Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.66.4.2
      1  1.66.4.2    martin /*	$NetBSD: kern_rwlock.c,v 1.66.4.2 2023/07/31 14:45:59 martin Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4      1.60        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
      5      1.60        ad  *     The NetBSD Foundation, Inc.
      6       1.2        ad  * All rights reserved.
      7       1.2        ad  *
      8       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      9       1.2        ad  * by Jason R. Thorpe and Andrew Doran.
     10       1.2        ad  *
     11       1.2        ad  * Redistribution and use in source and binary forms, with or without
     12       1.2        ad  * modification, are permitted provided that the following conditions
     13       1.2        ad  * are met:
     14       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     15       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     16       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     18       1.2        ad  *    documentation and/or other materials provided with the distribution.
     19       1.2        ad  *
     20       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     31       1.2        ad  */
     32       1.2        ad 
     33       1.2        ad /*
     34       1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     35       1.2        ad  * found in Solaris, a description of which can be found in:
     36       1.2        ad  *
     37       1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38       1.2        ad  *	    Richard McDougall.
     39      1.64        ad  *
     40      1.64        ad  * The NetBSD implementation differs from that described in the book, in
     41      1.64        ad  * that the locks are partially adaptive.  Lock waiters spin wait while a
     42      1.64        ad  * lock is write held and the holder is still running on a CPU.  The method
     43      1.64        ad  * of choosing which threads to awaken when a lock is released also differs,
     44      1.64        ad  * mainly to take account of the partially adaptive behaviour.
     45       1.2        ad  */
     46       1.2        ad 
     47      1.10       dsl #include <sys/cdefs.h>
     48  1.66.4.2    martin __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.66.4.2 2023/07/31 14:45:59 martin Exp $");
     49      1.61        ad 
     50      1.61        ad #include "opt_lockdebug.h"
     51       1.2        ad 
     52       1.2        ad #define	__RWLOCK_PRIVATE
     53       1.2        ad 
     54       1.2        ad #include <sys/param.h>
     55       1.2        ad #include <sys/proc.h>
     56       1.2        ad #include <sys/rwlock.h>
     57       1.2        ad #include <sys/sched.h>
     58       1.2        ad #include <sys/sleepq.h>
     59       1.2        ad #include <sys/systm.h>
     60       1.2        ad #include <sys/lockdebug.h>
     61      1.11        ad #include <sys/cpu.h>
     62      1.14        ad #include <sys/atomic.h>
     63      1.15        ad #include <sys/lock.h>
     64      1.51     ozaki #include <sys/pserialize.h>
     65       1.2        ad 
     66       1.2        ad #include <dev/lockstat.h>
     67       1.2        ad 
     68      1.56  riastrad #include <machine/rwlock.h>
     69      1.56  riastrad 
     70       1.2        ad /*
     71       1.2        ad  * LOCKDEBUG
     72       1.2        ad  */
     73       1.2        ad 
     74      1.61        ad #define	RW_DEBUG_P(rw)		(((rw)->rw_owner & RW_NODEBUG) == 0)
     75       1.2        ad 
     76      1.61        ad #define	RW_WANTLOCK(rw, op) \
     77      1.61        ad     LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
     78      1.61        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     79      1.61        ad #define	RW_LOCKED(rw, op) \
     80      1.61        ad     LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
     81      1.61        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     82      1.61        ad #define	RW_UNLOCKED(rw, op) \
     83      1.61        ad     LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
     84      1.61        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     85       1.2        ad 
     86       1.2        ad /*
     87       1.2        ad  * DIAGNOSTIC
     88       1.2        ad  */
     89       1.2        ad 
     90       1.2        ad #if defined(DIAGNOSTIC)
     91      1.61        ad #define	RW_ASSERT(rw, cond) \
     92      1.61        ad do { \
     93      1.61        ad 	if (__predict_false(!(cond))) \
     94      1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     95       1.2        ad } while (/* CONSTCOND */ 0)
     96       1.2        ad #else
     97       1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
     98       1.2        ad #endif	/* DIAGNOSTIC */
     99       1.2        ad 
    100      1.55        ad /*
    101      1.55        ad  * Memory barriers.
    102      1.55        ad  */
    103      1.55        ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
    104      1.66  riastrad #define	RW_MEMBAR_ACQUIRE()
    105      1.66  riastrad #define	RW_MEMBAR_RELEASE()
    106      1.55        ad #else
    107      1.66  riastrad #define	RW_MEMBAR_ACQUIRE()		membar_acquire()
    108      1.66  riastrad #define	RW_MEMBAR_RELEASE()		membar_release()
    109      1.55        ad #endif
    110      1.55        ad 
    111       1.2        ad /*
    112       1.2        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    113       1.2        ad  */
    114       1.2        ad #ifdef LOCKDEBUG
    115       1.2        ad #undef	__HAVE_RW_STUBS
    116       1.2        ad #endif
    117       1.2        ad 
    118       1.2        ad #ifndef __HAVE_RW_STUBS
    119       1.6     itohy __strong_alias(rw_enter,rw_vector_enter);
    120       1.6     itohy __strong_alias(rw_exit,rw_vector_exit);
    121      1.16        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    122       1.2        ad #endif
    123       1.2        ad 
    124      1.61        ad static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    125      1.61        ad static void	rw_dump(const volatile void *, lockop_printer_t);
    126      1.61        ad static lwp_t	*rw_owner(wchan_t);
    127      1.61        ad 
    128       1.2        ad lockops_t rwlock_lockops = {
    129      1.48     ozaki 	.lo_name = "Reader / writer lock",
    130      1.48     ozaki 	.lo_type = LOCKOPS_SLEEP,
    131      1.48     ozaki 	.lo_dump = rw_dump,
    132       1.2        ad };
    133       1.2        ad 
    134       1.4      yamt syncobj_t rw_syncobj = {
    135      1.49     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    136      1.49     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    137      1.49     ozaki 	.sobj_changepri	= turnstile_changepri,
    138      1.49     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    139      1.49     ozaki 	.sobj_owner	= rw_owner,
    140       1.4      yamt };
    141       1.4      yamt 
    142       1.2        ad /*
    143      1.61        ad  * rw_cas:
    144      1.61        ad  *
    145      1.61        ad  *	Do an atomic compare-and-swap on the lock word.
    146      1.61        ad  */
    147      1.61        ad static inline uintptr_t
    148      1.61        ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    149      1.61        ad {
    150      1.61        ad 
    151      1.61        ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    152      1.61        ad 	    (void *)o, (void *)n);
    153      1.61        ad }
    154      1.61        ad 
    155      1.61        ad /*
    156      1.61        ad  * rw_swap:
    157      1.61        ad  *
    158      1.61        ad  *	Do an atomic swap of the lock word.  This is used only when it's
    159      1.61        ad  *	known that the lock word is set up such that it can't be changed
    160      1.61        ad  *	behind us (assert this), so there's no point considering the result.
    161      1.61        ad  */
    162      1.61        ad static inline void
    163      1.61        ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    164      1.61        ad {
    165      1.61        ad 
    166      1.61        ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    167      1.61        ad 	    (void *)n);
    168      1.61        ad 
    169      1.61        ad 	RW_ASSERT(rw, n == o);
    170      1.61        ad 	RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
    171      1.61        ad }
    172      1.61        ad 
    173      1.61        ad /*
    174       1.2        ad  * rw_dump:
    175       1.2        ad  *
    176       1.2        ad  *	Dump the contents of a rwlock structure.
    177       1.2        ad  */
    178      1.11        ad static void
    179      1.54     ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
    180       1.2        ad {
    181      1.47  christos 	const volatile krwlock_t *rw = cookie;
    182       1.2        ad 
    183      1.54     ozaki 	pr("owner/count  : %#018lx flags    : %#018x\n",
    184       1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    185       1.2        ad }
    186       1.2        ad 
    187       1.2        ad /*
    188      1.11        ad  * rw_abort:
    189      1.11        ad  *
    190      1.11        ad  *	Dump information about an error and panic the system.  This
    191      1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    192      1.11        ad  *	we ask the compiler to not inline it.
    193      1.11        ad  */
    194      1.26        ad static void __noinline
    195      1.46  christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    196      1.11        ad {
    197      1.11        ad 
    198  1.66.4.1    martin 	if (__predict_false(panicstr != NULL))
    199      1.11        ad 		return;
    200      1.11        ad 
    201      1.46  christos 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    202      1.11        ad }
    203      1.11        ad 
    204      1.11        ad /*
    205       1.2        ad  * rw_init:
    206       1.2        ad  *
    207       1.2        ad  *	Initialize a rwlock for use.
    208       1.2        ad  */
    209       1.2        ad void
    210      1.50     ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
    211       1.2        ad {
    212       1.2        ad 
    213      1.62        ad #ifdef LOCKDEBUG
    214      1.62        ad 	/* XXX only because the assembly stubs can't handle RW_NODEBUG */
    215      1.61        ad 	if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
    216      1.61        ad 		rw->rw_owner = 0;
    217      1.61        ad 	else
    218      1.61        ad 		rw->rw_owner = RW_NODEBUG;
    219      1.62        ad #else
    220      1.62        ad 	rw->rw_owner = 0;
    221      1.62        ad #endif
    222       1.2        ad }
    223       1.2        ad 
    224      1.50     ozaki void
    225      1.50     ozaki rw_init(krwlock_t *rw)
    226      1.50     ozaki {
    227      1.50     ozaki 
    228      1.50     ozaki 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    229      1.50     ozaki }
    230      1.50     ozaki 
    231       1.2        ad /*
    232       1.2        ad  * rw_destroy:
    233       1.2        ad  *
    234       1.2        ad  *	Tear down a rwlock.
    235       1.2        ad  */
    236       1.2        ad void
    237       1.2        ad rw_destroy(krwlock_t *rw)
    238       1.2        ad {
    239       1.2        ad 
    240      1.36     skrll 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    241      1.61        ad 	LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
    242       1.2        ad }
    243       1.2        ad 
    244       1.2        ad /*
    245      1.37     rmind  * rw_oncpu:
    246      1.20        ad  *
    247      1.20        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    248      1.20        ad  *	If the target is waiting on the kernel big lock, then we must
    249      1.20        ad  *	release it.  This is necessary to avoid deadlock.
    250      1.20        ad  */
    251      1.37     rmind static bool
    252      1.37     rmind rw_oncpu(uintptr_t owner)
    253      1.20        ad {
    254      1.20        ad #ifdef MULTIPROCESSOR
    255      1.20        ad 	struct cpu_info *ci;
    256      1.20        ad 	lwp_t *l;
    257      1.20        ad 
    258      1.37     rmind 	KASSERT(kpreempt_disabled());
    259      1.37     rmind 
    260      1.37     rmind 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    261      1.37     rmind 		return false;
    262      1.37     rmind 	}
    263      1.37     rmind 
    264      1.37     rmind 	/*
    265      1.37     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    266      1.37     rmind 	 * We must have kernel preemption disabled for that.
    267      1.37     rmind 	 */
    268      1.20        ad 	l = (lwp_t *)(owner & RW_THREAD);
    269      1.37     rmind 	ci = l->l_cpu;
    270      1.20        ad 
    271      1.37     rmind 	if (ci && ci->ci_curlwp == l) {
    272      1.37     rmind 		/* Target is running; do we need to block? */
    273      1.37     rmind 		return (ci->ci_biglock_wanted != l);
    274      1.37     rmind 	}
    275      1.37     rmind #endif
    276      1.37     rmind 	/* Not running.  It may be safe to block now. */
    277      1.37     rmind 	return false;
    278      1.20        ad }
    279      1.20        ad 
    280      1.20        ad /*
    281       1.2        ad  * rw_vector_enter:
    282       1.2        ad  *
    283       1.2        ad  *	Acquire a rwlock.
    284       1.2        ad  */
    285       1.2        ad void
    286       1.2        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    287       1.2        ad {
    288      1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    289       1.2        ad 	turnstile_t *ts;
    290       1.2        ad 	int queue;
    291       1.7        ad 	lwp_t *l;
    292       1.2        ad 	LOCKSTAT_TIMER(slptime);
    293      1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    294      1.19        ad 	LOCKSTAT_TIMER(spintime);
    295      1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    296       1.2        ad 	LOCKSTAT_FLAG(lsflag);
    297       1.2        ad 
    298       1.2        ad 	l = curlwp;
    299       1.2        ad 	curthread = (uintptr_t)l;
    300       1.2        ad 
    301      1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    302       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    303      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    304       1.2        ad 
    305  1.66.4.1    martin 	if (__predict_true(panicstr == NULL)) {
    306      1.53     ozaki 		KDASSERT(pserialize_not_in_read_section());
    307       1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    308       1.2        ad 	}
    309       1.2        ad 
    310       1.2        ad 	/*
    311       1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    312       1.2        ad 	 * increment the read count.  If we're a writer, we want to
    313      1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    314       1.2        ad 	 *
    315       1.2        ad 	 * In the latter case, we expect those bits to be zero,
    316       1.2        ad 	 * therefore we can use an add operation to set them, which
    317       1.2        ad 	 * means an add operation for both cases.
    318       1.2        ad 	 */
    319       1.2        ad 	if (__predict_true(op == RW_READER)) {
    320       1.2        ad 		incr = RW_READ_INCR;
    321       1.2        ad 		set_wait = RW_HAS_WAITERS;
    322       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    323       1.2        ad 		queue = TS_READER_Q;
    324       1.2        ad 	} else {
    325      1.61        ad 		RW_ASSERT(rw, op == RW_WRITER);
    326       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    327       1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    328       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    329       1.2        ad 		queue = TS_WRITER_Q;
    330       1.2        ad 	}
    331       1.2        ad 
    332       1.2        ad 	LOCKSTAT_ENTER(lsflag);
    333       1.2        ad 
    334      1.37     rmind 	KPREEMPT_DISABLE(curlwp);
    335      1.55        ad 	for (owner = rw->rw_owner;;) {
    336       1.2        ad 		/*
    337       1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    338       1.2        ad 		 * indicator is clear, then try to acquire the lock.
    339       1.2        ad 		 */
    340       1.2        ad 		if ((owner & need_wait) == 0) {
    341      1.20        ad 			next = rw_cas(rw, owner, (owner + incr) &
    342      1.20        ad 			    ~RW_WRITE_WANTED);
    343      1.20        ad 			if (__predict_true(next == owner)) {
    344       1.2        ad 				/* Got it! */
    345      1.66  riastrad 				RW_MEMBAR_ACQUIRE();
    346       1.2        ad 				break;
    347       1.2        ad 			}
    348       1.2        ad 
    349       1.2        ad 			/*
    350       1.2        ad 			 * Didn't get it -- spin around again (we'll
    351       1.2        ad 			 * probably sleep on the next iteration).
    352       1.2        ad 			 */
    353      1.20        ad 			owner = next;
    354       1.2        ad 			continue;
    355       1.2        ad 		}
    356      1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    357      1.46  christos 			rw_abort(__func__, __LINE__, rw,
    358      1.46  christos 			    "locking against myself");
    359      1.37     rmind 		}
    360      1.19        ad 		/*
    361      1.19        ad 		 * If the lock owner is running on another CPU, and
    362      1.19        ad 		 * there are no existing waiters, then spin.
    363      1.19        ad 		 */
    364      1.37     rmind 		if (rw_oncpu(owner)) {
    365      1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    366      1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    367      1.20        ad 			do {
    368      1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    369      1.20        ad 				SPINLOCK_BACKOFF(count);
    370      1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    371      1.19        ad 				owner = rw->rw_owner;
    372      1.37     rmind 			} while (rw_oncpu(owner));
    373      1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    374      1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    375      1.19        ad 			if ((owner & need_wait) == 0)
    376      1.19        ad 				continue;
    377      1.19        ad 		}
    378      1.19        ad 
    379       1.2        ad 		/*
    380       1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    381       1.2        ad 		 * can adjust the waiter bits and sleep queue.
    382       1.2        ad 		 */
    383       1.2        ad 		ts = turnstile_lookup(rw);
    384       1.2        ad 
    385       1.2        ad 		/*
    386       1.2        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    387       1.2        ad 		 * then we may not need to sleep and should spin again.
    388      1.20        ad 		 * Reload rw_owner because turnstile_lookup() may have
    389      1.20        ad 		 * spun on the turnstile chain lock.
    390       1.2        ad 		 */
    391      1.20        ad 		owner = rw->rw_owner;
    392      1.37     rmind 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    393      1.20        ad 			turnstile_exit(rw);
    394      1.20        ad 			continue;
    395      1.20        ad 		}
    396      1.20        ad 		next = rw_cas(rw, owner, owner | set_wait);
    397      1.66  riastrad 		/* XXX membar? */
    398      1.20        ad 		if (__predict_false(next != owner)) {
    399       1.2        ad 			turnstile_exit(rw);
    400      1.20        ad 			owner = next;
    401       1.2        ad 			continue;
    402       1.2        ad 		}
    403       1.2        ad 
    404       1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    405       1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    406       1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    407      1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    408       1.2        ad 
    409      1.20        ad 		/*
    410      1.20        ad 		 * No need for a memory barrier because of context switch.
    411      1.20        ad 		 * If not handed the lock, then spin again.
    412      1.20        ad 		 */
    413      1.58        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    414      1.20        ad 			break;
    415      1.58        ad 
    416      1.39      yamt 		owner = rw->rw_owner;
    417       1.2        ad 	}
    418      1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    419       1.2        ad 
    420      1.60        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
    421      1.60        ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
    422      1.60        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    423      1.60        ad 	      (uintptr_t)__builtin_return_address(0)));
    424      1.60        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
    425      1.60        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    426      1.60        ad 	      (uintptr_t)__builtin_return_address(0)));
    427       1.2        ad 	LOCKSTAT_EXIT(lsflag);
    428       1.2        ad 
    429      1.61        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    430       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    431       1.2        ad 	RW_LOCKED(rw, op);
    432       1.2        ad }
    433       1.2        ad 
    434       1.2        ad /*
    435       1.2        ad  * rw_vector_exit:
    436       1.2        ad  *
    437       1.2        ad  *	Release a rwlock.
    438       1.2        ad  */
    439       1.2        ad void
    440       1.2        ad rw_vector_exit(krwlock_t *rw)
    441       1.2        ad {
    442      1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    443       1.2        ad 	turnstile_t *ts;
    444       1.2        ad 	int rcnt, wcnt;
    445       1.7        ad 	lwp_t *l;
    446       1.2        ad 
    447      1.61        ad 	l = curlwp;
    448      1.61        ad 	curthread = (uintptr_t)l;
    449       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    450       1.2        ad 
    451       1.2        ad 	/*
    452       1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    453       1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    454       1.2        ad 	 * them, which makes the read-release and write-release path
    455       1.2        ad 	 * the same.
    456       1.2        ad 	 */
    457       1.2        ad 	owner = rw->rw_owner;
    458       1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    459       1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    460       1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    461       1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    462       1.2        ad 	} else {
    463       1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    464       1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    465       1.2        ad 		decr = RW_READ_INCR;
    466       1.2        ad 	}
    467       1.2        ad 
    468       1.2        ad 	/*
    469       1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    470       1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    471       1.2        ad 	 * lock would become unowned.
    472       1.2        ad 	 */
    473      1.66  riastrad 	RW_MEMBAR_RELEASE();
    474      1.58        ad 	for (;;) {
    475      1.44      matt 		newown = (owner - decr);
    476      1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    477       1.2        ad 			break;
    478      1.44      matt 		next = rw_cas(rw, owner, newown);
    479      1.20        ad 		if (__predict_true(next == owner))
    480       1.2        ad 			return;
    481      1.58        ad 		owner = next;
    482       1.2        ad 	}
    483       1.2        ad 
    484      1.20        ad 	/*
    485      1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    486      1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    487      1.20        ad 	 * waiter bits.
    488      1.20        ad 	 */
    489      1.20        ad 	ts = turnstile_lookup(rw);
    490      1.20        ad 	owner = rw->rw_owner;
    491      1.61        ad 	RW_ASSERT(rw, ts != NULL);
    492      1.61        ad 	RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    493       1.2        ad 
    494      1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    495      1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    496       1.2        ad 
    497      1.20        ad 	/*
    498      1.20        ad 	 * Give the lock away.
    499      1.20        ad 	 *
    500      1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    501      1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    502      1.20        ad 	 * are outstanding readers, or all writers if there are no
    503      1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    504      1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    505      1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    506      1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    507      1.20        ad 	 */
    508      1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    509      1.61        ad 		RW_ASSERT(rw, wcnt != 0);
    510      1.61        ad 		RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    511       1.2        ad 
    512      1.20        ad 		if (rcnt != 0) {
    513      1.20        ad 			/* Give the lock to the longest waiting writer. */
    514       1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    515      1.61        ad 			newown = (uintptr_t)l | (owner & RW_NODEBUG);
    516      1.61        ad 			newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
    517      1.28   thorpej 			if (wcnt > 1)
    518      1.44      matt 				newown |= RW_WRITE_WANTED;
    519      1.44      matt 			rw_swap(rw, owner, newown);
    520       1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    521       1.2        ad 		} else {
    522      1.20        ad 			/* Wake all writers and let them fight it out. */
    523      1.61        ad 			newown = owner & RW_NODEBUG;
    524      1.61        ad 			newown |= RW_WRITE_WANTED;
    525      1.61        ad 			rw_swap(rw, owner, newown);
    526      1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    527      1.20        ad 		}
    528      1.20        ad 	} else {
    529      1.61        ad 		RW_ASSERT(rw, rcnt != 0);
    530       1.2        ad 
    531      1.20        ad 		/*
    532      1.20        ad 		 * Give the lock to all blocked readers.  If there
    533      1.20        ad 		 * is a writer waiting, new readers that arrive
    534      1.20        ad 		 * after the release will be blocked out.
    535      1.20        ad 		 */
    536      1.61        ad 		newown = owner & RW_NODEBUG;
    537      1.61        ad 		newown += rcnt << RW_READ_COUNT_SHIFT;
    538      1.20        ad 		if (wcnt != 0)
    539      1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    540      1.12      yamt 
    541      1.20        ad 		/* Wake up all sleeping readers. */
    542      1.44      matt 		rw_swap(rw, owner, newown);
    543      1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    544       1.2        ad 	}
    545       1.2        ad }
    546       1.2        ad 
    547       1.2        ad /*
    548      1.16        ad  * rw_vector_tryenter:
    549       1.2        ad  *
    550       1.2        ad  *	Try to acquire a rwlock.
    551       1.2        ad  */
    552       1.2        ad int
    553      1.16        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    554       1.2        ad {
    555      1.20        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    556      1.61        ad 	lwp_t *l;
    557       1.2        ad 
    558      1.61        ad 	l = curlwp;
    559      1.61        ad 	curthread = (uintptr_t)l;
    560       1.2        ad 
    561       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    562       1.2        ad 
    563       1.2        ad 	if (op == RW_READER) {
    564       1.2        ad 		incr = RW_READ_INCR;
    565       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    566       1.2        ad 	} else {
    567      1.61        ad 		RW_ASSERT(rw, op == RW_WRITER);
    568       1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    569       1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    570       1.2        ad 	}
    571       1.2        ad 
    572      1.58        ad 	for (owner = rw->rw_owner;; owner = next) {
    573      1.58        ad 		if (__predict_false((owner & need_wait) != 0))
    574      1.58        ad 			return 0;
    575      1.20        ad 		next = rw_cas(rw, owner, owner + incr);
    576      1.20        ad 		if (__predict_true(next == owner)) {
    577      1.20        ad 			/* Got it! */
    578      1.20        ad 			break;
    579       1.2        ad 		}
    580       1.2        ad 	}
    581       1.2        ad 
    582      1.40   mlelstv 	RW_WANTLOCK(rw, op);
    583       1.2        ad 	RW_LOCKED(rw, op);
    584      1.61        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    585       1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    586       1.7        ad 
    587      1.66  riastrad 	RW_MEMBAR_ACQUIRE();
    588       1.2        ad 	return 1;
    589       1.2        ad }
    590       1.2        ad 
    591       1.2        ad /*
    592       1.2        ad  * rw_downgrade:
    593       1.2        ad  *
    594      1.61        ad  *	Downgrade a write lock to a read lock.
    595       1.2        ad  */
    596       1.2        ad void
    597       1.2        ad rw_downgrade(krwlock_t *rw)
    598       1.2        ad {
    599      1.44      matt 	uintptr_t owner, curthread, newown, next;
    600       1.2        ad 	turnstile_t *ts;
    601       1.2        ad 	int rcnt, wcnt;
    602      1.61        ad 	lwp_t *l;
    603       1.2        ad 
    604      1.61        ad 	l = curlwp;
    605      1.61        ad 	curthread = (uintptr_t)l;
    606       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    607      1.61        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    608       1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    609       1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    610      1.42       mrg #if !defined(DIAGNOSTIC)
    611      1.42       mrg 	__USE(curthread);
    612      1.42       mrg #endif
    613      1.42       mrg 
    614  1.66.4.2    martin 	RW_MEMBAR_RELEASE();
    615       1.2        ad 
    616      1.61        ad 	for (owner = rw->rw_owner;; owner = next) {
    617      1.61        ad 		/*
    618      1.61        ad 		 * If there are no waiters we can do this the easy way.  Try
    619      1.61        ad 		 * swapping us down to one read hold.  If it fails, the lock
    620      1.61        ad 		 * condition has changed and we most likely now have
    621      1.61        ad 		 * waiters.
    622      1.61        ad 		 */
    623      1.61        ad 		if ((owner & RW_HAS_WAITERS) == 0) {
    624      1.61        ad 			newown = (owner & RW_NODEBUG);
    625      1.61        ad 			next = rw_cas(rw, owner, newown + RW_READ_INCR);
    626      1.61        ad 			if (__predict_true(next == owner)) {
    627      1.61        ad 				RW_LOCKED(rw, RW_READER);
    628      1.61        ad 				RW_ASSERT(rw,
    629      1.61        ad 				    (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    630      1.61        ad 				RW_ASSERT(rw, RW_COUNT(rw) != 0);
    631      1.61        ad 				return;
    632      1.61        ad 			}
    633      1.61        ad 			continue;
    634      1.61        ad 		}
    635      1.61        ad 
    636      1.61        ad 		/*
    637      1.61        ad 		 * Grab the turnstile chain lock.  This gets the interlock
    638      1.61        ad 		 * on the sleep queue.  Once we have that, we can adjust the
    639      1.61        ad 		 * waiter bits.
    640      1.61        ad 		 */
    641       1.2        ad 		ts = turnstile_lookup(rw);
    642      1.61        ad 		RW_ASSERT(rw, ts != NULL);
    643       1.2        ad 
    644       1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    645       1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    646       1.2        ad 
    647       1.2        ad 		if (rcnt == 0) {
    648      1.61        ad 			/*
    649      1.61        ad 			 * If there are no readers, just preserve the
    650      1.61        ad 			 * waiters bits, swap us down to one read hold and
    651      1.61        ad 			 * return.
    652      1.61        ad 			 */
    653      1.61        ad 			RW_ASSERT(rw, wcnt != 0);
    654      1.61        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    655      1.61        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    656      1.61        ad 
    657      1.61        ad 			newown = owner & RW_NODEBUG;
    658      1.62        ad 			newown |= RW_READ_INCR | RW_HAS_WAITERS |
    659      1.61        ad 			    RW_WRITE_WANTED;
    660      1.44      matt 			next = rw_cas(rw, owner, newown);
    661      1.27     rmind 			turnstile_exit(rw);
    662      1.20        ad 			if (__predict_true(next == owner))
    663      1.20        ad 				break;
    664      1.20        ad 		} else {
    665      1.20        ad 			/*
    666      1.20        ad 			 * Give the lock to all blocked readers.  We may
    667      1.61        ad 			 * retain one read hold if downgrading.  If there is
    668      1.61        ad 			 * a writer waiting, new readers will be blocked
    669      1.20        ad 			 * out.
    670      1.20        ad 			 */
    671      1.61        ad 			newown = owner & RW_NODEBUG;
    672      1.61        ad 			newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    673      1.20        ad 			if (wcnt != 0)
    674      1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    675      1.20        ad 
    676      1.44      matt 			next = rw_cas(rw, owner, newown);
    677      1.20        ad 			if (__predict_true(next == owner)) {
    678      1.20        ad 				/* Wake up all sleeping readers. */
    679      1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    680      1.20        ad 				break;
    681       1.2        ad 			}
    682      1.27     rmind 			turnstile_exit(rw);
    683       1.2        ad 		}
    684       1.2        ad 	}
    685       1.2        ad 
    686      1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    687       1.2        ad 	RW_LOCKED(rw, RW_READER);
    688      1.61        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    689      1.61        ad 	RW_ASSERT(rw, RW_COUNT(rw) != 0);
    690       1.2        ad }
    691       1.2        ad 
    692       1.2        ad /*
    693       1.2        ad  * rw_tryupgrade:
    694       1.2        ad  *
    695      1.55        ad  *	Try to upgrade a read lock to a write lock.  We must be the only
    696      1.61        ad  *	reader.
    697       1.2        ad  */
    698       1.2        ad int
    699       1.2        ad rw_tryupgrade(krwlock_t *rw)
    700       1.2        ad {
    701      1.44      matt 	uintptr_t owner, curthread, newown, next;
    702      1.61        ad 	struct lwp *l;
    703       1.2        ad 
    704      1.61        ad 	l = curlwp;
    705      1.61        ad 	curthread = (uintptr_t)l;
    706       1.2        ad 	RW_ASSERT(rw, curthread != 0);
    707      1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    708       1.2        ad 
    709      1.55        ad 	for (owner = RW_READ_INCR;; owner = next) {
    710      1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    711      1.44      matt 		next = rw_cas(rw, owner, newown);
    712      1.30        ad 		if (__predict_true(next == owner)) {
    713  1.66.4.2    martin 			RW_MEMBAR_ACQUIRE();
    714       1.2        ad 			break;
    715      1.30        ad 		}
    716      1.55        ad 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    717      1.55        ad 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    718      1.55        ad 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    719      1.55        ad 			return 0;
    720      1.55        ad 		}
    721       1.2        ad 	}
    722       1.2        ad 
    723       1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    724      1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    725       1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    726      1.61        ad 	RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    727      1.61        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    728       1.2        ad 
    729       1.2        ad 	return 1;
    730       1.2        ad }
    731       1.2        ad 
    732       1.2        ad /*
    733       1.2        ad  * rw_read_held:
    734       1.2        ad  *
    735       1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    736       1.2        ad  *	used for diagnostic assertions, and never be used to make
    737       1.2        ad  * 	decisions about how to use a rwlock.
    738       1.2        ad  */
    739       1.2        ad int
    740       1.2        ad rw_read_held(krwlock_t *rw)
    741       1.2        ad {
    742       1.2        ad 	uintptr_t owner;
    743       1.2        ad 
    744      1.21        ad 	if (rw == NULL)
    745      1.21        ad 		return 0;
    746       1.2        ad 	owner = rw->rw_owner;
    747       1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    748       1.2        ad }
    749       1.2        ad 
    750       1.2        ad /*
    751       1.2        ad  * rw_write_held:
    752       1.2        ad  *
    753       1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    754       1.2        ad  *	used for diagnostic assertions, and never be used to make
    755       1.2        ad  *	decisions about how to use a rwlock.
    756       1.2        ad  */
    757       1.2        ad int
    758       1.2        ad rw_write_held(krwlock_t *rw)
    759       1.2        ad {
    760       1.2        ad 
    761      1.21        ad 	if (rw == NULL)
    762      1.21        ad 		return 0;
    763      1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    764      1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    765       1.2        ad }
    766       1.2        ad 
    767       1.2        ad /*
    768       1.2        ad  * rw_lock_held:
    769       1.2        ad  *
    770       1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    771       1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    772       1.2        ad  *	decisions about how to use a rwlock.
    773       1.2        ad  */
    774       1.2        ad int
    775       1.2        ad rw_lock_held(krwlock_t *rw)
    776       1.2        ad {
    777       1.2        ad 
    778      1.21        ad 	if (rw == NULL)
    779      1.21        ad 		return 0;
    780       1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    781       1.2        ad }
    782       1.4      yamt 
    783       1.5        ad /*
    784      1.65        ad  * rw_lock_op:
    785      1.65        ad  *
    786      1.65        ad  *	For a rwlock that is known to be held by the caller, return
    787      1.65        ad  *	RW_READER or RW_WRITER to describe the hold type.
    788      1.65        ad  */
    789      1.65        ad krw_t
    790      1.65        ad rw_lock_op(krwlock_t *rw)
    791      1.65        ad {
    792      1.65        ad 
    793      1.65        ad 	RW_ASSERT(rw, rw_lock_held(rw));
    794      1.65        ad 
    795      1.65        ad 	return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
    796      1.65        ad }
    797      1.65        ad 
    798      1.65        ad /*
    799       1.5        ad  * rw_owner:
    800       1.5        ad  *
    801       1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    802       1.5        ad  *	held.  Used for priority inheritance.
    803       1.5        ad  */
    804       1.7        ad static lwp_t *
    805       1.4      yamt rw_owner(wchan_t obj)
    806       1.4      yamt {
    807       1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    808       1.4      yamt 	uintptr_t owner = rw->rw_owner;
    809       1.4      yamt 
    810       1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    811       1.4      yamt 		return NULL;
    812       1.4      yamt 
    813       1.4      yamt 	return (void *)(owner & RW_THREAD);
    814       1.4      yamt }
    815      1.63        ad 
    816      1.63        ad /*
    817      1.63        ad  * rw_owner_running:
    818      1.63        ad  *
    819      1.63        ad  *	Return true if a RW lock is unheld, or write held and the owner is
    820      1.63        ad  *	running on a CPU.  For the pagedaemon.
    821      1.63        ad  */
    822      1.63        ad bool
    823      1.63        ad rw_owner_running(const krwlock_t *rw)
    824      1.63        ad {
    825      1.63        ad #ifdef MULTIPROCESSOR
    826      1.63        ad 	uintptr_t owner;
    827      1.63        ad 	bool rv;
    828      1.63        ad 
    829      1.63        ad 	kpreempt_disable();
    830      1.63        ad 	owner = rw->rw_owner;
    831      1.63        ad 	rv = (owner & RW_THREAD) == 0 || rw_oncpu(owner);
    832      1.63        ad 	kpreempt_enable();
    833      1.63        ad 	return rv;
    834      1.63        ad #else
    835      1.63        ad 	return rw_owner(rw) == curlwp;
    836      1.63        ad #endif
    837      1.63        ad }
    838