kern_rwlock.c revision 1.72 1 1.72 ad /* $NetBSD: kern_rwlock.c,v 1.72 2023/09/07 20:05:42 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.60 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
5 1.60 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Jason R. Thorpe and Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.2 ad * Kernel reader/writer lock implementation, modeled after those
35 1.2 ad * found in Solaris, a description of which can be found in:
36 1.2 ad *
37 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
38 1.2 ad * Richard McDougall.
39 1.64 ad *
40 1.64 ad * The NetBSD implementation differs from that described in the book, in
41 1.64 ad * that the locks are partially adaptive. Lock waiters spin wait while a
42 1.64 ad * lock is write held and the holder is still running on a CPU. The method
43 1.64 ad * of choosing which threads to awaken when a lock is released also differs,
44 1.64 ad * mainly to take account of the partially adaptive behaviour.
45 1.2 ad */
46 1.2 ad
47 1.10 dsl #include <sys/cdefs.h>
48 1.72 ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.72 2023/09/07 20:05:42 ad Exp $");
49 1.61 ad
50 1.61 ad #include "opt_lockdebug.h"
51 1.2 ad
52 1.2 ad #define __RWLOCK_PRIVATE
53 1.2 ad
54 1.2 ad #include <sys/param.h>
55 1.2 ad #include <sys/proc.h>
56 1.2 ad #include <sys/rwlock.h>
57 1.2 ad #include <sys/sched.h>
58 1.2 ad #include <sys/sleepq.h>
59 1.2 ad #include <sys/systm.h>
60 1.2 ad #include <sys/lockdebug.h>
61 1.11 ad #include <sys/cpu.h>
62 1.14 ad #include <sys/atomic.h>
63 1.15 ad #include <sys/lock.h>
64 1.51 ozaki #include <sys/pserialize.h>
65 1.2 ad
66 1.2 ad #include <dev/lockstat.h>
67 1.2 ad
68 1.56 riastrad #include <machine/rwlock.h>
69 1.56 riastrad
70 1.2 ad /*
71 1.2 ad * LOCKDEBUG
72 1.2 ad */
73 1.2 ad
74 1.61 ad #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
75 1.2 ad
76 1.61 ad #define RW_WANTLOCK(rw, op) \
77 1.61 ad LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
78 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
79 1.61 ad #define RW_LOCKED(rw, op) \
80 1.61 ad LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
81 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
82 1.61 ad #define RW_UNLOCKED(rw, op) \
83 1.61 ad LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
84 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
85 1.2 ad
86 1.2 ad /*
87 1.2 ad * DIAGNOSTIC
88 1.2 ad */
89 1.2 ad
90 1.2 ad #if defined(DIAGNOSTIC)
91 1.61 ad #define RW_ASSERT(rw, cond) \
92 1.61 ad do { \
93 1.61 ad if (__predict_false(!(cond))) \
94 1.46 christos rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
95 1.2 ad } while (/* CONSTCOND */ 0)
96 1.2 ad #else
97 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
98 1.2 ad #endif /* DIAGNOSTIC */
99 1.2 ad
100 1.55 ad /*
101 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
102 1.2 ad */
103 1.2 ad #ifdef LOCKDEBUG
104 1.2 ad #undef __HAVE_RW_STUBS
105 1.2 ad #endif
106 1.2 ad
107 1.2 ad #ifndef __HAVE_RW_STUBS
108 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
109 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
110 1.16 ad __strong_alias(rw_tryenter,rw_vector_tryenter);
111 1.2 ad #endif
112 1.2 ad
113 1.61 ad static void rw_abort(const char *, size_t, krwlock_t *, const char *);
114 1.61 ad static void rw_dump(const volatile void *, lockop_printer_t);
115 1.61 ad static lwp_t *rw_owner(wchan_t);
116 1.61 ad
117 1.2 ad lockops_t rwlock_lockops = {
118 1.48 ozaki .lo_name = "Reader / writer lock",
119 1.48 ozaki .lo_type = LOCKOPS_SLEEP,
120 1.48 ozaki .lo_dump = rw_dump,
121 1.2 ad };
122 1.2 ad
123 1.4 yamt syncobj_t rw_syncobj = {
124 1.71 riastrad .sobj_name = "rw",
125 1.49 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
126 1.49 ozaki .sobj_unsleep = turnstile_unsleep,
127 1.49 ozaki .sobj_changepri = turnstile_changepri,
128 1.49 ozaki .sobj_lendpri = sleepq_lendpri,
129 1.49 ozaki .sobj_owner = rw_owner,
130 1.4 yamt };
131 1.4 yamt
132 1.2 ad /*
133 1.61 ad * rw_cas:
134 1.61 ad *
135 1.61 ad * Do an atomic compare-and-swap on the lock word.
136 1.61 ad */
137 1.61 ad static inline uintptr_t
138 1.61 ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
139 1.61 ad {
140 1.61 ad
141 1.61 ad return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
142 1.61 ad (void *)o, (void *)n);
143 1.61 ad }
144 1.61 ad
145 1.61 ad /*
146 1.61 ad * rw_swap:
147 1.61 ad *
148 1.61 ad * Do an atomic swap of the lock word. This is used only when it's
149 1.61 ad * known that the lock word is set up such that it can't be changed
150 1.61 ad * behind us (assert this), so there's no point considering the result.
151 1.61 ad */
152 1.61 ad static inline void
153 1.61 ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
154 1.61 ad {
155 1.61 ad
156 1.61 ad n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
157 1.61 ad (void *)n);
158 1.61 ad
159 1.61 ad RW_ASSERT(rw, n == o);
160 1.61 ad RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
161 1.61 ad }
162 1.61 ad
163 1.61 ad /*
164 1.2 ad * rw_dump:
165 1.2 ad *
166 1.2 ad * Dump the contents of a rwlock structure.
167 1.2 ad */
168 1.11 ad static void
169 1.54 ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
170 1.2 ad {
171 1.47 christos const volatile krwlock_t *rw = cookie;
172 1.2 ad
173 1.54 ozaki pr("owner/count : %#018lx flags : %#018x\n",
174 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
175 1.2 ad }
176 1.2 ad
177 1.2 ad /*
178 1.11 ad * rw_abort:
179 1.11 ad *
180 1.11 ad * Dump information about an error and panic the system. This
181 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
182 1.11 ad * we ask the compiler to not inline it.
183 1.11 ad */
184 1.26 ad static void __noinline
185 1.46 christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
186 1.11 ad {
187 1.11 ad
188 1.67 ozaki if (__predict_false(panicstr != NULL))
189 1.11 ad return;
190 1.11 ad
191 1.46 christos LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
192 1.11 ad }
193 1.11 ad
194 1.11 ad /*
195 1.2 ad * rw_init:
196 1.2 ad *
197 1.2 ad * Initialize a rwlock for use.
198 1.2 ad */
199 1.2 ad void
200 1.50 ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
201 1.2 ad {
202 1.2 ad
203 1.62 ad #ifdef LOCKDEBUG
204 1.62 ad /* XXX only because the assembly stubs can't handle RW_NODEBUG */
205 1.61 ad if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
206 1.61 ad rw->rw_owner = 0;
207 1.61 ad else
208 1.61 ad rw->rw_owner = RW_NODEBUG;
209 1.62 ad #else
210 1.62 ad rw->rw_owner = 0;
211 1.62 ad #endif
212 1.2 ad }
213 1.2 ad
214 1.50 ozaki void
215 1.50 ozaki rw_init(krwlock_t *rw)
216 1.50 ozaki {
217 1.50 ozaki
218 1.50 ozaki _rw_init(rw, (uintptr_t)__builtin_return_address(0));
219 1.50 ozaki }
220 1.50 ozaki
221 1.2 ad /*
222 1.2 ad * rw_destroy:
223 1.2 ad *
224 1.2 ad * Tear down a rwlock.
225 1.2 ad */
226 1.2 ad void
227 1.2 ad rw_destroy(krwlock_t *rw)
228 1.2 ad {
229 1.2 ad
230 1.36 skrll RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
231 1.61 ad LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
232 1.2 ad }
233 1.2 ad
234 1.2 ad /*
235 1.37 rmind * rw_oncpu:
236 1.20 ad *
237 1.20 ad * Return true if an rwlock owner is running on a CPU in the system.
238 1.20 ad * If the target is waiting on the kernel big lock, then we must
239 1.20 ad * release it. This is necessary to avoid deadlock.
240 1.20 ad */
241 1.37 rmind static bool
242 1.37 rmind rw_oncpu(uintptr_t owner)
243 1.20 ad {
244 1.20 ad #ifdef MULTIPROCESSOR
245 1.20 ad struct cpu_info *ci;
246 1.20 ad lwp_t *l;
247 1.20 ad
248 1.37 rmind KASSERT(kpreempt_disabled());
249 1.37 rmind
250 1.37 rmind if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
251 1.37 rmind return false;
252 1.37 rmind }
253 1.37 rmind
254 1.37 rmind /*
255 1.37 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
256 1.37 rmind * We must have kernel preemption disabled for that.
257 1.37 rmind */
258 1.20 ad l = (lwp_t *)(owner & RW_THREAD);
259 1.37 rmind ci = l->l_cpu;
260 1.20 ad
261 1.37 rmind if (ci && ci->ci_curlwp == l) {
262 1.37 rmind /* Target is running; do we need to block? */
263 1.37 rmind return (ci->ci_biglock_wanted != l);
264 1.37 rmind }
265 1.37 rmind #endif
266 1.37 rmind /* Not running. It may be safe to block now. */
267 1.37 rmind return false;
268 1.20 ad }
269 1.20 ad
270 1.20 ad /*
271 1.2 ad * rw_vector_enter:
272 1.2 ad *
273 1.2 ad * Acquire a rwlock.
274 1.2 ad */
275 1.2 ad void
276 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
277 1.2 ad {
278 1.20 ad uintptr_t owner, incr, need_wait, set_wait, curthread, next;
279 1.2 ad turnstile_t *ts;
280 1.2 ad int queue;
281 1.7 ad lwp_t *l;
282 1.2 ad LOCKSTAT_TIMER(slptime);
283 1.20 ad LOCKSTAT_TIMER(slpcnt);
284 1.19 ad LOCKSTAT_TIMER(spintime);
285 1.19 ad LOCKSTAT_COUNTER(spincnt);
286 1.2 ad LOCKSTAT_FLAG(lsflag);
287 1.2 ad
288 1.2 ad l = curlwp;
289 1.2 ad curthread = (uintptr_t)l;
290 1.2 ad
291 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
292 1.2 ad RW_ASSERT(rw, curthread != 0);
293 1.40 mlelstv RW_WANTLOCK(rw, op);
294 1.2 ad
295 1.67 ozaki if (__predict_true(panicstr == NULL)) {
296 1.53 ozaki KDASSERT(pserialize_not_in_read_section());
297 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
298 1.2 ad }
299 1.2 ad
300 1.2 ad /*
301 1.2 ad * We play a slight trick here. If we're a reader, we want
302 1.2 ad * increment the read count. If we're a writer, we want to
303 1.43 ozaki * set the owner field and the WRITE_LOCKED bit.
304 1.2 ad *
305 1.2 ad * In the latter case, we expect those bits to be zero,
306 1.2 ad * therefore we can use an add operation to set them, which
307 1.2 ad * means an add operation for both cases.
308 1.2 ad */
309 1.2 ad if (__predict_true(op == RW_READER)) {
310 1.2 ad incr = RW_READ_INCR;
311 1.2 ad set_wait = RW_HAS_WAITERS;
312 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
313 1.2 ad queue = TS_READER_Q;
314 1.2 ad } else {
315 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
316 1.2 ad incr = curthread | RW_WRITE_LOCKED;
317 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
318 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
319 1.2 ad queue = TS_WRITER_Q;
320 1.2 ad }
321 1.2 ad
322 1.2 ad LOCKSTAT_ENTER(lsflag);
323 1.2 ad
324 1.37 rmind KPREEMPT_DISABLE(curlwp);
325 1.55 ad for (owner = rw->rw_owner;;) {
326 1.2 ad /*
327 1.2 ad * Read the lock owner field. If the need-to-wait
328 1.2 ad * indicator is clear, then try to acquire the lock.
329 1.2 ad */
330 1.2 ad if ((owner & need_wait) == 0) {
331 1.20 ad next = rw_cas(rw, owner, (owner + incr) &
332 1.20 ad ~RW_WRITE_WANTED);
333 1.20 ad if (__predict_true(next == owner)) {
334 1.2 ad /* Got it! */
335 1.70 riastrad membar_acquire();
336 1.2 ad break;
337 1.2 ad }
338 1.2 ad
339 1.2 ad /*
340 1.2 ad * Didn't get it -- spin around again (we'll
341 1.2 ad * probably sleep on the next iteration).
342 1.2 ad */
343 1.20 ad owner = next;
344 1.2 ad continue;
345 1.2 ad }
346 1.37 rmind if (__predict_false(RW_OWNER(rw) == curthread)) {
347 1.46 christos rw_abort(__func__, __LINE__, rw,
348 1.46 christos "locking against myself");
349 1.37 rmind }
350 1.19 ad /*
351 1.19 ad * If the lock owner is running on another CPU, and
352 1.19 ad * there are no existing waiters, then spin.
353 1.19 ad */
354 1.37 rmind if (rw_oncpu(owner)) {
355 1.19 ad LOCKSTAT_START_TIMER(lsflag, spintime);
356 1.19 ad u_int count = SPINLOCK_BACKOFF_MIN;
357 1.20 ad do {
358 1.38 rmind KPREEMPT_ENABLE(curlwp);
359 1.20 ad SPINLOCK_BACKOFF(count);
360 1.38 rmind KPREEMPT_DISABLE(curlwp);
361 1.19 ad owner = rw->rw_owner;
362 1.37 rmind } while (rw_oncpu(owner));
363 1.19 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
364 1.19 ad LOCKSTAT_COUNT(spincnt, 1);
365 1.19 ad if ((owner & need_wait) == 0)
366 1.19 ad continue;
367 1.19 ad }
368 1.19 ad
369 1.2 ad /*
370 1.2 ad * Grab the turnstile chain lock. Once we have that, we
371 1.2 ad * can adjust the waiter bits and sleep queue.
372 1.2 ad */
373 1.2 ad ts = turnstile_lookup(rw);
374 1.2 ad
375 1.2 ad /*
376 1.2 ad * Mark the rwlock as having waiters. If the set fails,
377 1.2 ad * then we may not need to sleep and should spin again.
378 1.20 ad * Reload rw_owner because turnstile_lookup() may have
379 1.20 ad * spun on the turnstile chain lock.
380 1.2 ad */
381 1.20 ad owner = rw->rw_owner;
382 1.37 rmind if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
383 1.20 ad turnstile_exit(rw);
384 1.20 ad continue;
385 1.20 ad }
386 1.20 ad next = rw_cas(rw, owner, owner | set_wait);
387 1.66 riastrad /* XXX membar? */
388 1.20 ad if (__predict_false(next != owner)) {
389 1.2 ad turnstile_exit(rw);
390 1.20 ad owner = next;
391 1.2 ad continue;
392 1.2 ad }
393 1.2 ad
394 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
395 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
396 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
397 1.20 ad LOCKSTAT_COUNT(slpcnt, 1);
398 1.2 ad
399 1.20 ad /*
400 1.20 ad * No need for a memory barrier because of context switch.
401 1.20 ad * If not handed the lock, then spin again.
402 1.20 ad */
403 1.58 ad if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
404 1.20 ad break;
405 1.58 ad
406 1.39 yamt owner = rw->rw_owner;
407 1.2 ad }
408 1.37 rmind KPREEMPT_ENABLE(curlwp);
409 1.2 ad
410 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
411 1.60 ad (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
412 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
413 1.60 ad (uintptr_t)__builtin_return_address(0)));
414 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
415 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
416 1.60 ad (uintptr_t)__builtin_return_address(0)));
417 1.2 ad LOCKSTAT_EXIT(lsflag);
418 1.2 ad
419 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
420 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
421 1.2 ad RW_LOCKED(rw, op);
422 1.2 ad }
423 1.2 ad
424 1.2 ad /*
425 1.2 ad * rw_vector_exit:
426 1.2 ad *
427 1.2 ad * Release a rwlock.
428 1.2 ad */
429 1.2 ad void
430 1.2 ad rw_vector_exit(krwlock_t *rw)
431 1.2 ad {
432 1.44 matt uintptr_t curthread, owner, decr, newown, next;
433 1.2 ad turnstile_t *ts;
434 1.2 ad int rcnt, wcnt;
435 1.7 ad lwp_t *l;
436 1.2 ad
437 1.61 ad l = curlwp;
438 1.61 ad curthread = (uintptr_t)l;
439 1.2 ad RW_ASSERT(rw, curthread != 0);
440 1.2 ad
441 1.2 ad /*
442 1.2 ad * Again, we use a trick. Since we used an add operation to
443 1.2 ad * set the required lock bits, we can use a subtract to clear
444 1.2 ad * them, which makes the read-release and write-release path
445 1.2 ad * the same.
446 1.2 ad */
447 1.2 ad owner = rw->rw_owner;
448 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
449 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
450 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
451 1.2 ad decr = curthread | RW_WRITE_LOCKED;
452 1.2 ad } else {
453 1.2 ad RW_UNLOCKED(rw, RW_READER);
454 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
455 1.2 ad decr = RW_READ_INCR;
456 1.2 ad }
457 1.2 ad
458 1.2 ad /*
459 1.2 ad * Compute what we expect the new value of the lock to be. Only
460 1.2 ad * proceed to do direct handoff if there are waiters, and if the
461 1.2 ad * lock would become unowned.
462 1.2 ad */
463 1.70 riastrad membar_release();
464 1.58 ad for (;;) {
465 1.44 matt newown = (owner - decr);
466 1.44 matt if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
467 1.2 ad break;
468 1.44 matt next = rw_cas(rw, owner, newown);
469 1.20 ad if (__predict_true(next == owner))
470 1.2 ad return;
471 1.58 ad owner = next;
472 1.2 ad }
473 1.2 ad
474 1.20 ad /*
475 1.20 ad * Grab the turnstile chain lock. This gets the interlock
476 1.20 ad * on the sleep queue. Once we have that, we can adjust the
477 1.20 ad * waiter bits.
478 1.20 ad */
479 1.20 ad ts = turnstile_lookup(rw);
480 1.20 ad owner = rw->rw_owner;
481 1.61 ad RW_ASSERT(rw, ts != NULL);
482 1.61 ad RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
483 1.2 ad
484 1.20 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
485 1.20 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
486 1.2 ad
487 1.20 ad /*
488 1.20 ad * Give the lock away.
489 1.20 ad *
490 1.20 ad * If we are releasing a write lock, then prefer to wake all
491 1.20 ad * outstanding readers. Otherwise, wake one writer if there
492 1.20 ad * are outstanding readers, or all writers if there are no
493 1.20 ad * pending readers. If waking one specific writer, the writer
494 1.20 ad * is handed the lock here. If waking multiple writers, we
495 1.20 ad * set WRITE_WANTED to block out new readers, and let them
496 1.41 skrll * do the work of acquiring the lock in rw_vector_enter().
497 1.20 ad */
498 1.32 yamt if (rcnt == 0 || decr == RW_READ_INCR) {
499 1.61 ad RW_ASSERT(rw, wcnt != 0);
500 1.61 ad RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
501 1.2 ad
502 1.20 ad if (rcnt != 0) {
503 1.20 ad /* Give the lock to the longest waiting writer. */
504 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
505 1.61 ad newown = (uintptr_t)l | (owner & RW_NODEBUG);
506 1.61 ad newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
507 1.28 thorpej if (wcnt > 1)
508 1.44 matt newown |= RW_WRITE_WANTED;
509 1.44 matt rw_swap(rw, owner, newown);
510 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
511 1.2 ad } else {
512 1.20 ad /* Wake all writers and let them fight it out. */
513 1.61 ad newown = owner & RW_NODEBUG;
514 1.61 ad newown |= RW_WRITE_WANTED;
515 1.61 ad rw_swap(rw, owner, newown);
516 1.20 ad turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
517 1.20 ad }
518 1.20 ad } else {
519 1.61 ad RW_ASSERT(rw, rcnt != 0);
520 1.2 ad
521 1.20 ad /*
522 1.20 ad * Give the lock to all blocked readers. If there
523 1.20 ad * is a writer waiting, new readers that arrive
524 1.20 ad * after the release will be blocked out.
525 1.20 ad */
526 1.61 ad newown = owner & RW_NODEBUG;
527 1.61 ad newown += rcnt << RW_READ_COUNT_SHIFT;
528 1.20 ad if (wcnt != 0)
529 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
530 1.12 yamt
531 1.20 ad /* Wake up all sleeping readers. */
532 1.44 matt rw_swap(rw, owner, newown);
533 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
534 1.2 ad }
535 1.2 ad }
536 1.2 ad
537 1.2 ad /*
538 1.16 ad * rw_vector_tryenter:
539 1.2 ad *
540 1.2 ad * Try to acquire a rwlock.
541 1.2 ad */
542 1.2 ad int
543 1.16 ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
544 1.2 ad {
545 1.20 ad uintptr_t curthread, owner, incr, need_wait, next;
546 1.61 ad lwp_t *l;
547 1.2 ad
548 1.61 ad l = curlwp;
549 1.61 ad curthread = (uintptr_t)l;
550 1.2 ad
551 1.2 ad RW_ASSERT(rw, curthread != 0);
552 1.2 ad
553 1.2 ad if (op == RW_READER) {
554 1.2 ad incr = RW_READ_INCR;
555 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
556 1.2 ad } else {
557 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
558 1.2 ad incr = curthread | RW_WRITE_LOCKED;
559 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
560 1.2 ad }
561 1.2 ad
562 1.58 ad for (owner = rw->rw_owner;; owner = next) {
563 1.58 ad if (__predict_false((owner & need_wait) != 0))
564 1.58 ad return 0;
565 1.20 ad next = rw_cas(rw, owner, owner + incr);
566 1.20 ad if (__predict_true(next == owner)) {
567 1.20 ad /* Got it! */
568 1.20 ad break;
569 1.2 ad }
570 1.2 ad }
571 1.2 ad
572 1.40 mlelstv RW_WANTLOCK(rw, op);
573 1.2 ad RW_LOCKED(rw, op);
574 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
575 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
576 1.7 ad
577 1.70 riastrad membar_acquire();
578 1.2 ad return 1;
579 1.2 ad }
580 1.2 ad
581 1.2 ad /*
582 1.2 ad * rw_downgrade:
583 1.2 ad *
584 1.61 ad * Downgrade a write lock to a read lock.
585 1.2 ad */
586 1.2 ad void
587 1.2 ad rw_downgrade(krwlock_t *rw)
588 1.2 ad {
589 1.72 ad uintptr_t owner, newown, next, curthread __diagused;
590 1.2 ad turnstile_t *ts;
591 1.2 ad int rcnt, wcnt;
592 1.61 ad lwp_t *l;
593 1.2 ad
594 1.61 ad l = curlwp;
595 1.61 ad curthread = (uintptr_t)l;
596 1.2 ad RW_ASSERT(rw, curthread != 0);
597 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
598 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
599 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
600 1.42 mrg
601 1.70 riastrad membar_release();
602 1.61 ad for (owner = rw->rw_owner;; owner = next) {
603 1.61 ad /*
604 1.61 ad * If there are no waiters we can do this the easy way. Try
605 1.61 ad * swapping us down to one read hold. If it fails, the lock
606 1.61 ad * condition has changed and we most likely now have
607 1.61 ad * waiters.
608 1.61 ad */
609 1.61 ad if ((owner & RW_HAS_WAITERS) == 0) {
610 1.61 ad newown = (owner & RW_NODEBUG);
611 1.61 ad next = rw_cas(rw, owner, newown + RW_READ_INCR);
612 1.61 ad if (__predict_true(next == owner)) {
613 1.61 ad RW_LOCKED(rw, RW_READER);
614 1.61 ad RW_ASSERT(rw,
615 1.61 ad (rw->rw_owner & RW_WRITE_LOCKED) == 0);
616 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
617 1.61 ad return;
618 1.61 ad }
619 1.61 ad continue;
620 1.61 ad }
621 1.61 ad
622 1.61 ad /*
623 1.61 ad * Grab the turnstile chain lock. This gets the interlock
624 1.61 ad * on the sleep queue. Once we have that, we can adjust the
625 1.61 ad * waiter bits.
626 1.61 ad */
627 1.2 ad ts = turnstile_lookup(rw);
628 1.61 ad RW_ASSERT(rw, ts != NULL);
629 1.2 ad
630 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
631 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
632 1.2 ad
633 1.2 ad if (rcnt == 0) {
634 1.61 ad /*
635 1.61 ad * If there are no readers, just preserve the
636 1.61 ad * waiters bits, swap us down to one read hold and
637 1.61 ad * return.
638 1.61 ad */
639 1.61 ad RW_ASSERT(rw, wcnt != 0);
640 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
641 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
642 1.61 ad
643 1.61 ad newown = owner & RW_NODEBUG;
644 1.62 ad newown |= RW_READ_INCR | RW_HAS_WAITERS |
645 1.61 ad RW_WRITE_WANTED;
646 1.44 matt next = rw_cas(rw, owner, newown);
647 1.27 rmind turnstile_exit(rw);
648 1.20 ad if (__predict_true(next == owner))
649 1.20 ad break;
650 1.20 ad } else {
651 1.20 ad /*
652 1.20 ad * Give the lock to all blocked readers. We may
653 1.61 ad * retain one read hold if downgrading. If there is
654 1.61 ad * a writer waiting, new readers will be blocked
655 1.20 ad * out.
656 1.20 ad */
657 1.61 ad newown = owner & RW_NODEBUG;
658 1.61 ad newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
659 1.20 ad if (wcnt != 0)
660 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
661 1.20 ad
662 1.44 matt next = rw_cas(rw, owner, newown);
663 1.20 ad if (__predict_true(next == owner)) {
664 1.20 ad /* Wake up all sleeping readers. */
665 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
666 1.20 ad break;
667 1.2 ad }
668 1.27 rmind turnstile_exit(rw);
669 1.2 ad }
670 1.2 ad }
671 1.2 ad
672 1.40 mlelstv RW_WANTLOCK(rw, RW_READER);
673 1.2 ad RW_LOCKED(rw, RW_READER);
674 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
675 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
676 1.2 ad }
677 1.2 ad
678 1.2 ad /*
679 1.2 ad * rw_tryupgrade:
680 1.2 ad *
681 1.55 ad * Try to upgrade a read lock to a write lock. We must be the only
682 1.61 ad * reader.
683 1.2 ad */
684 1.2 ad int
685 1.2 ad rw_tryupgrade(krwlock_t *rw)
686 1.2 ad {
687 1.44 matt uintptr_t owner, curthread, newown, next;
688 1.61 ad struct lwp *l;
689 1.2 ad
690 1.61 ad l = curlwp;
691 1.61 ad curthread = (uintptr_t)l;
692 1.2 ad RW_ASSERT(rw, curthread != 0);
693 1.31 yamt RW_ASSERT(rw, rw_read_held(rw));
694 1.2 ad
695 1.55 ad for (owner = RW_READ_INCR;; owner = next) {
696 1.44 matt newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
697 1.44 matt next = rw_cas(rw, owner, newown);
698 1.30 ad if (__predict_true(next == owner)) {
699 1.70 riastrad membar_acquire();
700 1.2 ad break;
701 1.30 ad }
702 1.55 ad RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
703 1.55 ad if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
704 1.55 ad RW_ASSERT(rw, (next & RW_THREAD) != 0);
705 1.55 ad return 0;
706 1.55 ad }
707 1.2 ad }
708 1.2 ad
709 1.2 ad RW_UNLOCKED(rw, RW_READER);
710 1.40 mlelstv RW_WANTLOCK(rw, RW_WRITER);
711 1.2 ad RW_LOCKED(rw, RW_WRITER);
712 1.61 ad RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
713 1.61 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
714 1.2 ad
715 1.2 ad return 1;
716 1.2 ad }
717 1.2 ad
718 1.2 ad /*
719 1.2 ad * rw_read_held:
720 1.2 ad *
721 1.2 ad * Returns true if the rwlock is held for reading. Must only be
722 1.2 ad * used for diagnostic assertions, and never be used to make
723 1.2 ad * decisions about how to use a rwlock.
724 1.2 ad */
725 1.2 ad int
726 1.2 ad rw_read_held(krwlock_t *rw)
727 1.2 ad {
728 1.2 ad uintptr_t owner;
729 1.2 ad
730 1.21 ad if (rw == NULL)
731 1.21 ad return 0;
732 1.2 ad owner = rw->rw_owner;
733 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
734 1.2 ad }
735 1.2 ad
736 1.2 ad /*
737 1.2 ad * rw_write_held:
738 1.2 ad *
739 1.2 ad * Returns true if the rwlock is held for writing. Must only be
740 1.2 ad * used for diagnostic assertions, and never be used to make
741 1.2 ad * decisions about how to use a rwlock.
742 1.2 ad */
743 1.2 ad int
744 1.2 ad rw_write_held(krwlock_t *rw)
745 1.2 ad {
746 1.2 ad
747 1.21 ad if (rw == NULL)
748 1.21 ad return 0;
749 1.17 ad return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
750 1.18 ad (RW_WRITE_LOCKED | (uintptr_t)curlwp);
751 1.2 ad }
752 1.2 ad
753 1.2 ad /*
754 1.2 ad * rw_lock_held:
755 1.2 ad *
756 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
757 1.2 ad * only be used for diagnostic assertions, and never be used to make
758 1.2 ad * decisions about how to use a rwlock.
759 1.2 ad */
760 1.2 ad int
761 1.2 ad rw_lock_held(krwlock_t *rw)
762 1.2 ad {
763 1.2 ad
764 1.21 ad if (rw == NULL)
765 1.21 ad return 0;
766 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
767 1.2 ad }
768 1.4 yamt
769 1.5 ad /*
770 1.65 ad * rw_lock_op:
771 1.65 ad *
772 1.65 ad * For a rwlock that is known to be held by the caller, return
773 1.65 ad * RW_READER or RW_WRITER to describe the hold type.
774 1.65 ad */
775 1.65 ad krw_t
776 1.65 ad rw_lock_op(krwlock_t *rw)
777 1.65 ad {
778 1.65 ad
779 1.65 ad RW_ASSERT(rw, rw_lock_held(rw));
780 1.65 ad
781 1.65 ad return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
782 1.65 ad }
783 1.65 ad
784 1.65 ad /*
785 1.5 ad * rw_owner:
786 1.5 ad *
787 1.5 ad * Return the current owner of an RW lock, but only if it is write
788 1.5 ad * held. Used for priority inheritance.
789 1.5 ad */
790 1.7 ad static lwp_t *
791 1.4 yamt rw_owner(wchan_t obj)
792 1.4 yamt {
793 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
794 1.4 yamt uintptr_t owner = rw->rw_owner;
795 1.4 yamt
796 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
797 1.4 yamt return NULL;
798 1.4 yamt
799 1.4 yamt return (void *)(owner & RW_THREAD);
800 1.4 yamt }
801