kern_rwlock.c revision 1.65 1 1.65 ad /* $NetBSD: kern_rwlock.c,v 1.65 2020/02/22 21:24:45 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.60 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
5 1.60 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Jason R. Thorpe and Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.2 ad * Kernel reader/writer lock implementation, modeled after those
35 1.2 ad * found in Solaris, a description of which can be found in:
36 1.2 ad *
37 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
38 1.2 ad * Richard McDougall.
39 1.64 ad *
40 1.64 ad * The NetBSD implementation differs from that described in the book, in
41 1.64 ad * that the locks are partially adaptive. Lock waiters spin wait while a
42 1.64 ad * lock is write held and the holder is still running on a CPU. The method
43 1.64 ad * of choosing which threads to awaken when a lock is released also differs,
44 1.64 ad * mainly to take account of the partially adaptive behaviour.
45 1.2 ad */
46 1.2 ad
47 1.10 dsl #include <sys/cdefs.h>
48 1.65 ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.65 2020/02/22 21:24:45 ad Exp $");
49 1.61 ad
50 1.61 ad #include "opt_lockdebug.h"
51 1.2 ad
52 1.2 ad #define __RWLOCK_PRIVATE
53 1.2 ad
54 1.2 ad #include <sys/param.h>
55 1.2 ad #include <sys/proc.h>
56 1.2 ad #include <sys/rwlock.h>
57 1.2 ad #include <sys/sched.h>
58 1.2 ad #include <sys/sleepq.h>
59 1.2 ad #include <sys/systm.h>
60 1.2 ad #include <sys/lockdebug.h>
61 1.11 ad #include <sys/cpu.h>
62 1.14 ad #include <sys/atomic.h>
63 1.15 ad #include <sys/lock.h>
64 1.51 ozaki #include <sys/pserialize.h>
65 1.2 ad
66 1.2 ad #include <dev/lockstat.h>
67 1.2 ad
68 1.56 riastrad #include <machine/rwlock.h>
69 1.56 riastrad
70 1.2 ad /*
71 1.2 ad * LOCKDEBUG
72 1.2 ad */
73 1.2 ad
74 1.61 ad #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
75 1.2 ad
76 1.61 ad #define RW_WANTLOCK(rw, op) \
77 1.61 ad LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
78 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
79 1.61 ad #define RW_LOCKED(rw, op) \
80 1.61 ad LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
81 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
82 1.61 ad #define RW_UNLOCKED(rw, op) \
83 1.61 ad LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
84 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
85 1.2 ad
86 1.2 ad /*
87 1.2 ad * DIAGNOSTIC
88 1.2 ad */
89 1.2 ad
90 1.2 ad #if defined(DIAGNOSTIC)
91 1.61 ad #define RW_ASSERT(rw, cond) \
92 1.61 ad do { \
93 1.61 ad if (__predict_false(!(cond))) \
94 1.46 christos rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
95 1.2 ad } while (/* CONSTCOND */ 0)
96 1.2 ad #else
97 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
98 1.2 ad #endif /* DIAGNOSTIC */
99 1.2 ad
100 1.55 ad /*
101 1.55 ad * Memory barriers.
102 1.55 ad */
103 1.55 ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
104 1.55 ad #define RW_MEMBAR_ENTER()
105 1.55 ad #define RW_MEMBAR_EXIT()
106 1.55 ad #define RW_MEMBAR_PRODUCER()
107 1.55 ad #else
108 1.55 ad #define RW_MEMBAR_ENTER() membar_enter()
109 1.55 ad #define RW_MEMBAR_EXIT() membar_exit()
110 1.55 ad #define RW_MEMBAR_PRODUCER() membar_producer()
111 1.55 ad #endif
112 1.55 ad
113 1.2 ad /*
114 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
115 1.2 ad */
116 1.2 ad #ifdef LOCKDEBUG
117 1.2 ad #undef __HAVE_RW_STUBS
118 1.2 ad #endif
119 1.2 ad
120 1.2 ad #ifndef __HAVE_RW_STUBS
121 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
122 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
123 1.16 ad __strong_alias(rw_tryenter,rw_vector_tryenter);
124 1.2 ad #endif
125 1.2 ad
126 1.61 ad static void rw_abort(const char *, size_t, krwlock_t *, const char *);
127 1.61 ad static void rw_dump(const volatile void *, lockop_printer_t);
128 1.61 ad static lwp_t *rw_owner(wchan_t);
129 1.61 ad
130 1.2 ad lockops_t rwlock_lockops = {
131 1.48 ozaki .lo_name = "Reader / writer lock",
132 1.48 ozaki .lo_type = LOCKOPS_SLEEP,
133 1.48 ozaki .lo_dump = rw_dump,
134 1.2 ad };
135 1.2 ad
136 1.4 yamt syncobj_t rw_syncobj = {
137 1.49 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
138 1.49 ozaki .sobj_unsleep = turnstile_unsleep,
139 1.49 ozaki .sobj_changepri = turnstile_changepri,
140 1.49 ozaki .sobj_lendpri = sleepq_lendpri,
141 1.49 ozaki .sobj_owner = rw_owner,
142 1.4 yamt };
143 1.4 yamt
144 1.2 ad /*
145 1.61 ad * rw_cas:
146 1.61 ad *
147 1.61 ad * Do an atomic compare-and-swap on the lock word.
148 1.61 ad */
149 1.61 ad static inline uintptr_t
150 1.61 ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
151 1.61 ad {
152 1.61 ad
153 1.61 ad return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
154 1.61 ad (void *)o, (void *)n);
155 1.61 ad }
156 1.61 ad
157 1.61 ad /*
158 1.61 ad * rw_swap:
159 1.61 ad *
160 1.61 ad * Do an atomic swap of the lock word. This is used only when it's
161 1.61 ad * known that the lock word is set up such that it can't be changed
162 1.61 ad * behind us (assert this), so there's no point considering the result.
163 1.61 ad */
164 1.61 ad static inline void
165 1.61 ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
166 1.61 ad {
167 1.61 ad
168 1.61 ad n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
169 1.61 ad (void *)n);
170 1.61 ad
171 1.61 ad RW_ASSERT(rw, n == o);
172 1.61 ad RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
173 1.61 ad }
174 1.61 ad
175 1.61 ad /*
176 1.2 ad * rw_dump:
177 1.2 ad *
178 1.2 ad * Dump the contents of a rwlock structure.
179 1.2 ad */
180 1.11 ad static void
181 1.54 ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
182 1.2 ad {
183 1.47 christos const volatile krwlock_t *rw = cookie;
184 1.2 ad
185 1.54 ozaki pr("owner/count : %#018lx flags : %#018x\n",
186 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
187 1.2 ad }
188 1.2 ad
189 1.2 ad /*
190 1.11 ad * rw_abort:
191 1.11 ad *
192 1.11 ad * Dump information about an error and panic the system. This
193 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
194 1.11 ad * we ask the compiler to not inline it.
195 1.11 ad */
196 1.26 ad static void __noinline
197 1.46 christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
198 1.11 ad {
199 1.11 ad
200 1.11 ad if (panicstr != NULL)
201 1.11 ad return;
202 1.11 ad
203 1.46 christos LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
204 1.11 ad }
205 1.11 ad
206 1.11 ad /*
207 1.2 ad * rw_init:
208 1.2 ad *
209 1.2 ad * Initialize a rwlock for use.
210 1.2 ad */
211 1.2 ad void
212 1.50 ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
213 1.2 ad {
214 1.2 ad
215 1.62 ad #ifdef LOCKDEBUG
216 1.62 ad /* XXX only because the assembly stubs can't handle RW_NODEBUG */
217 1.61 ad if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
218 1.61 ad rw->rw_owner = 0;
219 1.61 ad else
220 1.61 ad rw->rw_owner = RW_NODEBUG;
221 1.62 ad #else
222 1.62 ad rw->rw_owner = 0;
223 1.62 ad #endif
224 1.2 ad }
225 1.2 ad
226 1.50 ozaki void
227 1.50 ozaki rw_init(krwlock_t *rw)
228 1.50 ozaki {
229 1.50 ozaki
230 1.50 ozaki _rw_init(rw, (uintptr_t)__builtin_return_address(0));
231 1.50 ozaki }
232 1.50 ozaki
233 1.2 ad /*
234 1.2 ad * rw_destroy:
235 1.2 ad *
236 1.2 ad * Tear down a rwlock.
237 1.2 ad */
238 1.2 ad void
239 1.2 ad rw_destroy(krwlock_t *rw)
240 1.2 ad {
241 1.2 ad
242 1.36 skrll RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
243 1.61 ad LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
244 1.2 ad }
245 1.2 ad
246 1.2 ad /*
247 1.37 rmind * rw_oncpu:
248 1.20 ad *
249 1.20 ad * Return true if an rwlock owner is running on a CPU in the system.
250 1.20 ad * If the target is waiting on the kernel big lock, then we must
251 1.20 ad * release it. This is necessary to avoid deadlock.
252 1.20 ad */
253 1.37 rmind static bool
254 1.37 rmind rw_oncpu(uintptr_t owner)
255 1.20 ad {
256 1.20 ad #ifdef MULTIPROCESSOR
257 1.20 ad struct cpu_info *ci;
258 1.20 ad lwp_t *l;
259 1.20 ad
260 1.37 rmind KASSERT(kpreempt_disabled());
261 1.37 rmind
262 1.37 rmind if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
263 1.37 rmind return false;
264 1.37 rmind }
265 1.37 rmind
266 1.37 rmind /*
267 1.37 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
268 1.37 rmind * We must have kernel preemption disabled for that.
269 1.37 rmind */
270 1.20 ad l = (lwp_t *)(owner & RW_THREAD);
271 1.37 rmind ci = l->l_cpu;
272 1.20 ad
273 1.37 rmind if (ci && ci->ci_curlwp == l) {
274 1.37 rmind /* Target is running; do we need to block? */
275 1.37 rmind return (ci->ci_biglock_wanted != l);
276 1.37 rmind }
277 1.37 rmind #endif
278 1.37 rmind /* Not running. It may be safe to block now. */
279 1.37 rmind return false;
280 1.20 ad }
281 1.20 ad
282 1.20 ad /*
283 1.2 ad * rw_vector_enter:
284 1.2 ad *
285 1.2 ad * Acquire a rwlock.
286 1.2 ad */
287 1.2 ad void
288 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
289 1.2 ad {
290 1.20 ad uintptr_t owner, incr, need_wait, set_wait, curthread, next;
291 1.2 ad turnstile_t *ts;
292 1.2 ad int queue;
293 1.7 ad lwp_t *l;
294 1.2 ad LOCKSTAT_TIMER(slptime);
295 1.20 ad LOCKSTAT_TIMER(slpcnt);
296 1.19 ad LOCKSTAT_TIMER(spintime);
297 1.19 ad LOCKSTAT_COUNTER(spincnt);
298 1.2 ad LOCKSTAT_FLAG(lsflag);
299 1.2 ad
300 1.2 ad l = curlwp;
301 1.2 ad curthread = (uintptr_t)l;
302 1.2 ad
303 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
304 1.2 ad RW_ASSERT(rw, curthread != 0);
305 1.40 mlelstv RW_WANTLOCK(rw, op);
306 1.2 ad
307 1.2 ad if (panicstr == NULL) {
308 1.53 ozaki KDASSERT(pserialize_not_in_read_section());
309 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
310 1.2 ad }
311 1.2 ad
312 1.2 ad /*
313 1.2 ad * We play a slight trick here. If we're a reader, we want
314 1.2 ad * increment the read count. If we're a writer, we want to
315 1.43 ozaki * set the owner field and the WRITE_LOCKED bit.
316 1.2 ad *
317 1.2 ad * In the latter case, we expect those bits to be zero,
318 1.2 ad * therefore we can use an add operation to set them, which
319 1.2 ad * means an add operation for both cases.
320 1.2 ad */
321 1.2 ad if (__predict_true(op == RW_READER)) {
322 1.2 ad incr = RW_READ_INCR;
323 1.2 ad set_wait = RW_HAS_WAITERS;
324 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
325 1.2 ad queue = TS_READER_Q;
326 1.2 ad } else {
327 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
328 1.2 ad incr = curthread | RW_WRITE_LOCKED;
329 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
330 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
331 1.2 ad queue = TS_WRITER_Q;
332 1.2 ad }
333 1.2 ad
334 1.2 ad LOCKSTAT_ENTER(lsflag);
335 1.2 ad
336 1.37 rmind KPREEMPT_DISABLE(curlwp);
337 1.55 ad for (owner = rw->rw_owner;;) {
338 1.2 ad /*
339 1.2 ad * Read the lock owner field. If the need-to-wait
340 1.2 ad * indicator is clear, then try to acquire the lock.
341 1.2 ad */
342 1.2 ad if ((owner & need_wait) == 0) {
343 1.20 ad next = rw_cas(rw, owner, (owner + incr) &
344 1.20 ad ~RW_WRITE_WANTED);
345 1.20 ad if (__predict_true(next == owner)) {
346 1.2 ad /* Got it! */
347 1.55 ad RW_MEMBAR_ENTER();
348 1.2 ad break;
349 1.2 ad }
350 1.2 ad
351 1.2 ad /*
352 1.2 ad * Didn't get it -- spin around again (we'll
353 1.2 ad * probably sleep on the next iteration).
354 1.2 ad */
355 1.20 ad owner = next;
356 1.2 ad continue;
357 1.2 ad }
358 1.37 rmind if (__predict_false(RW_OWNER(rw) == curthread)) {
359 1.46 christos rw_abort(__func__, __LINE__, rw,
360 1.46 christos "locking against myself");
361 1.37 rmind }
362 1.19 ad /*
363 1.19 ad * If the lock owner is running on another CPU, and
364 1.19 ad * there are no existing waiters, then spin.
365 1.19 ad */
366 1.37 rmind if (rw_oncpu(owner)) {
367 1.19 ad LOCKSTAT_START_TIMER(lsflag, spintime);
368 1.19 ad u_int count = SPINLOCK_BACKOFF_MIN;
369 1.20 ad do {
370 1.38 rmind KPREEMPT_ENABLE(curlwp);
371 1.20 ad SPINLOCK_BACKOFF(count);
372 1.38 rmind KPREEMPT_DISABLE(curlwp);
373 1.19 ad owner = rw->rw_owner;
374 1.37 rmind } while (rw_oncpu(owner));
375 1.19 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
376 1.19 ad LOCKSTAT_COUNT(spincnt, 1);
377 1.19 ad if ((owner & need_wait) == 0)
378 1.19 ad continue;
379 1.19 ad }
380 1.19 ad
381 1.2 ad /*
382 1.2 ad * Grab the turnstile chain lock. Once we have that, we
383 1.2 ad * can adjust the waiter bits and sleep queue.
384 1.2 ad */
385 1.2 ad ts = turnstile_lookup(rw);
386 1.2 ad
387 1.2 ad /*
388 1.2 ad * Mark the rwlock as having waiters. If the set fails,
389 1.2 ad * then we may not need to sleep and should spin again.
390 1.20 ad * Reload rw_owner because turnstile_lookup() may have
391 1.20 ad * spun on the turnstile chain lock.
392 1.2 ad */
393 1.20 ad owner = rw->rw_owner;
394 1.37 rmind if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
395 1.20 ad turnstile_exit(rw);
396 1.20 ad continue;
397 1.20 ad }
398 1.20 ad next = rw_cas(rw, owner, owner | set_wait);
399 1.20 ad if (__predict_false(next != owner)) {
400 1.2 ad turnstile_exit(rw);
401 1.20 ad owner = next;
402 1.2 ad continue;
403 1.2 ad }
404 1.2 ad
405 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
406 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
407 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
408 1.20 ad LOCKSTAT_COUNT(slpcnt, 1);
409 1.2 ad
410 1.20 ad /*
411 1.20 ad * No need for a memory barrier because of context switch.
412 1.20 ad * If not handed the lock, then spin again.
413 1.20 ad */
414 1.58 ad if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
415 1.20 ad break;
416 1.58 ad
417 1.39 yamt owner = rw->rw_owner;
418 1.2 ad }
419 1.37 rmind KPREEMPT_ENABLE(curlwp);
420 1.2 ad
421 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
422 1.60 ad (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
423 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
424 1.60 ad (uintptr_t)__builtin_return_address(0)));
425 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
426 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
427 1.60 ad (uintptr_t)__builtin_return_address(0)));
428 1.2 ad LOCKSTAT_EXIT(lsflag);
429 1.2 ad
430 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
431 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
432 1.2 ad RW_LOCKED(rw, op);
433 1.2 ad }
434 1.2 ad
435 1.2 ad /*
436 1.2 ad * rw_vector_exit:
437 1.2 ad *
438 1.2 ad * Release a rwlock.
439 1.2 ad */
440 1.2 ad void
441 1.2 ad rw_vector_exit(krwlock_t *rw)
442 1.2 ad {
443 1.44 matt uintptr_t curthread, owner, decr, newown, next;
444 1.2 ad turnstile_t *ts;
445 1.2 ad int rcnt, wcnt;
446 1.7 ad lwp_t *l;
447 1.2 ad
448 1.61 ad l = curlwp;
449 1.61 ad curthread = (uintptr_t)l;
450 1.2 ad RW_ASSERT(rw, curthread != 0);
451 1.2 ad
452 1.2 ad /*
453 1.2 ad * Again, we use a trick. Since we used an add operation to
454 1.2 ad * set the required lock bits, we can use a subtract to clear
455 1.2 ad * them, which makes the read-release and write-release path
456 1.2 ad * the same.
457 1.2 ad */
458 1.2 ad owner = rw->rw_owner;
459 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
460 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
461 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
462 1.2 ad decr = curthread | RW_WRITE_LOCKED;
463 1.2 ad } else {
464 1.2 ad RW_UNLOCKED(rw, RW_READER);
465 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
466 1.2 ad decr = RW_READ_INCR;
467 1.2 ad }
468 1.2 ad
469 1.2 ad /*
470 1.2 ad * Compute what we expect the new value of the lock to be. Only
471 1.2 ad * proceed to do direct handoff if there are waiters, and if the
472 1.2 ad * lock would become unowned.
473 1.2 ad */
474 1.55 ad RW_MEMBAR_EXIT();
475 1.58 ad for (;;) {
476 1.44 matt newown = (owner - decr);
477 1.44 matt if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
478 1.2 ad break;
479 1.44 matt next = rw_cas(rw, owner, newown);
480 1.20 ad if (__predict_true(next == owner))
481 1.2 ad return;
482 1.58 ad owner = next;
483 1.2 ad }
484 1.2 ad
485 1.20 ad /*
486 1.20 ad * Grab the turnstile chain lock. This gets the interlock
487 1.20 ad * on the sleep queue. Once we have that, we can adjust the
488 1.20 ad * waiter bits.
489 1.20 ad */
490 1.20 ad ts = turnstile_lookup(rw);
491 1.20 ad owner = rw->rw_owner;
492 1.61 ad RW_ASSERT(rw, ts != NULL);
493 1.61 ad RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
494 1.2 ad
495 1.20 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
496 1.20 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
497 1.2 ad
498 1.20 ad /*
499 1.20 ad * Give the lock away.
500 1.20 ad *
501 1.20 ad * If we are releasing a write lock, then prefer to wake all
502 1.20 ad * outstanding readers. Otherwise, wake one writer if there
503 1.20 ad * are outstanding readers, or all writers if there are no
504 1.20 ad * pending readers. If waking one specific writer, the writer
505 1.20 ad * is handed the lock here. If waking multiple writers, we
506 1.20 ad * set WRITE_WANTED to block out new readers, and let them
507 1.41 skrll * do the work of acquiring the lock in rw_vector_enter().
508 1.20 ad */
509 1.32 yamt if (rcnt == 0 || decr == RW_READ_INCR) {
510 1.61 ad RW_ASSERT(rw, wcnt != 0);
511 1.61 ad RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
512 1.2 ad
513 1.20 ad if (rcnt != 0) {
514 1.20 ad /* Give the lock to the longest waiting writer. */
515 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
516 1.61 ad newown = (uintptr_t)l | (owner & RW_NODEBUG);
517 1.61 ad newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
518 1.28 thorpej if (wcnt > 1)
519 1.44 matt newown |= RW_WRITE_WANTED;
520 1.44 matt rw_swap(rw, owner, newown);
521 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
522 1.2 ad } else {
523 1.20 ad /* Wake all writers and let them fight it out. */
524 1.61 ad newown = owner & RW_NODEBUG;
525 1.61 ad newown |= RW_WRITE_WANTED;
526 1.61 ad rw_swap(rw, owner, newown);
527 1.20 ad turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
528 1.20 ad }
529 1.20 ad } else {
530 1.61 ad RW_ASSERT(rw, rcnt != 0);
531 1.2 ad
532 1.20 ad /*
533 1.20 ad * Give the lock to all blocked readers. If there
534 1.20 ad * is a writer waiting, new readers that arrive
535 1.20 ad * after the release will be blocked out.
536 1.20 ad */
537 1.61 ad newown = owner & RW_NODEBUG;
538 1.61 ad newown += rcnt << RW_READ_COUNT_SHIFT;
539 1.20 ad if (wcnt != 0)
540 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
541 1.12 yamt
542 1.20 ad /* Wake up all sleeping readers. */
543 1.44 matt rw_swap(rw, owner, newown);
544 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
545 1.2 ad }
546 1.2 ad }
547 1.2 ad
548 1.2 ad /*
549 1.16 ad * rw_vector_tryenter:
550 1.2 ad *
551 1.2 ad * Try to acquire a rwlock.
552 1.2 ad */
553 1.2 ad int
554 1.16 ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
555 1.2 ad {
556 1.20 ad uintptr_t curthread, owner, incr, need_wait, next;
557 1.61 ad lwp_t *l;
558 1.2 ad
559 1.61 ad l = curlwp;
560 1.61 ad curthread = (uintptr_t)l;
561 1.2 ad
562 1.2 ad RW_ASSERT(rw, curthread != 0);
563 1.2 ad
564 1.2 ad if (op == RW_READER) {
565 1.2 ad incr = RW_READ_INCR;
566 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
567 1.2 ad } else {
568 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
569 1.2 ad incr = curthread | RW_WRITE_LOCKED;
570 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
571 1.2 ad }
572 1.2 ad
573 1.58 ad for (owner = rw->rw_owner;; owner = next) {
574 1.58 ad if (__predict_false((owner & need_wait) != 0))
575 1.58 ad return 0;
576 1.20 ad next = rw_cas(rw, owner, owner + incr);
577 1.20 ad if (__predict_true(next == owner)) {
578 1.20 ad /* Got it! */
579 1.20 ad break;
580 1.2 ad }
581 1.2 ad }
582 1.2 ad
583 1.40 mlelstv RW_WANTLOCK(rw, op);
584 1.2 ad RW_LOCKED(rw, op);
585 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
586 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
587 1.7 ad
588 1.61 ad RW_MEMBAR_ENTER();
589 1.2 ad return 1;
590 1.2 ad }
591 1.2 ad
592 1.2 ad /*
593 1.2 ad * rw_downgrade:
594 1.2 ad *
595 1.61 ad * Downgrade a write lock to a read lock.
596 1.2 ad */
597 1.2 ad void
598 1.2 ad rw_downgrade(krwlock_t *rw)
599 1.2 ad {
600 1.44 matt uintptr_t owner, curthread, newown, next;
601 1.2 ad turnstile_t *ts;
602 1.2 ad int rcnt, wcnt;
603 1.61 ad lwp_t *l;
604 1.2 ad
605 1.61 ad l = curlwp;
606 1.61 ad curthread = (uintptr_t)l;
607 1.2 ad RW_ASSERT(rw, curthread != 0);
608 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
609 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
610 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
611 1.42 mrg #if !defined(DIAGNOSTIC)
612 1.42 mrg __USE(curthread);
613 1.42 mrg #endif
614 1.42 mrg
615 1.55 ad RW_MEMBAR_PRODUCER();
616 1.2 ad
617 1.61 ad for (owner = rw->rw_owner;; owner = next) {
618 1.61 ad /*
619 1.61 ad * If there are no waiters we can do this the easy way. Try
620 1.61 ad * swapping us down to one read hold. If it fails, the lock
621 1.61 ad * condition has changed and we most likely now have
622 1.61 ad * waiters.
623 1.61 ad */
624 1.61 ad if ((owner & RW_HAS_WAITERS) == 0) {
625 1.61 ad newown = (owner & RW_NODEBUG);
626 1.61 ad next = rw_cas(rw, owner, newown + RW_READ_INCR);
627 1.61 ad if (__predict_true(next == owner)) {
628 1.61 ad RW_LOCKED(rw, RW_READER);
629 1.61 ad RW_ASSERT(rw,
630 1.61 ad (rw->rw_owner & RW_WRITE_LOCKED) == 0);
631 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
632 1.61 ad return;
633 1.61 ad }
634 1.61 ad continue;
635 1.61 ad }
636 1.61 ad
637 1.61 ad /*
638 1.61 ad * Grab the turnstile chain lock. This gets the interlock
639 1.61 ad * on the sleep queue. Once we have that, we can adjust the
640 1.61 ad * waiter bits.
641 1.61 ad */
642 1.2 ad ts = turnstile_lookup(rw);
643 1.61 ad RW_ASSERT(rw, ts != NULL);
644 1.2 ad
645 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
646 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
647 1.2 ad
648 1.2 ad if (rcnt == 0) {
649 1.61 ad /*
650 1.61 ad * If there are no readers, just preserve the
651 1.61 ad * waiters bits, swap us down to one read hold and
652 1.61 ad * return.
653 1.61 ad */
654 1.61 ad RW_ASSERT(rw, wcnt != 0);
655 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
656 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
657 1.61 ad
658 1.61 ad newown = owner & RW_NODEBUG;
659 1.62 ad newown |= RW_READ_INCR | RW_HAS_WAITERS |
660 1.61 ad RW_WRITE_WANTED;
661 1.44 matt next = rw_cas(rw, owner, newown);
662 1.27 rmind turnstile_exit(rw);
663 1.20 ad if (__predict_true(next == owner))
664 1.20 ad break;
665 1.20 ad } else {
666 1.20 ad /*
667 1.20 ad * Give the lock to all blocked readers. We may
668 1.61 ad * retain one read hold if downgrading. If there is
669 1.61 ad * a writer waiting, new readers will be blocked
670 1.20 ad * out.
671 1.20 ad */
672 1.61 ad newown = owner & RW_NODEBUG;
673 1.61 ad newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
674 1.20 ad if (wcnt != 0)
675 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
676 1.20 ad
677 1.44 matt next = rw_cas(rw, owner, newown);
678 1.20 ad if (__predict_true(next == owner)) {
679 1.20 ad /* Wake up all sleeping readers. */
680 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
681 1.20 ad break;
682 1.2 ad }
683 1.27 rmind turnstile_exit(rw);
684 1.2 ad }
685 1.2 ad }
686 1.2 ad
687 1.40 mlelstv RW_WANTLOCK(rw, RW_READER);
688 1.2 ad RW_LOCKED(rw, RW_READER);
689 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
690 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
691 1.2 ad }
692 1.2 ad
693 1.2 ad /*
694 1.2 ad * rw_tryupgrade:
695 1.2 ad *
696 1.55 ad * Try to upgrade a read lock to a write lock. We must be the only
697 1.61 ad * reader.
698 1.2 ad */
699 1.2 ad int
700 1.2 ad rw_tryupgrade(krwlock_t *rw)
701 1.2 ad {
702 1.44 matt uintptr_t owner, curthread, newown, next;
703 1.61 ad struct lwp *l;
704 1.2 ad
705 1.61 ad l = curlwp;
706 1.61 ad curthread = (uintptr_t)l;
707 1.2 ad RW_ASSERT(rw, curthread != 0);
708 1.31 yamt RW_ASSERT(rw, rw_read_held(rw));
709 1.2 ad
710 1.55 ad for (owner = RW_READ_INCR;; owner = next) {
711 1.44 matt newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
712 1.44 matt next = rw_cas(rw, owner, newown);
713 1.30 ad if (__predict_true(next == owner)) {
714 1.55 ad RW_MEMBAR_PRODUCER();
715 1.2 ad break;
716 1.30 ad }
717 1.55 ad RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
718 1.55 ad if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
719 1.55 ad RW_ASSERT(rw, (next & RW_THREAD) != 0);
720 1.55 ad return 0;
721 1.55 ad }
722 1.2 ad }
723 1.2 ad
724 1.2 ad RW_UNLOCKED(rw, RW_READER);
725 1.40 mlelstv RW_WANTLOCK(rw, RW_WRITER);
726 1.2 ad RW_LOCKED(rw, RW_WRITER);
727 1.61 ad RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
728 1.61 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
729 1.2 ad
730 1.2 ad return 1;
731 1.2 ad }
732 1.2 ad
733 1.2 ad /*
734 1.2 ad * rw_read_held:
735 1.2 ad *
736 1.2 ad * Returns true if the rwlock is held for reading. Must only be
737 1.2 ad * used for diagnostic assertions, and never be used to make
738 1.2 ad * decisions about how to use a rwlock.
739 1.2 ad */
740 1.2 ad int
741 1.2 ad rw_read_held(krwlock_t *rw)
742 1.2 ad {
743 1.2 ad uintptr_t owner;
744 1.2 ad
745 1.21 ad if (rw == NULL)
746 1.21 ad return 0;
747 1.2 ad owner = rw->rw_owner;
748 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
749 1.2 ad }
750 1.2 ad
751 1.2 ad /*
752 1.2 ad * rw_write_held:
753 1.2 ad *
754 1.2 ad * Returns true if the rwlock is held for writing. Must only be
755 1.2 ad * used for diagnostic assertions, and never be used to make
756 1.2 ad * decisions about how to use a rwlock.
757 1.2 ad */
758 1.2 ad int
759 1.2 ad rw_write_held(krwlock_t *rw)
760 1.2 ad {
761 1.2 ad
762 1.21 ad if (rw == NULL)
763 1.21 ad return 0;
764 1.17 ad return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
765 1.18 ad (RW_WRITE_LOCKED | (uintptr_t)curlwp);
766 1.2 ad }
767 1.2 ad
768 1.2 ad /*
769 1.2 ad * rw_lock_held:
770 1.2 ad *
771 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
772 1.2 ad * only be used for diagnostic assertions, and never be used to make
773 1.2 ad * decisions about how to use a rwlock.
774 1.2 ad */
775 1.2 ad int
776 1.2 ad rw_lock_held(krwlock_t *rw)
777 1.2 ad {
778 1.2 ad
779 1.21 ad if (rw == NULL)
780 1.21 ad return 0;
781 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
782 1.2 ad }
783 1.4 yamt
784 1.5 ad /*
785 1.65 ad * rw_lock_op:
786 1.65 ad *
787 1.65 ad * For a rwlock that is known to be held by the caller, return
788 1.65 ad * RW_READER or RW_WRITER to describe the hold type.
789 1.65 ad */
790 1.65 ad krw_t
791 1.65 ad rw_lock_op(krwlock_t *rw)
792 1.65 ad {
793 1.65 ad
794 1.65 ad RW_ASSERT(rw, rw_lock_held(rw));
795 1.65 ad
796 1.65 ad return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
797 1.65 ad }
798 1.65 ad
799 1.65 ad /*
800 1.5 ad * rw_owner:
801 1.5 ad *
802 1.5 ad * Return the current owner of an RW lock, but only if it is write
803 1.5 ad * held. Used for priority inheritance.
804 1.5 ad */
805 1.7 ad static lwp_t *
806 1.4 yamt rw_owner(wchan_t obj)
807 1.4 yamt {
808 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
809 1.4 yamt uintptr_t owner = rw->rw_owner;
810 1.4 yamt
811 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
812 1.4 yamt return NULL;
813 1.4 yamt
814 1.4 yamt return (void *)(owner & RW_THREAD);
815 1.4 yamt }
816 1.63 ad
817 1.63 ad /*
818 1.63 ad * rw_owner_running:
819 1.63 ad *
820 1.63 ad * Return true if a RW lock is unheld, or write held and the owner is
821 1.63 ad * running on a CPU. For the pagedaemon.
822 1.63 ad */
823 1.63 ad bool
824 1.63 ad rw_owner_running(const krwlock_t *rw)
825 1.63 ad {
826 1.63 ad #ifdef MULTIPROCESSOR
827 1.63 ad uintptr_t owner;
828 1.63 ad bool rv;
829 1.63 ad
830 1.63 ad kpreempt_disable();
831 1.63 ad owner = rw->rw_owner;
832 1.63 ad rv = (owner & RW_THREAD) == 0 || rw_oncpu(owner);
833 1.63 ad kpreempt_enable();
834 1.63 ad return rv;
835 1.63 ad #else
836 1.63 ad return rw_owner(rw) == curlwp;
837 1.63 ad #endif
838 1.63 ad }
839