt syncobj_t rw_syncobj = {
174 1.49 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
175 1.49 ozaki .sobj_unsleep = turnstile_unsleep,
176 1.49 ozaki .sobj_changepri = turnstile_changepri,
177 1.49 ozaki .sobj_lendpri = sleepq_lendpri,
178 1.49 ozaki .sobj_owner = rw_owner,
179 1.4 yamt };
180 1.4 yamt
181 1.2 ad /*
182 1.2 ad * rw_dump:
183 1.2 ad *
184 1.2 ad * Dump the contents of a rwlock structure.
185 1.2 ad */
186 1.11 ad static void
187 1.54 ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
188 1.2 ad {
189 1.47 christos const volatile krwlock_t *rw = cookie;
190 1.2 ad
191 1.54 ozaki pr("owner/count : %#018lx flags : %#018x\n",
192 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
193 1.2 ad }
194 1.2 ad
195 1.2 ad /*
196 1.11 ad * rw_abort:
197 1.11 ad *
198 1.11 ad * Dump information about an error and panic the system. This
199 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
200 1.11 ad * we ask the compiler to not inline it.
201 1.11 ad */
202 1.26 ad static void __noinline
203 1.46 christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
204 1.11 ad {
205 1.11 ad
206 1.11 ad if (panicstr != NULL)
207 1.11 ad return;
208 1.11 ad
209 1.46 christos LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
210 1.11 ad }
211 1.11 ad
212 1.11 ad /*
213 1.2 ad * rw_init:
214 1.2 ad *
215 1.2 ad * Initialize a rwlock for use.
216 1.2 ad */
217 1.50 ozaki void _rw_init(krwlock_t *, uintptr_t);
218 1.2 ad void
219 1.50 ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
220 1.2 ad {
221 1.12 yamt bool dodebug;
222 1.2 ad
223 1.2 ad memset(rw, 0, sizeof(*rw));
224 1.2 ad
225 1.50 ozaki dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address);
226 1.12 yamt RW_SETDEBUG(rw, dodebug);
227 1.2 ad }
228 1.2 ad
229 1.50 ozaki void
230 1.50 ozaki rw_init(krwlock_t *rw)
231 1.50 ozaki {
232 1.50 ozaki
233 1.50 ozaki _rw_init(rw, (uintptr_t)__builtin_return_address(0));
234 1.50 ozaki }
235 1.50 ozaki
236 1.2 ad /*
237 1.2 ad * rw_destroy:
238 1.2 ad *
239 1.2 ad * Tear down a rwlock.
240 1.2 ad */
241 1.2 ad void
242 1.2 ad rw_destroy(krwlock_t *rw)
243 1.2 ad {
244 1.2 ad
245 1.36 skrll RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
246 1.12 yamt LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
247 1.2 ad }
248 1.2 ad
249 1.2 ad /*
250 1.37 rmind * rw_oncpu:
251 1.20 ad *
252 1.20 ad * Return true if an rwlock owner is running on a CPU in the system.
253 1.20 ad * If the target is waiting on the kernel big lock, then we must
254 1.20 ad * release it. This is necessary to avoid deadlock.
255 1.20 ad */
256 1.37 rmind static bool
257 1.37 rmind rw_oncpu(uintptr_t owner)
258 1.20 ad {
259 1.20 ad #ifdef MULTIPROCESSOR
260 1.20 ad struct cpu_info *ci;
261 1.20 ad lwp_t *l;
262 1.20 ad
263 1.37 rmind KASSERT(kpreempt_disabled());
264 1.37 rmind
265 1.37 rmind if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
266 1.37 rmind return false;
267 1.37 rmind }
268 1.37 rmind
269 1.37 rmind /*
270 1.37 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
271 1.37 rmind * We must have kernel preemption disabled for that.
272 1.37 rmind */
273 1.20 ad l = (lwp_t *)(owner & RW_THREAD);
274 1.37 rmind ci = l->l_cpu;
275 1.20 ad
276 1.37 rmind if (ci && ci->ci_curlwp == l) {
277 1.37 rmind /* Target is running; do we need to block? */
278 1.37 rmind return (ci->ci_biglock_wanted != l);
279 1.37 rmind }
280 1.37 rmind #endif
281 1.37 rmind /* Not running. It may be safe to block now. */
282 1.37 rmind return false;
283 1.20 ad }
284 1.20 ad
285 1.20 ad /*
286 1.2 ad * rw_vector_enter:
287 1.2 ad *
288 1.2 ad * Acquire a rwlock.
289 1.2 ad */
290 1.2 ad void
291 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
292 1.2 ad {
293 1.20 ad uintptr_t owner, incr, need_wait, set_wait, curthread, next;
294 1.2 ad turnstile_t *ts;
295 1.2 ad int queue;
296 1.7 ad lwp_t *l;
297 1.2 ad LOCKSTAT_TIMER(slptime);
298 1.20 ad LOCKSTAT_TIMER(slpcnt);
299 1.19 ad LOCKSTAT_TIMER(spintime);
300 1.19 ad LOCKSTAT_COUNTER(spincnt);
301 1.2 ad LOCKSTAT_FLAG(lsflag);
302 1.2 ad
303 1.2 ad l = curlwp;
304 1.2 ad curthread = (uintptr_t)l;
305 1.2 ad
306 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
307 1.2 ad RW_ASSERT(rw, curthread != 0);
308 1.40 mlelstv RW_WANTLOCK(rw, op);
309 1.2 ad
310 1.2 ad if (panicstr == NULL) {
311 1.53 ozaki KDASSERT(pserialize_not_in_read_section());
312 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
313 1.2 ad }
314 1.2 ad
315 1.2 ad /*
316 1.2 ad * We play a slight trick here. If we're a reader, we want
317 1.2 ad * increment the read count. If we're a writer, we want to
318 1.43 ozaki * set the owner field and the WRITE_LOCKED bit.
319 1.2 ad *
320 1.2 ad * In the latter case, we expect those bits to be zero,
321 1.2 ad * therefore we can use an add operation to set them, which
322 1.2 ad * means an add operation for both cases.
323 1.2 ad */
324 1.2 ad if (__predict_true(op == RW_READER)) {
325 1.2 ad incr = RW_READ_INCR;
326 1.2 ad set_wait = RW_HAS_WAITERS;
327 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
328 1.2 ad queue = TS_READER_Q;
329 1.2 ad } else {
330 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
331 1.2 ad incr = curthread | RW_WRITE_LOCKED;
332 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
333 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
334 1.2 ad queue = TS_WRITER_Q;
335 1.2 ad }
336 1.2 ad
337 1.2 ad LOCKSTAT_ENTER(lsflag);
338 1.2 ad
339 1.37 rmind KPREEMPT_DISABLE(curlwp);
340 1.55 ad for (owner = rw->rw_owner;;) {
341 1.2 ad /*
342 1.2 ad * Read the lock owner field. If the need-to-wait
343 1.2 ad * indicator is clear, then try to acquire the lock.
344 1.2 ad */
345 1.2 ad if ((owner & need_wait) == 0) {
346 1.20 ad next = rw_cas(rw, owner, (owner + incr) &
347 1.20 ad ~RW_WRITE_WANTED);
348 1.20 ad if (__predict_true(next == owner)) {
349 1.2 ad /* Got it! */
350 1.55 ad RW_MEMBAR_ENTER();
351 1.2 ad break;
352 1.2 ad }
353 1.2 ad
354 1.2 ad /*
355 1.2 ad * Didn't get it -- spin around again (we'll
356 1.2 ad * probably sleep on the next iteration).
357 1.2 ad */
358 1.20 ad owner = next;
359 1.2 ad continue;
360 1.2 ad }
361 1.37 rmind if (__predict_false(RW_OWNER(rw) == curthread)) {
362 1.46 christos rw_abort(__func__, __LINE__, rw,
363 1.46 christos "locking against myself");
364 1.37 rmind }
365 1.19 ad /*
366 1.19 ad * If the lock owner is running on another CPU, and
367 1.19 ad * there are no existing waiters, then spin.
368 1.19 ad */
369 1.37 rmind if (rw_oncpu(owner)) {
370 1.19 ad LOCKSTAT_START_TIMER(lsflag, spintime);
371 1.19 ad u_int count = SPINLOCK_BACKOFF_MIN;
372 1.20 ad do {
373 1.38 rmind KPREEMPT_ENABLE(curlwp);
374 1.20 ad SPINLOCK_BACKOFF(count);
375 1.38 rmind KPREEMPT_DISABLE(curlwp);
376 1.19 ad owner = rw->rw_owner;
377 1.37 rmind } while (rw_oncpu(owner));
378 1.19 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
379 1.19 ad LOCKSTAT_COUNT(spincnt, 1);
380 1.19 ad if ((owner & need_wait) == 0)
381 1.19 ad continue;
382 1.19 ad }
383 1.19 ad
384 1.2 ad /*
385 1.2 ad * Grab the turnstile chain lock. Once we have that, we
386 1.2 ad * can adjust the waiter bits and sleep queue.
387 1.2 ad */
388 1.2 ad ts = turnstile_lookup(rw);
389 1.2 ad
390 1.2 ad /*
391 1.2 ad * Mark the rwlock as having waiters. If the set fails,
392 1.2 ad * then we may not need to sleep and should spin again.
393 1.20 ad * Reload rw_owner because turnstile_lookup() may have
394 1.20 ad * spun on the turnstile chain lock.
395 1.2 ad */
396 1.20 ad owner = rw->rw_owner;
397 1.37 rmind if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
398 1.20 ad turnstile_exit(rw);
399 1.20 ad continue;
400 1.20 ad }
401 1.20 ad next = rw_cas(rw, owner, owner | set_wait);
402 1.20 ad if (__predict_false(next != owner)) {
403 1.2 ad turnstile_exit(rw);
404 1.20 ad owner = next;
405 1.2 ad continue;
406 1.2 ad }
407 1.2 ad
408 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
409 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
410 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
411 1.20 ad LOCKSTAT_COUNT(slpcnt, 1);
412 1.2 ad
413 1.20 ad /*
414 1.20 ad * No need for a memory barrier because of context switch.
415 1.20 ad * If not handed the lock, then spin again.
416 1.20 ad */
417 1.58 ad if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
418 1.20 ad break;
419 1.58 ad
420 1.39 yamt owner = rw->rw_owner;
421 1.2 ad }
422 1.37 rmind KPREEMPT_ENABLE(curlwp);
423 1.2 ad
424 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
425 1.60 ad (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
426 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
427 1.60 ad (uintptr_t)__builtin_return_address(0)));
428 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
429 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
430 1.60 ad (uintptr_t)__builtin_return_address(0)));
431 1.2 ad LOCKSTAT_EXIT(lsflag);
432 1.2 ad
433 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
434 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
435 1.2 ad RW_LOCKED(rw, op);
436 1.2 ad }
437 1.2 ad
438 1.2 ad /*
439 1.2 ad * rw_vector_exit:
440 1.2 ad *
441 1.2 ad * Release a rwlock.
442 1.2 ad */
443 1.2 ad void
444 1.2 ad rw_vector_exit(krwlock_t *rw)
445 1.2 ad {
446 1.44 matt uintptr_t curthread, owner, decr, newown, next;
447 1.2 ad turnstile_t *ts;
448 1.2 ad int rcnt, wcnt;
449 1.7 ad lwp_t *l;
450 1.2 ad
451 1.2 ad curthread = (uintptr_t)curlwp;
452 1.2 ad RW_ASSERT(rw, curthread != 0);
453 1.2 ad
454 1.2 ad /*
455 1.2 ad * Again, we use a trick. Since we used an add operation to
456 1.2 ad * set the required lock bits, we can use a subtract to clear
457 1.2 ad * them, which makes the read-release and write-release path
458 1.2 ad * the same.
459 1.2 ad */
460 1.2 ad owner = rw->rw_owner;
461 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
462 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
463 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
464 1.2 ad decr = curthread | RW_WRITE_LOCKED;
465 1.2 ad } else {
466 1.2 ad RW_UNLOCKED(rw, RW_READER);
467 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
468 1.2 ad decr = RW_READ_INCR;
469 1.2 ad }
470 1.2 ad
471 1.2 ad /*
472 1.2 ad * Compute what we expect the new value of the lock to be. Only
473 1.2 ad * proceed to do direct handoff if there are waiters, and if the
474 1.2 ad * lock would become unowned.
475 1.2 ad */
476 1.55 ad RW_MEMBAR_EXIT();
477 1.58 ad for (;;) {
478 1.44 matt newown = (owner - decr);
479 1.44 matt if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
480 1.2 ad break;
481 1.44 matt next = rw_cas(rw, owner, newown);
482 1.20 ad if (__predict_true(next == owner))
483 1.2 ad return;
484 1.58 ad owner = next;
485 1.2 ad }
486 1.2 ad
487 1.20 ad /*
488 1.20 ad * Grab the turnstile chain lock. This gets the interlock
489 1.20 ad * on the sleep queue. Once we have that, we can adjust the
490 1.20 ad * waiter bits.
491 1.20 ad */
492 1.20 ad ts = turnstile_lookup(rw);
493 1.20 ad owner = rw->rw_owner;
494 1.20 ad RW_DASSERT(rw, ts != NULL);
495 1.20 ad RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
496 1.2 ad
497 1.20 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
498 1.20 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
499 1.2 ad
500 1.20 ad /*
501 1.20 ad * Give the lock away.
502 1.20 ad *
503 1.20 ad * If we are releasing a write lock, then prefer to wake all
504 1.20 ad * outstanding readers. Otherwise, wake one writer if there
505 1.20 ad * are outstanding readers, or all writers if there are no
506 1.20 ad * pending readers. If waking one specific writer, the writer
507 1.20 ad * is handed the lock here. If waking multiple writers, we
508 1.20 ad * set WRITE_WANTED to block out new readers, and let them
509 1.41 skrll * do the work of acquiring the lock in rw_vector_enter().
510 1.20 ad */
511 1.32 yamt if (rcnt == 0 || decr == RW_READ_INCR) {
512 1.20 ad RW_DASSERT(rw, wcnt != 0);
513 1.20 ad RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
514 1.2 ad
515 1.20 ad if (rcnt != 0) {
516 1.20 ad /* Give the lock to the longest waiting writer. */
517 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
518 1.44 matt newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
519 1.28 thorpej if (wcnt > 1)
520 1.44 matt newown |= RW_WRITE_WANTED;
521 1.44 matt rw_swap(rw, owner, newown);
522 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
523 1.2 ad } else {
524 1.20 ad /* Wake all writers and let them fight it out. */
525 1.20 ad rw_swap(rw, owner, RW_WRITE_WANTED);
526 1.20 ad turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
527 1.20 ad }
528 1.20 ad } else {
529 1.20 ad RW_DASSERT(rw, rcnt != 0);
530 1.2 ad
531 1.20 ad /*
532 1.20 ad * Give the lock to all blocked readers. If there
533 1.20 ad * is a writer waiting, new readers that arrive
534 1.20 ad * after the release will be blocked out.
535 1.20 ad */
536 1.44 matt newown = rcnt << RW_READ_COUNT_SHIFT;
537 1.20 ad if (wcnt != 0)
538 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
539 1.12 yamt
540 1.20 ad /* Wake up all sleeping readers. */
541 1.44 matt rw_swap(rw, owner, newown);
542 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
543 1.2 ad }
544 1.2 ad }
545 1.2 ad
546 1.2 ad /*
547 1.16 ad * rw_vector_tryenter:
548 1.2 ad *
549 1.2 ad * Try to acquire a rwlock.
550 1.2 ad */
551 1.2 ad int
552 1.16 ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
553 1.2 ad {
554 1.20 ad uintptr_t curthread, owner, incr, need_wait, next;
555 1.2 ad
556 1.2 ad curthread = (uintptr_t)curlwp;
557 1.2 ad
558 1.2 ad RW_ASSERT(rw, curthread != 0);
559 1.2 ad
560 1.2 ad if (op == RW_READER) {
561 1.2 ad incr = RW_READ_INCR;
562 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
563 1.2 ad } else {
564 1.2 ad RW_DASSERT(rw, op == RW_WRITER);
565 1.2 ad incr = curthread | RW_WRITE_LOCKED;
566 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
567 1.2 ad }
568 1.2 ad
569 1.58 ad for (owner = rw->rw_owner;; owner = next) {
570 1.58 ad if (__predict_false((owner & need_wait) != 0))
571 1.58 ad return 0;
572 1.20 ad next = rw_cas(rw, owner, owner + incr);
573 1.20 ad if (__predict_true(next == owner)) {
574 1.20 ad /* Got it! */
575 1.55 ad RW_MEMBAR_ENTER();
576 1.20 ad break;
577 1.2 ad }
578 1.2 ad }
579 1.2 ad
580 1.40 mlelstv RW_WANTLOCK(rw, op);
581 1.2 ad RW_LOCKED(rw, op);
582 1.2 ad RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
583 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
584 1.7 ad
585 1.2 ad return 1;
586 1.2 ad }
587 1.2 ad
588 1.2 ad /*
589 1.2 ad * rw_downgrade:
590 1.2 ad *
591 1.55 ad * Downgrade a write lock to a read lock. Optimise memory accesses for
592 1.55 ad * the uncontended case.
593 1.2 ad */
594 1.2 ad void
595 1.2 ad rw_downgrade(krwlock_t *rw)
596 1.2 ad {
597 1.44 matt uintptr_t owner, curthread, newown, next;
598 1.2 ad turnstile_t *ts;
599 1.2 ad int rcnt, wcnt;
600 1.2 ad
601 1.2 ad curthread = (uintptr_t)curlwp;
602 1.2 ad RW_ASSERT(rw, curthread != 0);
603 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
604 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
605 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
606 1.42 mrg #if !defined(DIAGNOSTIC)
607 1.42 mrg __USE(curthread);
608 1.42 mrg #endif
609 1.42 mrg
610 1.55 ad /*
611 1.55 ad * If there are no waiters, so we can do this the easy way.
612 1.55 ad * Try swapping us down to one read hold. If it fails, the
613 1.55 ad * lock condition has changed and we most likely now have
614 1.55 ad * waiters.
615 1.55 ad */
616 1.55 ad RW_MEMBAR_PRODUCER();
617 1.55 ad owner = curthread | RW_WRITE_LOCKED;
618 1.55 ad next = rw_cas(rw, owner, RW_READ_INCR);
619 1.55 ad if (__predict_true(next == owner)) {
620 1.55 ad RW_LOCKED(rw, RW_READER);
621 1.55 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
622 1.55 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
623 1.55 ad return;
624 1.2 ad }
625 1.2 ad
626 1.2 ad /*
627 1.2 ad * Grab the turnstile chain lock. This gets the interlock
628 1.2 ad * on the sleep queue. Once we have that, we can adjust the
629 1.2 ad * waiter bits.
630 1.2 ad */
631 1.55 ad for (;;) {
632 1.55 ad owner = next;
633 1.2 ad ts = turnstile_lookup(rw);
634 1.2 ad RW_DASSERT(rw, ts != NULL);
635 1.2 ad
636 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
637 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
638 1.2 ad
639 1.2 ad /*
640 1.2 ad * If there are no readers, just preserve the waiters
641 1.2 ad * bits, swap us down to one read hold and return.
642 1.2 ad */
643 1.2 ad if (rcnt == 0) {
644 1.2 ad RW_DASSERT(rw, wcnt != 0);
645 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
646 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
647 1.2 ad
648 1.44 matt newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
649 1.44 matt next = rw_cas(rw, owner, newown);
650 1.27 rmind turnstile_exit(rw);
651 1.20 ad if (__predict_true(next == owner))
652 1.20 ad break;
653 1.20 ad } else {
654 1.20 ad /*
655 1.20 ad * Give the lock to all blocked readers. We may
656 1.20 ad * retain one read hold if downgrading. If there
657 1.20 ad * is a writer waiting, new readers will be blocked
658 1.20 ad * out.
659 1.20 ad */
660 1.44 matt newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
661 1.20 ad if (wcnt != 0)
662 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
663 1.20 ad
664 1.44 matt next = rw_cas(rw, owner, newown);
665 1.20 ad if (__predict_true(next == owner)) {
666 1.20 ad /* Wake up all sleeping readers. */
667 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
668 1.20 ad break;
669 1.2 ad }
670 1.27 rmind turnstile_exit(rw);
671 1.2 ad }
672 1.2 ad }
673 1.2 ad
674 1.40 mlelstv RW_WANTLOCK(rw, RW_READER);
675 1.2 ad RW_LOCKED(rw, RW_READER);
676 1.2 ad RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
677 1.2 ad RW_DASSERT(rw, RW_COUNT(rw) != 0);
678 1.2 ad }
679 1.2 ad
680 1.2 ad /*
681 1.2 ad * rw_tryupgrade:
682 1.2 ad *
683 1.55 ad * Try to upgrade a read lock to a write lock. We must be the only
684 1.55 ad * reader. Optimise memory accesses for the uncontended case.
685 1.2 ad */
686 1.2 ad int
687 1.2 ad rw_tryupgrade(krwlock_t *rw)
688 1.2 ad {
689 1.44 matt uintptr_t owner, curthread, newown, next;
690 1.2 ad
691 1.2 ad curthread = (uintptr_t)curlwp;
692 1.2 ad RW_ASSERT(rw, curthread != 0);
693 1.31 yamt RW_ASSERT(rw, rw_read_held(rw));
694 1.2 ad
695 1.55 ad for (owner = RW_READ_INCR;; owner = next) {
696 1.44 matt newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
697 1.44 matt next = rw_cas(rw, owner, newown);
698 1.30 ad if (__predict_true(next == owner)) {
699 1.55 ad RW_MEMBAR_PRODUCER();
700 1.2 ad break;
701 1.30 ad }
702 1.55 ad RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
703 1.55 ad if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
704 1.55 ad RW_ASSERT(rw, (next & RW_THREAD) != 0);
705 1.55 ad return 0;
706 1.55 ad }
707 1.2 ad }
708 1.2 ad
709 1.2 ad RW_UNLOCKED(rw, RW_READER);
710 1.40 mlelstv RW_WANTLOCK(rw, RW_WRITER);
711 1.2 ad RW_LOCKED(rw, RW_WRITER);
712 1.2 ad RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
713 1.2 ad RW_DASSERT(rw, RW_OWNER(rw) == curthread);
714 1.2 ad
715 1.2 ad return 1;
716 1.2 ad }
717 1.2 ad
718 1.2 ad /*
719 1.2 ad * rw_read_held:
720 1.2 ad *
721 1.2 ad * Returns true if the rwlock is held for reading. Must only be
722 1.2 ad * used for diagnostic assertions, and never be used to make
723 1.2 ad * decisions about how to use a rwlock.
724 1.2 ad */
725 1.2 ad int
726 1.2 ad rw_read_held(krwlock_t *rw)
727 1.2 ad {
728 1.2 ad uintptr_t owner;
729 1.2 ad
730 1.21 ad if (rw == NULL)
731 1.21 ad return 0;
732 1.2 ad owner = rw->rw_owner;
733 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
734 1.2 ad }
735 1.2 ad
736 1.2 ad /*
737 1.2 ad * rw_write_held:
738 1.2 ad *
739 1.2 ad * Returns true if the rwlock is held for writing. Must only be
740 1.2 ad * used for diagnostic assertions, and never be used to make
741 1.2 ad * decisions about how to use a rwlock.
742 1.2 ad */
743 1.2 ad int
744 1.2 ad rw_write_held(krwlock_t *rw)
745 1.2 ad {
746 1.2 ad
747 1.21 ad if (rw == NULL)
748 1.21 ad return 0;
749 1.17 ad return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
750 1.18 ad (RW_WRITE_LOCKED | (uintptr_t)curlwp);
751 1.2 ad }
752 1.2 ad
753 1.2 ad /*
754 1.2 ad * rw_lock_held:
755 1.2 ad *
756 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
757 1.2 ad * only be used for diagnostic assertions, and never be used to make
758 1.2 ad * decisions about how to use a rwlock.
759 1.2 ad */
760 1.2 ad int
761 1.2 ad rw_lock_held(krwlock_t *rw)
762 1.2 ad {
763 1.2 ad
764 1.21 ad if (rw == NULL)
765 1.21 ad return 0;
766 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
767 1.2 ad }
768 1.4 yamt
769 1.5 ad /*
770 1.5 ad * rw_owner:
771 1.5 ad *
772 1.5 ad * Return the current owner of an RW lock, but only if it is write
773 1.5 ad * held. Used for priority inheritance.
774 1.5 ad */
775 1.7 ad static lwp_t *
776 1.4 yamt rw_owner(wchan_t obj)
777 1.4 yamt {
778 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
779 1.4 yamt uintptr_t owner = rw->rw_owner;
780 1.4 yamt
781 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
782 1.4 yamt return NULL;
783 1.4 yamt
784 1.4 yamt return (void *)(owner & RW_THREAD);
785 1.4 yamt }
786