kern_rwlock.c revision 1.66.4.2 1 1.66.4.2 martin /* $NetBSD: kern_rwlock.c,v 1.66.4.2 2023/07/31 14:45:59 martin Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.60 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
5 1.60 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Jason R. Thorpe and Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.2 ad * Kernel reader/writer lock implementation, modeled after those
35 1.2 ad * found in Solaris, a description of which can be found in:
36 1.2 ad *
37 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
38 1.2 ad * Richard McDougall.
39 1.64 ad *
40 1.64 ad * The NetBSD implementation differs from that described in the book, in
41 1.64 ad * that the locks are partially adaptive. Lock waiters spin wait while a
42 1.64 ad * lock is write held and the holder is still running on a CPU. The method
43 1.64 ad * of choosing which threads to awaken when a lock is released also differs,
44 1.64 ad * mainly to take account of the partially adaptive behaviour.
45 1.2 ad */
46 1.2 ad
47 1.10 dsl #include <sys/cdefs.h>
48 1.66.4.2 martin __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.66.4.2 2023/07/31 14:45:59 martin Exp $");
49 1.61 ad
50 1.61 ad #include "opt_lockdebug.h"
51 1.2 ad
52 1.2 ad #define __RWLOCK_PRIVATE
53 1.2 ad
54 1.2 ad #include <sys/param.h>
55 1.2 ad #include <sys/proc.h>
56 1.2 ad #include <sys/rwlock.h>
57 1.2 ad #include <sys/sched.h>
58 1.2 ad #include <sys/sleepq.h>
59 1.2 ad #include <sys/systm.h>
60 1.2 ad #include <sys/lockdebug.h>
61 1.11 ad #include <sys/cpu.h>
62 1.14 ad #include <sys/atomic.h>
63 1.15 ad #include <sys/lock.h>
64 1.51 ozaki #include <sys/pserialize.h>
65 1.2 ad
66 1.2 ad #include <dev/lockstat.h>
67 1.2 ad
68 1.56 riastrad #include <machine/rwlock.h>
69 1.56 riastrad
70 1.2 ad /*
71 1.2 ad * LOCKDEBUG
72 1.2 ad */
73 1.2 ad
74 1.61 ad #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
75 1.2 ad
76 1.61 ad #define RW_WANTLOCK(rw, op) \
77 1.61 ad LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
78 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
79 1.61 ad #define RW_LOCKED(rw, op) \
80 1.61 ad LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
81 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
82 1.61 ad #define RW_UNLOCKED(rw, op) \
83 1.61 ad LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
84 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
85 1.2 ad
86 1.2 ad /*
87 1.2 ad * DIAGNOSTIC
88 1.2 ad */
89 1.2 ad
90 1.2 ad #if defined(DIAGNOSTIC)
91 1.61 ad #define RW_ASSERT(rw, cond) \
92 1.61 ad do { \
93 1.61 ad if (__predict_false(!(cond))) \
94 1.46 christos rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
95 1.2 ad } while (/* CONSTCOND */ 0)
96 1.2 ad #else
97 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
98 1.2 ad #endif /* DIAGNOSTIC */
99 1.2 ad
100 1.55 ad /*
101 1.55 ad * Memory barriers.
102 1.55 ad */
103 1.55 ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
104 1.66 riastrad #define RW_MEMBAR_ACQUIRE()
105 1.66 riastrad #define RW_MEMBAR_RELEASE()
106 1.55 ad #else
107 1.66 riastrad #define RW_MEMBAR_ACQUIRE() membar_acquire()
108 1.66 riastrad #define RW_MEMBAR_RELEASE() membar_release()
109 1.55 ad #endif
110 1.55 ad
111 1.2 ad /*
112 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
113 1.2 ad */
114 1.2 ad #ifdef LOCKDEBUG
115 1.2 ad #undef __HAVE_RW_STUBS
116 1.2 ad #endif
117 1.2 ad
118 1.2 ad #ifndef __HAVE_RW_STUBS
119 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
120 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
121 1.16 ad __strong_alias(rw_tryenter,rw_vector_tryenter);
122 1.2 ad #endif
123 1.2 ad
124 1.61 ad static void rw_abort(const char *, size_t, krwlock_t *, const char *);
125 1.61 ad static void rw_dump(const volatile void *, lockop_printer_t);
126 1.61 ad static lwp_t *rw_owner(wchan_t);
127 1.61 ad
128 1.2 ad lockops_t rwlock_lockops = {
129 1.48 ozaki .lo_name = "Reader / writer lock",
130 1.48 ozaki .lo_type = LOCKOPS_SLEEP,
131 1.48 ozaki .lo_dump = rw_dump,
132 1.2 ad };
133 1.2 ad
134 1.4 yamt syncobj_t rw_syncobj = {
135 1.49 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
136 1.49 ozaki .sobj_unsleep = turnstile_unsleep,
137 1.49 ozaki .sobj_changepri = turnstile_changepri,
138 1.49 ozaki .sobj_lendpri = sleepq_lendpri,
139 1.49 ozaki .sobj_owner = rw_owner,
140 1.4 yamt };
141 1.4 yamt
142 1.2 ad /*
143 1.61 ad * rw_cas:
144 1.61 ad *
145 1.61 ad * Do an atomic compare-and-swap on the lock word.
146 1.61 ad */
147 1.61 ad static inline uintptr_t
148 1.61 ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
149 1.61 ad {
150 1.61 ad
151 1.61 ad return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
152 1.61 ad (void *)o, (void *)n);
153 1.61 ad }
154 1.61 ad
155 1.61 ad /*
156 1.61 ad * rw_swap:
157 1.61 ad *
158 1.61 ad * Do an atomic swap of the lock word. This is used only when it's
159 1.61 ad * known that the lock word is set up such that it can't be changed
160 1.61 ad * behind us (assert this), so there's no point considering the result.
161 1.61 ad */
162 1.61 ad static inline void
163 1.61 ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
164 1.61 ad {
165 1.61 ad
166 1.61 ad n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
167 1.61 ad (void *)n);
168 1.61 ad
169 1.61 ad RW_ASSERT(rw, n == o);
170 1.61 ad RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
171 1.61 ad }
172 1.61 ad
173 1.61 ad /*
174 1.2 ad * rw_dump:
175 1.2 ad *
176 1.2 ad * Dump the contents of a rwlock structure.
177 1.2 ad */
178 1.11 ad static void
179 1.54 ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
180 1.2 ad {
181 1.47 christos const volatile krwlock_t *rw = cookie;
182 1.2 ad
183 1.54 ozaki pr("owner/count : %#018lx flags : %#018x\n",
184 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
185 1.2 ad }
186 1.2 ad
187 1.2 ad /*
188 1.11 ad * rw_abort:
189 1.11 ad *
190 1.11 ad * Dump information about an error and panic the system. This
191 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
192 1.11 ad * we ask the compiler to not inline it.
193 1.11 ad */
194 1.26 ad static void __noinline
195 1.46 christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
196 1.11 ad {
197 1.11 ad
198 1.66.4.1 martin if (__predict_false(panicstr != NULL))
199 1.11 ad return;
200 1.11 ad
201 1.46 christos LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
202 1.11 ad }
203 1.11 ad
204 1.11 ad /*
205 1.2 ad * rw_init:
206 1.2 ad *
207 1.2 ad * Initialize a rwlock for use.
208 1.2 ad */
209 1.2 ad void
210 1.50 ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
211 1.2 ad {
212 1.2 ad
213 1.62 ad #ifdef LOCKDEBUG
214 1.62 ad /* XXX only because the assembly stubs can't handle RW_NODEBUG */
215 1.61 ad if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
216 1.61 ad rw->rw_owner = 0;
217 1.61 ad else
218 1.61 ad rw->rw_owner = RW_NODEBUG;
219 1.62 ad #else
220 1.62 ad rw->rw_owner = 0;
221 1.62 ad #endif
222 1.2 ad }
223 1.2 ad
224 1.50 ozaki void
225 1.50 ozaki rw_init(krwlock_t *rw)
226 1.50 ozaki {
227 1.50 ozaki
228 1.50 ozaki _rw_init(rw, (uintptr_t)__builtin_return_address(0));
229 1.50 ozaki }
230 1.50 ozaki
231 1.2 ad /*
232 1.2 ad * rw_destroy:
233 1.2 ad *
234 1.2 ad * Tear down a rwlock.
235 1.2 ad */
236 1.2 ad void
237 1.2 ad rw_destroy(krwlock_t *rw)
238 1.2 ad {
239 1.2 ad
240 1.36 skrll RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
241 1.61 ad LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
242 1.2 ad }
243 1.2 ad
244 1.2 ad /*
245 1.37 rmind * rw_oncpu:
246 1.20 ad *
247 1.20 ad * Return true if an rwlock owner is running on a CPU in the system.
248 1.20 ad * If the target is waiting on the kernel big lock, then we must
249 1.20 ad * release it. This is necessary to avoid deadlock.
250 1.20 ad */
251 1.37 rmind static bool
252 1.37 rmind rw_oncpu(uintptr_t owner)
253 1.20 ad {
254 1.20 ad #ifdef MULTIPROCESSOR
255 1.20 ad struct cpu_info *ci;
256 1.20 ad lwp_t *l;
257 1.20 ad
258 1.37 rmind KASSERT(kpreempt_disabled());
259 1.37 rmind
260 1.37 rmind if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
261 1.37 rmind return false;
262 1.37 rmind }
263 1.37 rmind
264 1.37 rmind /*
265 1.37 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
266 1.37 rmind * We must have kernel preemption disabled for that.
267 1.37 rmind */
268 1.20 ad l = (lwp_t *)(owner & RW_THREAD);
269 1.37 rmind ci = l->l_cpu;
270 1.20 ad
271 1.37 rmind if (ci && ci->ci_curlwp == l) {
272 1.37 rmind /* Target is running; do we need to block? */
273 1.37 rmind return (ci->ci_biglock_wanted != l);
274 1.37 rmind }
275 1.37 rmind #endif
276 1.37 rmind /* Not running. It may be safe to block now. */
277 1.37 rmind return false;
278 1.20 ad }
279 1.20 ad
280 1.20 ad /*
281 1.2 ad * rw_vector_enter:
282 1.2 ad *
283 1.2 ad * Acquire a rwlock.
284 1.2 ad */
285 1.2 ad void
286 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
287 1.2 ad {
288 1.20 ad uintptr_t owner, incr, need_wait, set_wait, curthread, next;
289 1.2 ad turnstile_t *ts;
290 1.2 ad int queue;
291 1.7 ad lwp_t *l;
292 1.2 ad LOCKSTAT_TIMER(slptime);
293 1.20 ad LOCKSTAT_TIMER(slpcnt);
294 1.19 ad LOCKSTAT_TIMER(spintime);
295 1.19 ad LOCKSTAT_COUNTER(spincnt);
296 1.2 ad LOCKSTAT_FLAG(lsflag);
297 1.2 ad
298 1.2 ad l = curlwp;
299 1.2 ad curthread = (uintptr_t)l;
300 1.2 ad
301 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
302 1.2 ad RW_ASSERT(rw, curthread != 0);
303 1.40 mlelstv RW_WANTLOCK(rw, op);
304 1.2 ad
305 1.66.4.1 martin if (__predict_true(panicstr == NULL)) {
306 1.53 ozaki KDASSERT(pserialize_not_in_read_section());
307 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
308 1.2 ad }
309 1.2 ad
310 1.2 ad /*
311 1.2 ad * We play a slight trick here. If we're a reader, we want
312 1.2 ad * increment the read count. If we're a writer, we want to
313 1.43 ozaki * set the owner field and the WRITE_LOCKED bit.
314 1.2 ad *
315 1.2 ad * In the latter case, we expect those bits to be zero,
316 1.2 ad * therefore we can use an add operation to set them, which
317 1.2 ad * means an add operation for both cases.
318 1.2 ad */
319 1.2 ad if (__predict_true(op == RW_READER)) {
320 1.2 ad incr = RW_READ_INCR;
321 1.2 ad set_wait = RW_HAS_WAITERS;
322 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
323 1.2 ad queue = TS_READER_Q;
324 1.2 ad } else {
325 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
326 1.2 ad incr = curthread | RW_WRITE_LOCKED;
327 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
328 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
329 1.2 ad queue = TS_WRITER_Q;
330 1.2 ad }
331 1.2 ad
332 1.2 ad LOCKSTAT_ENTER(lsflag);
333 1.2 ad
334 1.37 rmind KPREEMPT_DISABLE(curlwp);
335 1.55 ad for (owner = rw->rw_owner;;) {
336 1.2 ad /*
337 1.2 ad * Read the lock owner field. If the need-to-wait
338 1.2 ad * indicator is clear, then try to acquire the lock.
339 1.2 ad */
340 1.2 ad if ((owner & need_wait) == 0) {
341 1.20 ad next = rw_cas(rw, owner, (owner + incr) &
342 1.20 ad ~RW_WRITE_WANTED);
343 1.20 ad if (__predict_true(next == owner)) {
344 1.2 ad /* Got it! */
345 1.66 riastrad RW_MEMBAR_ACQUIRE();
346 1.2 ad break;
347 1.2 ad }
348 1.2 ad
349 1.2 ad /*
350 1.2 ad * Didn't get it -- spin around again (we'll
351 1.2 ad * probably sleep on the next iteration).
352 1.2 ad */
353 1.20 ad owner = next;
354 1.2 ad continue;
355 1.2 ad }
356 1.37 rmind if (__predict_false(RW_OWNER(rw) == curthread)) {
357 1.46 christos rw_abort(__func__, __LINE__, rw,
358 1.46 christos "locking against myself");
359 1.37 rmind }
360 1.19 ad /*
361 1.19 ad * If the lock owner is running on another CPU, and
362 1.19 ad * there are no existing waiters, then spin.
363 1.19 ad */
364 1.37 rmind if (rw_oncpu(owner)) {
365 1.19 ad LOCKSTAT_START_TIMER(lsflag, spintime);
366 1.19 ad u_int count = SPINLOCK_BACKOFF_MIN;
367 1.20 ad do {
368 1.38 rmind KPREEMPT_ENABLE(curlwp);
369 1.20 ad SPINLOCK_BACKOFF(count);
370 1.38 rmind KPREEMPT_DISABLE(curlwp);
371 1.19 ad owner = rw->rw_owner;
372 1.37 rmind } while (rw_oncpu(owner));
373 1.19 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
374 1.19 ad LOCKSTAT_COUNT(spincnt, 1);
375 1.19 ad if ((owner & need_wait) == 0)
376 1.19 ad continue;
377 1.19 ad }
378 1.19 ad
379 1.2 ad /*
380 1.2 ad * Grab the turnstile chain lock. Once we have that, we
381 1.2 ad * can adjust the waiter bits and sleep queue.
382 1.2 ad */
383 1.2 ad ts = turnstile_lookup(rw);
384 1.2 ad
385 1.2 ad /*
386 1.2 ad * Mark the rwlock as having waiters. If the set fails,
387 1.2 ad * then we may not need to sleep and should spin again.
388 1.20 ad * Reload rw_owner because turnstile_lookup() may have
389 1.20 ad * spun on the turnstile chain lock.
390 1.2 ad */
391 1.20 ad owner = rw->rw_owner;
392 1.37 rmind if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
393 1.20 ad turnstile_exit(rw);
394 1.20 ad continue;
395 1.20 ad }
396 1.20 ad next = rw_cas(rw, owner, owner | set_wait);
397 1.66 riastrad /* XXX membar? */
398 1.20 ad if (__predict_false(next != owner)) {
399 1.2 ad turnstile_exit(rw);
400 1.20 ad owner = next;
401 1.2 ad continue;
402 1.2 ad }
403 1.2 ad
404 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
405 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
406 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
407 1.20 ad LOCKSTAT_COUNT(slpcnt, 1);
408 1.2 ad
409 1.20 ad /*
410 1.20 ad * No need for a memory barrier because of context switch.
411 1.20 ad * If not handed the lock, then spin again.
412 1.20 ad */
413 1.58 ad if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
414 1.20 ad break;
415 1.58 ad
416 1.39 yamt owner = rw->rw_owner;
417 1.2 ad }
418 1.37 rmind KPREEMPT_ENABLE(curlwp);
419 1.2 ad
420 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
421 1.60 ad (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
422 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
423 1.60 ad (uintptr_t)__builtin_return_address(0)));
424 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
425 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
426 1.60 ad (uintptr_t)__builtin_return_address(0)));
427 1.2 ad LOCKSTAT_EXIT(lsflag);
428 1.2 ad
429 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
430 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
431 1.2 ad RW_LOCKED(rw, op);
432 1.2 ad }
433 1.2 ad
434 1.2 ad /*
435 1.2 ad * rw_vector_exit:
436 1.2 ad *
437 1.2 ad * Release a rwlock.
438 1.2 ad */
439 1.2 ad void
440 1.2 ad rw_vector_exit(krwlock_t *rw)
441 1.2 ad {
442 1.44 matt uintptr_t curthread, owner, decr, newown, next;
443 1.2 ad turnstile_t *ts;
444 1.2 ad int rcnt, wcnt;
445 1.7 ad lwp_t *l;
446 1.2 ad
447 1.61 ad l = curlwp;
448 1.61 ad curthread = (uintptr_t)l;
449 1.2 ad RW_ASSERT(rw, curthread != 0);
450 1.2 ad
451 1.2 ad /*
452 1.2 ad * Again, we use a trick. Since we used an add operation to
453 1.2 ad * set the required lock bits, we can use a subtract to clear
454 1.2 ad * them, which makes the read-release and write-release path
455 1.2 ad * the same.
456 1.2 ad */
457 1.2 ad owner = rw->rw_owner;
458 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
459 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
460 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
461 1.2 ad decr = curthread | RW_WRITE_LOCKED;
462 1.2 ad } else {
463 1.2 ad RW_UNLOCKED(rw, RW_READER);
464 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
465 1.2 ad decr = RW_READ_INCR;
466 1.2 ad }
467 1.2 ad
468 1.2 ad /*
469 1.2 ad * Compute what we expect the new value of the lock to be. Only
470 1.2 ad * proceed to do direct handoff if there are waiters, and if the
471 1.2 ad * lock would become unowned.
472 1.2 ad */
473 1.66 riastrad RW_MEMBAR_RELEASE();
474 1.58 ad for (;;) {
475 1.44 matt newown = (owner - decr);
476 1.44 matt if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
477 1.2 ad break;
478 1.44 matt next = rw_cas(rw, owner, newown);
479 1.20 ad if (__predict_true(next == owner))
480 1.2 ad return;
481 1.58 ad owner = next;
482 1.2 ad }
483 1.2 ad
484 1.20 ad /*
485 1.20 ad * Grab the turnstile chain lock. This gets the interlock
486 1.20 ad * on the sleep queue. Once we have that, we can adjust the
487 1.20 ad * waiter bits.
488 1.20 ad */
489 1.20 ad ts = turnstile_lookup(rw);
490 1.20 ad owner = rw->rw_owner;
491 1.61 ad RW_ASSERT(rw, ts != NULL);
492 1.61 ad RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
493 1.2 ad
494 1.20 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
495 1.20 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
496 1.2 ad
497 1.20 ad /*
498 1.20 ad * Give the lock away.
499 1.20 ad *
500 1.20 ad * If we are releasing a write lock, then prefer to wake all
501 1.20 ad * outstanding readers. Otherwise, wake one writer if there
502 1.20 ad * are outstanding readers, or all writers if there are no
503 1.20 ad * pending readers. If waking one specific writer, the writer
504 1.20 ad * is handed the lock here. If waking multiple writers, we
505 1.20 ad * set WRITE_WANTED to block out new readers, and let them
506 1.41 skrll * do the work of acquiring the lock in rw_vector_enter().
507 1.20 ad */
508 1.32 yamt if (rcnt == 0 || decr == RW_READ_INCR) {
509 1.61 ad RW_ASSERT(rw, wcnt != 0);
510 1.61 ad RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
511 1.2 ad
512 1.20 ad if (rcnt != 0) {
513 1.20 ad /* Give the lock to the longest waiting writer. */
514 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
515 1.61 ad newown = (uintptr_t)l | (owner & RW_NODEBUG);
516 1.61 ad newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
517 1.28 thorpej if (wcnt > 1)
518 1.44 matt newown |= RW_WRITE_WANTED;
519 1.44 matt rw_swap(rw, owner, newown);
520 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
521 1.2 ad } else {
522 1.20 ad /* Wake all writers and let them fight it out. */
523 1.61 ad newown = owner & RW_NODEBUG;
524 1.61 ad newown |= RW_WRITE_WANTED;
525 1.61 ad rw_swap(rw, owner, newown);
526 1.20 ad turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
527 1.20 ad }
528 1.20 ad } else {
529 1.61 ad RW_ASSERT(rw, rcnt != 0);
530 1.2 ad
531 1.20 ad /*
532 1.20 ad * Give the lock to all blocked readers. If there
533 1.20 ad * is a writer waiting, new readers that arrive
534 1.20 ad * after the release will be blocked out.
535 1.20 ad */
536 1.61 ad newown = owner & RW_NODEBUG;
537 1.61 ad newown += rcnt << RW_READ_COUNT_SHIFT;
538 1.20 ad if (wcnt != 0)
539 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
540 1.12 yamt
541 1.20 ad /* Wake up all sleeping readers. */
542 1.44 matt rw_swap(rw, owner, newown);
543 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
544 1.2 ad }
545 1.2 ad }
546 1.2 ad
547 1.2 ad /*
548 1.16 ad * rw_vector_tryenter:
549 1.2 ad *
550 1.2 ad * Try to acquire a rwlock.
551 1.2 ad */
552 1.2 ad int
553 1.16 ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
554 1.2 ad {
555 1.20 ad uintptr_t curthread, owner, incr, need_wait, next;
556 1.61 ad lwp_t *l;
557 1.2 ad
558 1.61 ad l = curlwp;
559 1.61 ad curthread = (uintptr_t)l;
560 1.2 ad
561 1.2 ad RW_ASSERT(rw, curthread != 0);
562 1.2 ad
563 1.2 ad if (op == RW_READER) {
564 1.2 ad incr = RW_READ_INCR;
565 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
566 1.2 ad } else {
567 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
568 1.2 ad incr = curthread | RW_WRITE_LOCKED;
569 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
570 1.2 ad }
571 1.2 ad
572 1.58 ad for (owner = rw->rw_owner;; owner = next) {
573 1.58 ad if (__predict_false((owner & need_wait) != 0))
574 1.58 ad return 0;
575 1.20 ad next = rw_cas(rw, owner, owner + incr);
576 1.20 ad if (__predict_true(next == owner)) {
577 1.20 ad /* Got it! */
578 1.20 ad break;
579 1.2 ad }
580 1.2 ad }
581 1.2 ad
582 1.40 mlelstv RW_WANTLOCK(rw, op);
583 1.2 ad RW_LOCKED(rw, op);
584 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
585 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
586 1.7 ad
587 1.66 riastrad RW_MEMBAR_ACQUIRE();
588 1.2 ad return 1;
589 1.2 ad }
590 1.2 ad
591 1.2 ad /*
592 1.2 ad * rw_downgrade:
593 1.2 ad *
594 1.61 ad * Downgrade a write lock to a read lock.
595 1.2 ad */
596 1.2 ad void
597 1.2 ad rw_downgrade(krwlock_t *rw)
598 1.2 ad {
599 1.44 matt uintptr_t owner, curthread, newown, next;
600 1.2 ad turnstile_t *ts;
601 1.2 ad int rcnt, wcnt;
602 1.61 ad lwp_t *l;
603 1.2 ad
604 1.61 ad l = curlwp;
605 1.61 ad curthread = (uintptr_t)l;
606 1.2 ad RW_ASSERT(rw, curthread != 0);
607 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
608 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
609 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
610 1.42 mrg #if !defined(DIAGNOSTIC)
611 1.42 mrg __USE(curthread);
612 1.42 mrg #endif
613 1.42 mrg
614 1.66.4.2 martin RW_MEMBAR_RELEASE();
615 1.2 ad
616 1.61 ad for (owner = rw->rw_owner;; owner = next) {
617 1.61 ad /*
618 1.61 ad * If there are no waiters we can do this the easy way. Try
619 1.61 ad * swapping us down to one read hold. If it fails, the lock
620 1.61 ad * condition has changed and we most likely now have
621 1.61 ad * waiters.
622 1.61 ad */
623 1.61 ad if ((owner & RW_HAS_WAITERS) == 0) {
624 1.61 ad newown = (owner & RW_NODEBUG);
625 1.61 ad next = rw_cas(rw, owner, newown + RW_READ_INCR);
626 1.61 ad if (__predict_true(next == owner)) {
627 1.61 ad RW_LOCKED(rw, RW_READER);
628 1.61 ad RW_ASSERT(rw,
629 1.61 ad (rw->rw_owner & RW_WRITE_LOCKED) == 0);
630 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
631 1.61 ad return;
632 1.61 ad }
633 1.61 ad continue;
634 1.61 ad }
635 1.61 ad
636 1.61 ad /*
637 1.61 ad * Grab the turnstile chain lock. This gets the interlock
638 1.61 ad * on the sleep queue. Once we have that, we can adjust the
639 1.61 ad * waiter bits.
640 1.61 ad */
641 1.2 ad ts = turnstile_lookup(rw);
642 1.61 ad RW_ASSERT(rw, ts != NULL);
643 1.2 ad
644 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
645 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
646 1.2 ad
647 1.2 ad if (rcnt == 0) {
648 1.61 ad /*
649 1.61 ad * If there are no readers, just preserve the
650 1.61 ad * waiters bits, swap us down to one read hold and
651 1.61 ad * return.
652 1.61 ad */
653 1.61 ad RW_ASSERT(rw, wcnt != 0);
654 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
655 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
656 1.61 ad
657 1.61 ad newown = owner & RW_NODEBUG;
658 1.62 ad newown |= RW_READ_INCR | RW_HAS_WAITERS |
659 1.61 ad RW_WRITE_WANTED;
660 1.44 matt next = rw_cas(rw, owner, newown);
661 1.27 rmind turnstile_exit(rw);
662 1.20 ad if (__predict_true(next == owner))
663 1.20 ad break;
664 1.20 ad } else {
665 1.20 ad /*
666 1.20 ad * Give the lock to all blocked readers. We may
667 1.61 ad * retain one read hold if downgrading. If there is
668 1.61 ad * a writer waiting, new readers will be blocked
669 1.20 ad * out.
670 1.20 ad */
671 1.61 ad newown = owner & RW_NODEBUG;
672 1.61 ad newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
673 1.20 ad if (wcnt != 0)
674 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
675 1.20 ad
676 1.44 matt next = rw_cas(rw, owner, newown);
677 1.20 ad if (__predict_true(next == owner)) {
678 1.20 ad /* Wake up all sleeping readers. */
679 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
680 1.20 ad break;
681 1.2 ad }
682 1.27 rmind turnstile_exit(rw);
683 1.2 ad }
684 1.2 ad }
685 1.2 ad
686 1.40 mlelstv RW_WANTLOCK(rw, RW_READER);
687 1.2 ad RW_LOCKED(rw, RW_READER);
688 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
689 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
690 1.2 ad }
691 1.2 ad
692 1.2 ad /*
693 1.2 ad * rw_tryupgrade:
694 1.2 ad *
695 1.55 ad * Try to upgrade a read lock to a write lock. We must be the only
696 1.61 ad * reader.
697 1.2 ad */
698 1.2 ad int
699 1.2 ad rw_tryupgrade(krwlock_t *rw)
700 1.2 ad {
701 1.44 matt uintptr_t owner, curthread, newown, next;
702 1.61 ad struct lwp *l;
703 1.2 ad
704 1.61 ad l = curlwp;
705 1.61 ad curthread = (uintptr_t)l;
706 1.2 ad RW_ASSERT(rw, curthread != 0);
707 1.31 yamt RW_ASSERT(rw, rw_read_held(rw));
708 1.2 ad
709 1.55 ad for (owner = RW_READ_INCR;; owner = next) {
710 1.44 matt newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
711 1.44 matt next = rw_cas(rw, owner, newown);
712 1.30 ad if (__predict_true(next == owner)) {
713 1.66.4.2 martin RW_MEMBAR_ACQUIRE();
714 1.2 ad break;
715 1.30 ad }
716 1.55 ad RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
717 1.55 ad if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
718 1.55 ad RW_ASSERT(rw, (next & RW_THREAD) != 0);
719 1.55 ad return 0;
720 1.55 ad }
721 1.2 ad }
722 1.2 ad
723 1.2 ad RW_UNLOCKED(rw, RW_READER);
724 1.40 mlelstv RW_WANTLOCK(rw, RW_WRITER);
725 1.2 ad RW_LOCKED(rw, RW_WRITER);
726 1.61 ad RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
727 1.61 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
728 1.2 ad
729 1.2 ad return 1;
730 1.2 ad }
731 1.2 ad
732 1.2 ad /*
733 1.2 ad * rw_read_held:
734 1.2 ad *
735 1.2 ad * Returns true if the rwlock is held for reading. Must only be
736 1.2 ad * used for diagnostic assertions, and never be used to make
737 1.2 ad * decisions about how to use a rwlock.
738 1.2 ad */
739 1.2 ad int
740 1.2 ad rw_read_held(krwlock_t *rw)
741 1.2 ad {
742 1.2 ad uintptr_t owner;
743 1.2 ad
744 1.21 ad if (rw == NULL)
745 1.21 ad return 0;
746 1.2 ad owner = rw->rw_owner;
747 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
748 1.2 ad }
749 1.2 ad
750 1.2 ad /*
751 1.2 ad * rw_write_held:
752 1.2 ad *
753 1.2 ad * Returns true if the rwlock is held for writing. Must only be
754 1.2 ad * used for diagnostic assertions, and never be used to make
755 1.2 ad * decisions about how to use a rwlock.
756 1.2 ad */
757 1.2 ad int
758 1.2 ad rw_write_held(krwlock_t *rw)
759 1.2 ad {
760 1.2 ad
761 1.21 ad if (rw == NULL)
762 1.21 ad return 0;
763 1.17 ad return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
764 1.18 ad (RW_WRITE_LOCKED | (uintptr_t)curlwp);
765 1.2 ad }
766 1.2 ad
767 1.2 ad /*
768 1.2 ad * rw_lock_held:
769 1.2 ad *
770 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
771 1.2 ad * only be used for diagnostic assertions, and never be used to make
772 1.2 ad * decisions about how to use a rwlock.
773 1.2 ad */
774 1.2 ad int
775 1.2 ad rw_lock_held(krwlock_t *rw)
776 1.2 ad {
777 1.2 ad
778 1.21 ad if (rw == NULL)
779 1.21 ad return 0;
780 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
781 1.2 ad }
782 1.4 yamt
783 1.5 ad /*
784 1.65 ad * rw_lock_op:
785 1.65 ad *
786 1.65 ad * For a rwlock that is known to be held by the caller, return
787 1.65 ad * RW_READER or RW_WRITER to describe the hold type.
788 1.65 ad */
789 1.65 ad krw_t
790 1.65 ad rw_lock_op(krwlock_t *rw)
791 1.65 ad {
792 1.65 ad
793 1.65 ad RW_ASSERT(rw, rw_lock_held(rw));
794 1.65 ad
795 1.65 ad return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
796 1.65 ad }
797 1.65 ad
798 1.65 ad /*
799 1.5 ad * rw_owner:
800 1.5 ad *
801 1.5 ad * Return the current owner of an RW lock, but only if it is write
802 1.5 ad * held. Used for priority inheritance.
803 1.5 ad */
804 1.7 ad static lwp_t *
805 1.4 yamt rw_owner(wchan_t obj)
806 1.4 yamt {
807 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
808 1.4 yamt uintptr_t owner = rw->rw_owner;
809 1.4 yamt
810 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
811 1.4 yamt return NULL;
812 1.4 yamt
813 1.4 yamt return (void *)(owner & RW_THREAD);
814 1.4 yamt }
815 1.63 ad
816 1.63 ad /*
817 1.63 ad * rw_owner_running:
818 1.63 ad *
819 1.63 ad * Return true if a RW lock is unheld, or write held and the owner is
820 1.63 ad * running on a CPU. For the pagedaemon.
821 1.63 ad */
822 1.63 ad bool
823 1.63 ad rw_owner_running(const krwlock_t *rw)
824 1.63 ad {
825 1.63 ad #ifdef MULTIPROCESSOR
826 1.63 ad uintptr_t owner;
827 1.63 ad bool rv;
828 1.63 ad
829 1.63 ad kpreempt_disable();
830 1.63 ad owner = rw->rw_owner;
831 1.63 ad rv = (owner & RW_THREAD) == 0 || rw_oncpu(owner);
832 1.63 ad kpreempt_enable();
833 1.63 ad return rv;
834 1.63 ad #else
835 1.63 ad return rw_owner(rw) == curlwp;
836 1.63 ad #endif
837 1.63 ad }
838