kern_rwlock.c revision 1.70 1 1.70 riastrad /* $NetBSD: kern_rwlock.c,v 1.70 2023/02/24 11:11:10 riastradh Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.60 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
5 1.60 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Jason R. Thorpe and Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.2 ad * Kernel reader/writer lock implementation, modeled after those
35 1.2 ad * found in Solaris, a description of which can be found in:
36 1.2 ad *
37 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
38 1.2 ad * Richard McDougall.
39 1.64 ad *
40 1.64 ad * The NetBSD implementation differs from that described in the book, in
41 1.64 ad * that the locks are partially adaptive. Lock waiters spin wait while a
42 1.64 ad * lock is write held and the holder is still running on a CPU. The method
43 1.64 ad * of choosing which threads to awaken when a lock is released also differs,
44 1.64 ad * mainly to take account of the partially adaptive behaviour.
45 1.2 ad */
46 1.2 ad
47 1.10 dsl #include <sys/cdefs.h>
48 1.70 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.70 2023/02/24 11:11:10 riastradh Exp $");
49 1.61 ad
50 1.61 ad #include "opt_lockdebug.h"
51 1.2 ad
52 1.2 ad #define __RWLOCK_PRIVATE
53 1.2 ad
54 1.2 ad #include <sys/param.h>
55 1.2 ad #include <sys/proc.h>
56 1.2 ad #include <sys/rwlock.h>
57 1.2 ad #include <sys/sched.h>
58 1.2 ad #include <sys/sleepq.h>
59 1.2 ad #include <sys/systm.h>
60 1.2 ad #include <sys/lockdebug.h>
61 1.11 ad #include <sys/cpu.h>
62 1.14 ad #include <sys/atomic.h>
63 1.15 ad #include <sys/lock.h>
64 1.51 ozaki #include <sys/pserialize.h>
65 1.2 ad
66 1.2 ad #include <dev/lockstat.h>
67 1.2 ad
68 1.56 riastrad #include <machine/rwlock.h>
69 1.56 riastrad
70 1.2 ad /*
71 1.2 ad * LOCKDEBUG
72 1.2 ad */
73 1.2 ad
74 1.61 ad #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
75 1.2 ad
76 1.61 ad #define RW_WANTLOCK(rw, op) \
77 1.61 ad LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
78 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
79 1.61 ad #define RW_LOCKED(rw, op) \
80 1.61 ad LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
81 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
82 1.61 ad #define RW_UNLOCKED(rw, op) \
83 1.61 ad LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
84 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
85 1.2 ad
86 1.2 ad /*
87 1.2 ad * DIAGNOSTIC
88 1.2 ad */
89 1.2 ad
90 1.2 ad #if defined(DIAGNOSTIC)
91 1.61 ad #define RW_ASSERT(rw, cond) \
92 1.61 ad do { \
93 1.61 ad if (__predict_false(!(cond))) \
94 1.46 christos rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
95 1.2 ad } while (/* CONSTCOND */ 0)
96 1.2 ad #else
97 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
98 1.2 ad #endif /* DIAGNOSTIC */
99 1.2 ad
100 1.55 ad /*
101 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
102 1.2 ad */
103 1.2 ad #ifdef LOCKDEBUG
104 1.2 ad #undef __HAVE_RW_STUBS
105 1.2 ad #endif
106 1.2 ad
107 1.2 ad #ifndef __HAVE_RW_STUBS
108 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
109 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
110 1.16 ad __strong_alias(rw_tryenter,rw_vector_tryenter);
111 1.2 ad #endif
112 1.2 ad
113 1.61 ad static void rw_abort(const char *, size_t, krwlock_t *, const char *);
114 1.61 ad static void rw_dump(const volatile void *, lockop_printer_t);
115 1.61 ad static lwp_t *rw_owner(wchan_t);
116 1.61 ad
117 1.2 ad lockops_t rwlock_lockops = {
118 1.48 ozaki .lo_name = "Reader / writer lock",
119 1.48 ozaki .lo_type = LOCKOPS_SLEEP,
120 1.48 ozaki .lo_dump = rw_dump,
121 1.2 ad };
122 1.2 ad
123 1.4 yamt syncobj_t rw_syncobj = {
124 1.49 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
125 1.49 ozaki .sobj_unsleep = turnstile_unsleep,
126 1.49 ozaki .sobj_changepri = turnstile_changepri,
127 1.49 ozaki .sobj_lendpri = sleepq_lendpri,
128 1.49 ozaki .sobj_owner = rw_owner,
129 1.4 yamt };
130 1.4 yamt
131 1.2 ad /*
132 1.61 ad * rw_cas:
133 1.61 ad *
134 1.61 ad * Do an atomic compare-and-swap on the lock word.
135 1.61 ad */
136 1.61 ad static inline uintptr_t
137 1.61 ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
138 1.61 ad {
139 1.61 ad
140 1.61 ad return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
141 1.61 ad (void *)o, (void *)n);
142 1.61 ad }
143 1.61 ad
144 1.61 ad /*
145 1.61 ad * rw_swap:
146 1.61 ad *
147 1.61 ad * Do an atomic swap of the lock word. This is used only when it's
148 1.61 ad * known that the lock word is set up such that it can't be changed
149 1.61 ad * behind us (assert this), so there's no point considering the result.
150 1.61 ad */
151 1.61 ad static inline void
152 1.61 ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
153 1.61 ad {
154 1.61 ad
155 1.61 ad n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
156 1.61 ad (void *)n);
157 1.61 ad
158 1.61 ad RW_ASSERT(rw, n == o);
159 1.61 ad RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
160 1.61 ad }
161 1.61 ad
162 1.61 ad /*
163 1.2 ad * rw_dump:
164 1.2 ad *
165 1.2 ad * Dump the contents of a rwlock structure.
166 1.2 ad */
167 1.11 ad static void
168 1.54 ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
169 1.2 ad {
170 1.47 christos const volatile krwlock_t *rw = cookie;
171 1.2 ad
172 1.54 ozaki pr("owner/count : %#018lx flags : %#018x\n",
173 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
174 1.2 ad }
175 1.2 ad
176 1.2 ad /*
177 1.11 ad * rw_abort:
178 1.11 ad *
179 1.11 ad * Dump information about an error and panic the system. This
180 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
181 1.11 ad * we ask the compiler to not inline it.
182 1.11 ad */
183 1.26 ad static void __noinline
184 1.46 christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
185 1.11 ad {
186 1.11 ad
187 1.67 ozaki if (__predict_false(panicstr != NULL))
188 1.11 ad return;
189 1.11 ad
190 1.46 christos LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
191 1.11 ad }
192 1.11 ad
193 1.11 ad /*
194 1.2 ad * rw_init:
195 1.2 ad *
196 1.2 ad * Initialize a rwlock for use.
197 1.2 ad */
198 1.2 ad void
199 1.50 ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
200 1.2 ad {
201 1.2 ad
202 1.62 ad #ifdef LOCKDEBUG
203 1.62 ad /* XXX only because the assembly stubs can't handle RW_NODEBUG */
204 1.61 ad if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
205 1.61 ad rw->rw_owner = 0;
206 1.61 ad else
207 1.61 ad rw->rw_owner = RW_NODEBUG;
208 1.62 ad #else
209 1.62 ad rw->rw_owner = 0;
210 1.62 ad #endif
211 1.2 ad }
212 1.2 ad
213 1.50 ozaki void
214 1.50 ozaki rw_init(krwlock_t *rw)
215 1.50 ozaki {
216 1.50 ozaki
217 1.50 ozaki _rw_init(rw, (uintptr_t)__builtin_return_address(0));
218 1.50 ozaki }
219 1.50 ozaki
220 1.2 ad /*
221 1.2 ad * rw_destroy:
222 1.2 ad *
223 1.2 ad * Tear down a rwlock.
224 1.2 ad */
225 1.2 ad void
226 1.2 ad rw_destroy(krwlock_t *rw)
227 1.2 ad {
228 1.2 ad
229 1.36 skrll RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
230 1.61 ad LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
231 1.2 ad }
232 1.2 ad
233 1.2 ad /*
234 1.37 rmind * rw_oncpu:
235 1.20 ad *
236 1.20 ad * Return true if an rwlock owner is running on a CPU in the system.
237 1.20 ad * If the target is waiting on the kernel big lock, then we must
238 1.20 ad * release it. This is necessary to avoid deadlock.
239 1.20 ad */
240 1.37 rmind static bool
241 1.37 rmind rw_oncpu(uintptr_t owner)
242 1.20 ad {
243 1.20 ad #ifdef MULTIPROCESSOR
244 1.20 ad struct cpu_info *ci;
245 1.20 ad lwp_t *l;
246 1.20 ad
247 1.37 rmind KASSERT(kpreempt_disabled());
248 1.37 rmind
249 1.37 rmind if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
250 1.37 rmind return false;
251 1.37 rmind }
252 1.37 rmind
253 1.37 rmind /*
254 1.37 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
255 1.37 rmind * We must have kernel preemption disabled for that.
256 1.37 rmind */
257 1.20 ad l = (lwp_t *)(owner & RW_THREAD);
258 1.37 rmind ci = l->l_cpu;
259 1.20 ad
260 1.37 rmind if (ci && ci->ci_curlwp == l) {
261 1.37 rmind /* Target is running; do we need to block? */
262 1.37 rmind return (ci->ci_biglock_wanted != l);
263 1.37 rmind }
264 1.37 rmind #endif
265 1.37 rmind /* Not running. It may be safe to block now. */
266 1.37 rmind return false;
267 1.20 ad }
268 1.20 ad
269 1.20 ad /*
270 1.2 ad * rw_vector_enter:
271 1.2 ad *
272 1.2 ad * Acquire a rwlock.
273 1.2 ad */
274 1.2 ad void
275 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
276 1.2 ad {
277 1.20 ad uintptr_t owner, incr, need_wait, set_wait, curthread, next;
278 1.2 ad turnstile_t *ts;
279 1.2 ad int queue;
280 1.7 ad lwp_t *l;
281 1.2 ad LOCKSTAT_TIMER(slptime);
282 1.20 ad LOCKSTAT_TIMER(slpcnt);
283 1.19 ad LOCKSTAT_TIMER(spintime);
284 1.19 ad LOCKSTAT_COUNTER(spincnt);
285 1.2 ad LOCKSTAT_FLAG(lsflag);
286 1.2 ad
287 1.2 ad l = curlwp;
288 1.2 ad curthread = (uintptr_t)l;
289 1.2 ad
290 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
291 1.2 ad RW_ASSERT(rw, curthread != 0);
292 1.40 mlelstv RW_WANTLOCK(rw, op);
293 1.2 ad
294 1.67 ozaki if (__predict_true(panicstr == NULL)) {
295 1.53 ozaki KDASSERT(pserialize_not_in_read_section());
296 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
297 1.2 ad }
298 1.2 ad
299 1.2 ad /*
300 1.2 ad * We play a slight trick here. If we're a reader, we want
301 1.2 ad * increment the read count. If we're a writer, we want to
302 1.43 ozaki * set the owner field and the WRITE_LOCKED bit.
303 1.2 ad *
304 1.2 ad * In the latter case, we expect those bits to be zero,
305 1.2 ad * therefore we can use an add operation to set them, which
306 1.2 ad * means an add operation for both cases.
307 1.2 ad */
308 1.2 ad if (__predict_true(op == RW_READER)) {
309 1.2 ad incr = RW_READ_INCR;
310 1.2 ad set_wait = RW_HAS_WAITERS;
311 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
312 1.2 ad queue = TS_READER_Q;
313 1.2 ad } else {
314 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
315 1.2 ad incr = curthread | RW_WRITE_LOCKED;
316 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
317 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
318 1.2 ad queue = TS_WRITER_Q;
319 1.2 ad }
320 1.2 ad
321 1.2 ad LOCKSTAT_ENTER(lsflag);
322 1.2 ad
323 1.37 rmind KPREEMPT_DISABLE(curlwp);
324 1.55 ad for (owner = rw->rw_owner;;) {
325 1.2 ad /*
326 1.2 ad * Read the lock owner field. If the need-to-wait
327 1.2 ad * indicator is clear, then try to acquire the lock.
328 1.2 ad */
329 1.2 ad if ((owner & need_wait) == 0) {
330 1.20 ad next = rw_cas(rw, owner, (owner + incr) &
331 1.20 ad ~RW_WRITE_WANTED);
332 1.20 ad if (__predict_true(next == owner)) {
333 1.2 ad /* Got it! */
334 1.70 riastrad membar_acquire();
335 1.2 ad break;
336 1.2 ad }
337 1.2 ad
338 1.2 ad /*
339 1.2 ad * Didn't get it -- spin around again (we'll
340 1.2 ad * probably sleep on the next iteration).
341 1.2 ad */
342 1.20 ad owner = next;
343 1.2 ad continue;
344 1.2 ad }
345 1.37 rmind if (__predict_false(RW_OWNER(rw) == curthread)) {
346 1.46 christos rw_abort(__func__, __LINE__, rw,
347 1.46 christos "locking against myself");
348 1.37 rmind }
349 1.19 ad /*
350 1.19 ad * If the lock owner is running on another CPU, and
351 1.19 ad * there are no existing waiters, then spin.
352 1.19 ad */
353 1.37 rmind if (rw_oncpu(owner)) {
354 1.19 ad LOCKSTAT_START_TIMER(lsflag, spintime);
355 1.19 ad u_int count = SPINLOCK_BACKOFF_MIN;
356 1.20 ad do {
357 1.38 rmind KPREEMPT_ENABLE(curlwp);
358 1.20 ad SPINLOCK_BACKOFF(count);
359 1.38 rmind KPREEMPT_DISABLE(curlwp);
360 1.19 ad owner = rw->rw_owner;
361 1.37 rmind } while (rw_oncpu(owner));
362 1.19 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
363 1.19 ad LOCKSTAT_COUNT(spincnt, 1);
364 1.19 ad if ((owner & need_wait) == 0)
365 1.19 ad continue;
366 1.19 ad }
367 1.19 ad
368 1.2 ad /*
369 1.2 ad * Grab the turnstile chain lock. Once we have that, we
370 1.2 ad * can adjust the waiter bits and sleep queue.
371 1.2 ad */
372 1.2 ad ts = turnstile_lookup(rw);
373 1.2 ad
374 1.2 ad /*
375 1.2 ad * Mark the rwlock as having waiters. If the set fails,
376 1.2 ad * then we may not need to sleep and should spin again.
377 1.20 ad * Reload rw_owner because turnstile_lookup() may have
378 1.20 ad * spun on the turnstile chain lock.
379 1.2 ad */
380 1.20 ad owner = rw->rw_owner;
381 1.37 rmind if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
382 1.20 ad turnstile_exit(rw);
383 1.20 ad continue;
384 1.20 ad }
385 1.20 ad next = rw_cas(rw, owner, owner | set_wait);
386 1.66 riastrad /* XXX membar? */
387 1.20 ad if (__predict_false(next != owner)) {
388 1.2 ad turnstile_exit(rw);
389 1.20 ad owner = next;
390 1.2 ad continue;
391 1.2 ad }
392 1.2 ad
393 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
394 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
395 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
396 1.20 ad LOCKSTAT_COUNT(slpcnt, 1);
397 1.2 ad
398 1.20 ad /*
399 1.20 ad * No need for a memory barrier because of context switch.
400 1.20 ad * If not handed the lock, then spin again.
401 1.20 ad */
402 1.58 ad if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
403 1.20 ad break;
404 1.58 ad
405 1.39 yamt owner = rw->rw_owner;
406 1.2 ad }
407 1.37 rmind KPREEMPT_ENABLE(curlwp);
408 1.2 ad
409 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
410 1.60 ad (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
411 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
412 1.60 ad (uintptr_t)__builtin_return_address(0)));
413 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
414 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
415 1.60 ad (uintptr_t)__builtin_return_address(0)));
416 1.2 ad LOCKSTAT_EXIT(lsflag);
417 1.2 ad
418 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
419 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
420 1.2 ad RW_LOCKED(rw, op);
421 1.2 ad }
422 1.2 ad
423 1.2 ad /*
424 1.2 ad * rw_vector_exit:
425 1.2 ad *
426 1.2 ad * Release a rwlock.
427 1.2 ad */
428 1.2 ad void
429 1.2 ad rw_vector_exit(krwlock_t *rw)
430 1.2 ad {
431 1.44 matt uintptr_t curthread, owner, decr, newown, next;
432 1.2 ad turnstile_t *ts;
433 1.2 ad int rcnt, wcnt;
434 1.7 ad lwp_t *l;
435 1.2 ad
436 1.61 ad l = curlwp;
437 1.61 ad curthread = (uintptr_t)l;
438 1.2 ad RW_ASSERT(rw, curthread != 0);
439 1.2 ad
440 1.2 ad /*
441 1.2 ad * Again, we use a trick. Since we used an add operation to
442 1.2 ad * set the required lock bits, we can use a subtract to clear
443 1.2 ad * them, which makes the read-release and write-release path
444 1.2 ad * the same.
445 1.2 ad */
446 1.2 ad owner = rw->rw_owner;
447 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
448 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
449 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
450 1.2 ad decr = curthread | RW_WRITE_LOCKED;
451 1.2 ad } else {
452 1.2 ad RW_UNLOCKED(rw, RW_READER);
453 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
454 1.2 ad decr = RW_READ_INCR;
455 1.2 ad }
456 1.2 ad
457 1.2 ad /*
458 1.2 ad * Compute what we expect the new value of the lock to be. Only
459 1.2 ad * proceed to do direct handoff if there are waiters, and if the
460 1.2 ad * lock would become unowned.
461 1.2 ad */
462 1.70 riastrad membar_release();
463 1.58 ad for (;;) {
464 1.44 matt newown = (owner - decr);
465 1.44 matt if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
466 1.2 ad break;
467 1.44 matt next = rw_cas(rw, owner, newown);
468 1.20 ad if (__predict_true(next == owner))
469 1.2 ad return;
470 1.58 ad owner = next;
471 1.2 ad }
472 1.2 ad
473 1.20 ad /*
474 1.20 ad * Grab the turnstile chain lock. This gets the interlock
475 1.20 ad * on the sleep queue. Once we have that, we can adjust the
476 1.20 ad * waiter bits.
477 1.20 ad */
478 1.20 ad ts = turnstile_lookup(rw);
479 1.20 ad owner = rw->rw_owner;
480 1.61 ad RW_ASSERT(rw, ts != NULL);
481 1.61 ad RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
482 1.2 ad
483 1.20 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
484 1.20 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
485 1.2 ad
486 1.20 ad /*
487 1.20 ad * Give the lock away.
488 1.20 ad *
489 1.20 ad * If we are releasing a write lock, then prefer to wake all
490 1.20 ad * outstanding readers. Otherwise, wake one writer if there
491 1.20 ad * are outstanding readers, or all writers if there are no
492 1.20 ad * pending readers. If waking one specific writer, the writer
493 1.20 ad * is handed the lock here. If waking multiple writers, we
494 1.20 ad * set WRITE_WANTED to block out new readers, and let them
495 1.41 skrll * do the work of acquiring the lock in rw_vector_enter().
496 1.20 ad */
497 1.32 yamt if (rcnt == 0 || decr == RW_READ_INCR) {
498 1.61 ad RW_ASSERT(rw, wcnt != 0);
499 1.61 ad RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
500 1.2 ad
501 1.20 ad if (rcnt != 0) {
502 1.20 ad /* Give the lock to the longest waiting writer. */
503 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
504 1.61 ad newown = (uintptr_t)l | (owner & RW_NODEBUG);
505 1.61 ad newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
506 1.28 thorpej if (wcnt > 1)
507 1.44 matt newown |= RW_WRITE_WANTED;
508 1.44 matt rw_swap(rw, owner, newown);
509 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
510 1.2 ad } else {
511 1.20 ad /* Wake all writers and let them fight it out. */
512 1.61 ad newown = owner & RW_NODEBUG;
513 1.61 ad newown |= RW_WRITE_WANTED;
514 1.61 ad rw_swap(rw, owner, newown);
515 1.20 ad turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
516 1.20 ad }
517 1.20 ad } else {
518 1.61 ad RW_ASSERT(rw, rcnt != 0);
519 1.2 ad
520 1.20 ad /*
521 1.20 ad * Give the lock to all blocked readers. If there
522 1.20 ad * is a writer waiting, new readers that arrive
523 1.20 ad * after the release will be blocked out.
524 1.20 ad */
525 1.61 ad newown = owner & RW_NODEBUG;
526 1.61 ad newown += rcnt << RW_READ_COUNT_SHIFT;
527 1.20 ad if (wcnt != 0)
528 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
529 1.12 yamt
530 1.20 ad /* Wake up all sleeping readers. */
531 1.44 matt rw_swap(rw, owner, newown);
532 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
533 1.2 ad }
534 1.2 ad }
535 1.2 ad
536 1.2 ad /*
537 1.16 ad * rw_vector_tryenter:
538 1.2 ad *
539 1.2 ad * Try to acquire a rwlock.
540 1.2 ad */
541 1.2 ad int
542 1.16 ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
543 1.2 ad {
544 1.20 ad uintptr_t curthread, owner, incr, need_wait, next;
545 1.61 ad lwp_t *l;
546 1.2 ad
547 1.61 ad l = curlwp;
548 1.61 ad curthread = (uintptr_t)l;
549 1.2 ad
550 1.2 ad RW_ASSERT(rw, curthread != 0);
551 1.2 ad
552 1.2 ad if (op == RW_READER) {
553 1.2 ad incr = RW_READ_INCR;
554 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
555 1.2 ad } else {
556 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
557 1.2 ad incr = curthread | RW_WRITE_LOCKED;
558 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
559 1.2 ad }
560 1.2 ad
561 1.58 ad for (owner = rw->rw_owner;; owner = next) {
562 1.58 ad if (__predict_false((owner & need_wait) != 0))
563 1.58 ad return 0;
564 1.20 ad next = rw_cas(rw, owner, owner + incr);
565 1.20 ad if (__predict_true(next == owner)) {
566 1.20 ad /* Got it! */
567 1.20 ad break;
568 1.2 ad }
569 1.2 ad }
570 1.2 ad
571 1.40 mlelstv RW_WANTLOCK(rw, op);
572 1.2 ad RW_LOCKED(rw, op);
573 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
574 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
575 1.7 ad
576 1.70 riastrad membar_acquire();
577 1.2 ad return 1;
578 1.2 ad }
579 1.2 ad
580 1.2 ad /*
581 1.2 ad * rw_downgrade:
582 1.2 ad *
583 1.61 ad * Downgrade a write lock to a read lock.
584 1.2 ad */
585 1.2 ad void
586 1.2 ad rw_downgrade(krwlock_t *rw)
587 1.2 ad {
588 1.44 matt uintptr_t owner, curthread, newown, next;
589 1.2 ad turnstile_t *ts;
590 1.2 ad int rcnt, wcnt;
591 1.61 ad lwp_t *l;
592 1.2 ad
593 1.61 ad l = curlwp;
594 1.61 ad curthread = (uintptr_t)l;
595 1.2 ad RW_ASSERT(rw, curthread != 0);
596 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
597 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
598 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
599 1.42 mrg #if !defined(DIAGNOSTIC)
600 1.42 mrg __USE(curthread);
601 1.42 mrg #endif
602 1.42 mrg
603 1.70 riastrad membar_release();
604 1.61 ad for (owner = rw->rw_owner;; owner = next) {
605 1.61 ad /*
606 1.61 ad * If there are no waiters we can do this the easy way. Try
607 1.61 ad * swapping us down to one read hold. If it fails, the lock
608 1.61 ad * condition has changed and we most likely now have
609 1.61 ad * waiters.
610 1.61 ad */
611 1.61 ad if ((owner & RW_HAS_WAITERS) == 0) {
612 1.61 ad newown = (owner & RW_NODEBUG);
613 1.61 ad next = rw_cas(rw, owner, newown + RW_READ_INCR);
614 1.61 ad if (__predict_true(next == owner)) {
615 1.61 ad RW_LOCKED(rw, RW_READER);
616 1.61 ad RW_ASSERT(rw,
617 1.61 ad (rw->rw_owner & RW_WRITE_LOCKED) == 0);
618 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
619 1.61 ad return;
620 1.61 ad }
621 1.61 ad continue;
622 1.61 ad }
623 1.61 ad
624 1.61 ad /*
625 1.61 ad * Grab the turnstile chain lock. This gets the interlock
626 1.61 ad * on the sleep queue. Once we have that, we can adjust the
627 1.61 ad * waiter bits.
628 1.61 ad */
629 1.2 ad ts = turnstile_lookup(rw);
630 1.61 ad RW_ASSERT(rw, ts != NULL);
631 1.2 ad
632 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
633 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
634 1.2 ad
635 1.2 ad if (rcnt == 0) {
636 1.61 ad /*
637 1.61 ad * If there are no readers, just preserve the
638 1.61 ad * waiters bits, swap us down to one read hold and
639 1.61 ad * return.
640 1.61 ad */
641 1.61 ad RW_ASSERT(rw, wcnt != 0);
642 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
643 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
644 1.61 ad
645 1.61 ad newown = owner & RW_NODEBUG;
646 1.62 ad newown |= RW_READ_INCR | RW_HAS_WAITERS |
647 1.61 ad RW_WRITE_WANTED;
648 1.44 matt next = rw_cas(rw, owner, newown);
649 1.27 rmind turnstile_exit(rw);
650 1.20 ad if (__predict_true(next == owner))
651 1.20 ad break;
652 1.20 ad } else {
653 1.20 ad /*
654 1.20 ad * Give the lock to all blocked readers. We may
655 1.61 ad * retain one read hold if downgrading. If there is
656 1.61 ad * a writer waiting, new readers will be blocked
657 1.20 ad * out.
658 1.20 ad */
659 1.61 ad newown = owner & RW_NODEBUG;
660 1.61 ad newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
661 1.20 ad if (wcnt != 0)
662 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
663 1.20 ad
664 1.44 matt next = rw_cas(rw, owner, newown);
665 1.20 ad if (__predict_true(next == owner)) {
666 1.20 ad /* Wake up all sleeping readers. */
667 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
668 1.20 ad break;
669 1.2 ad }
670 1.27 rmind turnstile_exit(rw);
671 1.2 ad }
672 1.2 ad }
673 1.2 ad
674 1.40 mlelstv RW_WANTLOCK(rw, RW_READER);
675 1.2 ad RW_LOCKED(rw, RW_READER);
676 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
677 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
678 1.2 ad }
679 1.2 ad
680 1.2 ad /*
681 1.2 ad * rw_tryupgrade:
682 1.2 ad *
683 1.55 ad * Try to upgrade a read lock to a write lock. We must be the only
684 1.61 ad * reader.
685 1.2 ad */
686 1.2 ad int
687 1.2 ad rw_tryupgrade(krwlock_t *rw)
688 1.2 ad {
689 1.44 matt uintptr_t owner, curthread, newown, next;
690 1.61 ad struct lwp *l;
691 1.2 ad
692 1.61 ad l = curlwp;
693 1.61 ad curthread = (uintptr_t)l;
694 1.2 ad RW_ASSERT(rw, curthread != 0);
695 1.31 yamt RW_ASSERT(rw, rw_read_held(rw));
696 1.2 ad
697 1.55 ad for (owner = RW_READ_INCR;; owner = next) {
698 1.44 matt newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
699 1.44 matt next = rw_cas(rw, owner, newown);
700 1.30 ad if (__predict_true(next == owner)) {
701 1.70 riastrad membar_acquire();
702 1.2 ad break;
703 1.30 ad }
704 1.55 ad RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
705 1.55 ad if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
706 1.55 ad RW_ASSERT(rw, (next & RW_THREAD) != 0);
707 1.55 ad return 0;
708 1.55 ad }
709 1.2 ad }
710 1.2 ad
711 1.2 ad RW_UNLOCKED(rw, RW_READER);
712 1.40 mlelstv RW_WANTLOCK(rw, RW_WRITER);
713 1.2 ad RW_LOCKED(rw, RW_WRITER);
714 1.61 ad RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
715 1.61 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
716 1.2 ad
717 1.2 ad return 1;
718 1.2 ad }
719 1.2 ad
720 1.2 ad /*
721 1.2 ad * rw_read_held:
722 1.2 ad *
723 1.2 ad * Returns true if the rwlock is held for reading. Must only be
724 1.2 ad * used for diagnostic assertions, and never be used to make
725 1.2 ad * decisions about how to use a rwlock.
726 1.2 ad */
727 1.2 ad int
728 1.2 ad rw_read_held(krwlock_t *rw)
729 1.2 ad {
730 1.2 ad uintptr_t owner;
731 1.2 ad
732 1.21 ad if (rw == NULL)
733 1.21 ad return 0;
734 1.2 ad owner = rw->rw_owner;
735 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
736 1.2 ad }
737 1.2 ad
738 1.2 ad /*
739 1.2 ad * rw_write_held:
740 1.2 ad *
741 1.2 ad * Returns true if the rwlock is held for writing. Must only be
742 1.2 ad * used for diagnostic assertions, and never be used to make
743 1.2 ad * decisions about how to use a rwlock.
744 1.2 ad */
745 1.2 ad int
746 1.2 ad rw_write_held(krwlock_t *rw)
747 1.2 ad {
748 1.2 ad
749 1.21 ad if (rw == NULL)
750 1.21 ad return 0;
751 1.17 ad return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
752 1.18 ad (RW_WRITE_LOCKED | (uintptr_t)curlwp);
753 1.2 ad }
754 1.2 ad
755 1.2 ad /*
756 1.2 ad * rw_lock_held:
757 1.2 ad *
758 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
759 1.2 ad * only be used for diagnostic assertions, and never be used to make
760 1.2 ad * decisions about how to use a rwlock.
761 1.2 ad */
762 1.2 ad int
763 1.2 ad rw_lock_held(krwlock_t *rw)
764 1.2 ad {
765 1.2 ad
766 1.21 ad if (rw == NULL)
767 1.21 ad return 0;
768 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
769 1.2 ad }
770 1.4 yamt
771 1.5 ad /*
772 1.65 ad * rw_lock_op:
773 1.65 ad *
774 1.65 ad * For a rwlock that is known to be held by the caller, return
775 1.65 ad * RW_READER or RW_WRITER to describe the hold type.
776 1.65 ad */
777 1.65 ad krw_t
778 1.65 ad rw_lock_op(krwlock_t *rw)
779 1.65 ad {
780 1.65 ad
781 1.65 ad RW_ASSERT(rw, rw_lock_held(rw));
782 1.65 ad
783 1.65 ad return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
784 1.65 ad }
785 1.65 ad
786 1.65 ad /*
787 1.5 ad * rw_owner:
788 1.5 ad *
789 1.5 ad * Return the current owner of an RW lock, but only if it is write
790 1.5 ad * held. Used for priority inheritance.
791 1.5 ad */
792 1.7 ad static lwp_t *
793 1.4 yamt rw_owner(wchan_t obj)
794 1.4 yamt {
795 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
796 1.4 yamt uintptr_t owner = rw->rw_owner;
797 1.4 yamt
798 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
799 1.4 yamt return NULL;
800 1.4 yamt
801 1.4 yamt return (void *)(owner & RW_THREAD);
802 1.4 yamt }
803 1.63 ad
804 1.63 ad /*
805 1.63 ad * rw_owner_running:
806 1.63 ad *
807 1.63 ad * Return true if a RW lock is unheld, or write held and the owner is
808 1.63 ad * running on a CPU. For the pagedaemon.
809 1.63 ad */
810 1.63 ad bool
811 1.63 ad rw_owner_running(const krwlock_t *rw)
812 1.63 ad {
813 1.63 ad #ifdef MULTIPROCESSOR
814 1.63 ad uintptr_t owner;
815 1.63 ad bool rv;
816 1.63 ad
817 1.63 ad kpreempt_disable();
818 1.63 ad owner = rw->rw_owner;
819 1.63 ad rv = (owner & RW_THREAD) == 0 || rw_oncpu(owner);
820 1.63 ad kpreempt_enable();
821 1.63 ad return rv;
822 1.63 ad #else
823 1.63 ad return rw_owner(rw) == curlwp;
824 1.63 ad #endif
825 1.63 ad }
826