Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.72
      1  1.72        ad /*	$NetBSD: kern_rwlock.c,v 1.72 2023/09/07 20:05:42 ad Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.60        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
      5  1.60        ad  *     The NetBSD Foundation, Inc.
      6   1.2        ad  * All rights reserved.
      7   1.2        ad  *
      8   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      9   1.2        ad  * by Jason R. Thorpe and Andrew Doran.
     10   1.2        ad  *
     11   1.2        ad  * Redistribution and use in source and binary forms, with or without
     12   1.2        ad  * modification, are permitted provided that the following conditions
     13   1.2        ad  * are met:
     14   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     15   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     16   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     18   1.2        ad  *    documentation and/or other materials provided with the distribution.
     19   1.2        ad  *
     20   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     31   1.2        ad  */
     32   1.2        ad 
     33   1.2        ad /*
     34   1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     35   1.2        ad  * found in Solaris, a description of which can be found in:
     36   1.2        ad  *
     37   1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38   1.2        ad  *	    Richard McDougall.
     39  1.64        ad  *
     40  1.64        ad  * The NetBSD implementation differs from that described in the book, in
     41  1.64        ad  * that the locks are partially adaptive.  Lock waiters spin wait while a
     42  1.64        ad  * lock is write held and the holder is still running on a CPU.  The method
     43  1.64        ad  * of choosing which threads to awaken when a lock is released also differs,
     44  1.64        ad  * mainly to take account of the partially adaptive behaviour.
     45   1.2        ad  */
     46   1.2        ad 
     47  1.10       dsl #include <sys/cdefs.h>
     48  1.72        ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.72 2023/09/07 20:05:42 ad Exp $");
     49  1.61        ad 
     50  1.61        ad #include "opt_lockdebug.h"
     51   1.2        ad 
     52   1.2        ad #define	__RWLOCK_PRIVATE
     53   1.2        ad 
     54   1.2        ad #include <sys/param.h>
     55   1.2        ad #include <sys/proc.h>
     56   1.2        ad #include <sys/rwlock.h>
     57   1.2        ad #include <sys/sched.h>
     58   1.2        ad #include <sys/sleepq.h>
     59   1.2        ad #include <sys/systm.h>
     60   1.2        ad #include <sys/lockdebug.h>
     61  1.11        ad #include <sys/cpu.h>
     62  1.14        ad #include <sys/atomic.h>
     63  1.15        ad #include <sys/lock.h>
     64  1.51     ozaki #include <sys/pserialize.h>
     65   1.2        ad 
     66   1.2        ad #include <dev/lockstat.h>
     67   1.2        ad 
     68  1.56  riastrad #include <machine/rwlock.h>
     69  1.56  riastrad 
     70   1.2        ad /*
     71   1.2        ad  * LOCKDEBUG
     72   1.2        ad  */
     73   1.2        ad 
     74  1.61        ad #define	RW_DEBUG_P(rw)		(((rw)->rw_owner & RW_NODEBUG) == 0)
     75   1.2        ad 
     76  1.61        ad #define	RW_WANTLOCK(rw, op) \
     77  1.61        ad     LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
     78  1.61        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     79  1.61        ad #define	RW_LOCKED(rw, op) \
     80  1.61        ad     LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
     81  1.61        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     82  1.61        ad #define	RW_UNLOCKED(rw, op) \
     83  1.61        ad     LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
     84  1.61        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     85   1.2        ad 
     86   1.2        ad /*
     87   1.2        ad  * DIAGNOSTIC
     88   1.2        ad  */
     89   1.2        ad 
     90   1.2        ad #if defined(DIAGNOSTIC)
     91  1.61        ad #define	RW_ASSERT(rw, cond) \
     92  1.61        ad do { \
     93  1.61        ad 	if (__predict_false(!(cond))) \
     94  1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     95   1.2        ad } while (/* CONSTCOND */ 0)
     96   1.2        ad #else
     97   1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
     98   1.2        ad #endif	/* DIAGNOSTIC */
     99   1.2        ad 
    100  1.55        ad /*
    101   1.2        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    102   1.2        ad  */
    103   1.2        ad #ifdef LOCKDEBUG
    104   1.2        ad #undef	__HAVE_RW_STUBS
    105   1.2        ad #endif
    106   1.2        ad 
    107   1.2        ad #ifndef __HAVE_RW_STUBS
    108   1.6     itohy __strong_alias(rw_enter,rw_vector_enter);
    109   1.6     itohy __strong_alias(rw_exit,rw_vector_exit);
    110  1.16        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    111   1.2        ad #endif
    112   1.2        ad 
    113  1.61        ad static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    114  1.61        ad static void	rw_dump(const volatile void *, lockop_printer_t);
    115  1.61        ad static lwp_t	*rw_owner(wchan_t);
    116  1.61        ad 
    117   1.2        ad lockops_t rwlock_lockops = {
    118  1.48     ozaki 	.lo_name = "Reader / writer lock",
    119  1.48     ozaki 	.lo_type = LOCKOPS_SLEEP,
    120  1.48     ozaki 	.lo_dump = rw_dump,
    121   1.2        ad };
    122   1.2        ad 
    123   1.4      yamt syncobj_t rw_syncobj = {
    124  1.71  riastrad 	.sobj_name	= "rw",
    125  1.49     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    126  1.49     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    127  1.49     ozaki 	.sobj_changepri	= turnstile_changepri,
    128  1.49     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    129  1.49     ozaki 	.sobj_owner	= rw_owner,
    130   1.4      yamt };
    131   1.4      yamt 
    132   1.2        ad /*
    133  1.61        ad  * rw_cas:
    134  1.61        ad  *
    135  1.61        ad  *	Do an atomic compare-and-swap on the lock word.
    136  1.61        ad  */
    137  1.61        ad static inline uintptr_t
    138  1.61        ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    139  1.61        ad {
    140  1.61        ad 
    141  1.61        ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    142  1.61        ad 	    (void *)o, (void *)n);
    143  1.61        ad }
    144  1.61        ad 
    145  1.61        ad /*
    146  1.61        ad  * rw_swap:
    147  1.61        ad  *
    148  1.61        ad  *	Do an atomic swap of the lock word.  This is used only when it's
    149  1.61        ad  *	known that the lock word is set up such that it can't be changed
    150  1.61        ad  *	behind us (assert this), so there's no point considering the result.
    151  1.61        ad  */
    152  1.61        ad static inline void
    153  1.61        ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    154  1.61        ad {
    155  1.61        ad 
    156  1.61        ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    157  1.61        ad 	    (void *)n);
    158  1.61        ad 
    159  1.61        ad 	RW_ASSERT(rw, n == o);
    160  1.61        ad 	RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
    161  1.61        ad }
    162  1.61        ad 
    163  1.61        ad /*
    164   1.2        ad  * rw_dump:
    165   1.2        ad  *
    166   1.2        ad  *	Dump the contents of a rwlock structure.
    167   1.2        ad  */
    168  1.11        ad static void
    169  1.54     ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
    170   1.2        ad {
    171  1.47  christos 	const volatile krwlock_t *rw = cookie;
    172   1.2        ad 
    173  1.54     ozaki 	pr("owner/count  : %#018lx flags    : %#018x\n",
    174   1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    175   1.2        ad }
    176   1.2        ad 
    177   1.2        ad /*
    178  1.11        ad  * rw_abort:
    179  1.11        ad  *
    180  1.11        ad  *	Dump information about an error and panic the system.  This
    181  1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    182  1.11        ad  *	we ask the compiler to not inline it.
    183  1.11        ad  */
    184  1.26        ad static void __noinline
    185  1.46  christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    186  1.11        ad {
    187  1.11        ad 
    188  1.67     ozaki 	if (__predict_false(panicstr != NULL))
    189  1.11        ad 		return;
    190  1.11        ad 
    191  1.46  christos 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    192  1.11        ad }
    193  1.11        ad 
    194  1.11        ad /*
    195   1.2        ad  * rw_init:
    196   1.2        ad  *
    197   1.2        ad  *	Initialize a rwlock for use.
    198   1.2        ad  */
    199   1.2        ad void
    200  1.50     ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
    201   1.2        ad {
    202   1.2        ad 
    203  1.62        ad #ifdef LOCKDEBUG
    204  1.62        ad 	/* XXX only because the assembly stubs can't handle RW_NODEBUG */
    205  1.61        ad 	if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
    206  1.61        ad 		rw->rw_owner = 0;
    207  1.61        ad 	else
    208  1.61        ad 		rw->rw_owner = RW_NODEBUG;
    209  1.62        ad #else
    210  1.62        ad 	rw->rw_owner = 0;
    211  1.62        ad #endif
    212   1.2        ad }
    213   1.2        ad 
    214  1.50     ozaki void
    215  1.50     ozaki rw_init(krwlock_t *rw)
    216  1.50     ozaki {
    217  1.50     ozaki 
    218  1.50     ozaki 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    219  1.50     ozaki }
    220  1.50     ozaki 
    221   1.2        ad /*
    222   1.2        ad  * rw_destroy:
    223   1.2        ad  *
    224   1.2        ad  *	Tear down a rwlock.
    225   1.2        ad  */
    226   1.2        ad void
    227   1.2        ad rw_destroy(krwlock_t *rw)
    228   1.2        ad {
    229   1.2        ad 
    230  1.36     skrll 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    231  1.61        ad 	LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
    232   1.2        ad }
    233   1.2        ad 
    234   1.2        ad /*
    235  1.37     rmind  * rw_oncpu:
    236  1.20        ad  *
    237  1.20        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    238  1.20        ad  *	If the target is waiting on the kernel big lock, then we must
    239  1.20        ad  *	release it.  This is necessary to avoid deadlock.
    240  1.20        ad  */
    241  1.37     rmind static bool
    242  1.37     rmind rw_oncpu(uintptr_t owner)
    243  1.20        ad {
    244  1.20        ad #ifdef MULTIPROCESSOR
    245  1.20        ad 	struct cpu_info *ci;
    246  1.20        ad 	lwp_t *l;
    247  1.20        ad 
    248  1.37     rmind 	KASSERT(kpreempt_disabled());
    249  1.37     rmind 
    250  1.37     rmind 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    251  1.37     rmind 		return false;
    252  1.37     rmind 	}
    253  1.37     rmind 
    254  1.37     rmind 	/*
    255  1.37     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    256  1.37     rmind 	 * We must have kernel preemption disabled for that.
    257  1.37     rmind 	 */
    258  1.20        ad 	l = (lwp_t *)(owner & RW_THREAD);
    259  1.37     rmind 	ci = l->l_cpu;
    260  1.20        ad 
    261  1.37     rmind 	if (ci && ci->ci_curlwp == l) {
    262  1.37     rmind 		/* Target is running; do we need to block? */
    263  1.37     rmind 		return (ci->ci_biglock_wanted != l);
    264  1.37     rmind 	}
    265  1.37     rmind #endif
    266  1.37     rmind 	/* Not running.  It may be safe to block now. */
    267  1.37     rmind 	return false;
    268  1.20        ad }
    269  1.20        ad 
    270  1.20        ad /*
    271   1.2        ad  * rw_vector_enter:
    272   1.2        ad  *
    273   1.2        ad  *	Acquire a rwlock.
    274   1.2        ad  */
    275   1.2        ad void
    276   1.2        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    277   1.2        ad {
    278  1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    279   1.2        ad 	turnstile_t *ts;
    280   1.2        ad 	int queue;
    281   1.7        ad 	lwp_t *l;
    282   1.2        ad 	LOCKSTAT_TIMER(slptime);
    283  1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    284  1.19        ad 	LOCKSTAT_TIMER(spintime);
    285  1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    286   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    287   1.2        ad 
    288   1.2        ad 	l = curlwp;
    289   1.2        ad 	curthread = (uintptr_t)l;
    290   1.2        ad 
    291  1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    292   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    293  1.40   mlelstv 	RW_WANTLOCK(rw, op);
    294   1.2        ad 
    295  1.67     ozaki 	if (__predict_true(panicstr == NULL)) {
    296  1.53     ozaki 		KDASSERT(pserialize_not_in_read_section());
    297   1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    298   1.2        ad 	}
    299   1.2        ad 
    300   1.2        ad 	/*
    301   1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    302   1.2        ad 	 * increment the read count.  If we're a writer, we want to
    303  1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    304   1.2        ad 	 *
    305   1.2        ad 	 * In the latter case, we expect those bits to be zero,
    306   1.2        ad 	 * therefore we can use an add operation to set them, which
    307   1.2        ad 	 * means an add operation for both cases.
    308   1.2        ad 	 */
    309   1.2        ad 	if (__predict_true(op == RW_READER)) {
    310   1.2        ad 		incr = RW_READ_INCR;
    311   1.2        ad 		set_wait = RW_HAS_WAITERS;
    312   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    313   1.2        ad 		queue = TS_READER_Q;
    314   1.2        ad 	} else {
    315  1.61        ad 		RW_ASSERT(rw, op == RW_WRITER);
    316   1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    317   1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    318   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    319   1.2        ad 		queue = TS_WRITER_Q;
    320   1.2        ad 	}
    321   1.2        ad 
    322   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    323   1.2        ad 
    324  1.37     rmind 	KPREEMPT_DISABLE(curlwp);
    325  1.55        ad 	for (owner = rw->rw_owner;;) {
    326   1.2        ad 		/*
    327   1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    328   1.2        ad 		 * indicator is clear, then try to acquire the lock.
    329   1.2        ad 		 */
    330   1.2        ad 		if ((owner & need_wait) == 0) {
    331  1.20        ad 			next = rw_cas(rw, owner, (owner + incr) &
    332  1.20        ad 			    ~RW_WRITE_WANTED);
    333  1.20        ad 			if (__predict_true(next == owner)) {
    334   1.2        ad 				/* Got it! */
    335  1.70  riastrad 				membar_acquire();
    336   1.2        ad 				break;
    337   1.2        ad 			}
    338   1.2        ad 
    339   1.2        ad 			/*
    340   1.2        ad 			 * Didn't get it -- spin around again (we'll
    341   1.2        ad 			 * probably sleep on the next iteration).
    342   1.2        ad 			 */
    343  1.20        ad 			owner = next;
    344   1.2        ad 			continue;
    345   1.2        ad 		}
    346  1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    347  1.46  christos 			rw_abort(__func__, __LINE__, rw,
    348  1.46  christos 			    "locking against myself");
    349  1.37     rmind 		}
    350  1.19        ad 		/*
    351  1.19        ad 		 * If the lock owner is running on another CPU, and
    352  1.19        ad 		 * there are no existing waiters, then spin.
    353  1.19        ad 		 */
    354  1.37     rmind 		if (rw_oncpu(owner)) {
    355  1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    356  1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    357  1.20        ad 			do {
    358  1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    359  1.20        ad 				SPINLOCK_BACKOFF(count);
    360  1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    361  1.19        ad 				owner = rw->rw_owner;
    362  1.37     rmind 			} while (rw_oncpu(owner));
    363  1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    364  1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    365  1.19        ad 			if ((owner & need_wait) == 0)
    366  1.19        ad 				continue;
    367  1.19        ad 		}
    368  1.19        ad 
    369   1.2        ad 		/*
    370   1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    371   1.2        ad 		 * can adjust the waiter bits and sleep queue.
    372   1.2        ad 		 */
    373   1.2        ad 		ts = turnstile_lookup(rw);
    374   1.2        ad 
    375   1.2        ad 		/*
    376   1.2        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    377   1.2        ad 		 * then we may not need to sleep and should spin again.
    378  1.20        ad 		 * Reload rw_owner because turnstile_lookup() may have
    379  1.20        ad 		 * spun on the turnstile chain lock.
    380   1.2        ad 		 */
    381  1.20        ad 		owner = rw->rw_owner;
    382  1.37     rmind 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    383  1.20        ad 			turnstile_exit(rw);
    384  1.20        ad 			continue;
    385  1.20        ad 		}
    386  1.20        ad 		next = rw_cas(rw, owner, owner | set_wait);
    387  1.66  riastrad 		/* XXX membar? */
    388  1.20        ad 		if (__predict_false(next != owner)) {
    389   1.2        ad 			turnstile_exit(rw);
    390  1.20        ad 			owner = next;
    391   1.2        ad 			continue;
    392   1.2        ad 		}
    393   1.2        ad 
    394   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    395   1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    396   1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    397  1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    398   1.2        ad 
    399  1.20        ad 		/*
    400  1.20        ad 		 * No need for a memory barrier because of context switch.
    401  1.20        ad 		 * If not handed the lock, then spin again.
    402  1.20        ad 		 */
    403  1.58        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    404  1.20        ad 			break;
    405  1.58        ad 
    406  1.39      yamt 		owner = rw->rw_owner;
    407   1.2        ad 	}
    408  1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    409   1.2        ad 
    410  1.60        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
    411  1.60        ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
    412  1.60        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    413  1.60        ad 	      (uintptr_t)__builtin_return_address(0)));
    414  1.60        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
    415  1.60        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    416  1.60        ad 	      (uintptr_t)__builtin_return_address(0)));
    417   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    418   1.2        ad 
    419  1.61        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    420   1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    421   1.2        ad 	RW_LOCKED(rw, op);
    422   1.2        ad }
    423   1.2        ad 
    424   1.2        ad /*
    425   1.2        ad  * rw_vector_exit:
    426   1.2        ad  *
    427   1.2        ad  *	Release a rwlock.
    428   1.2        ad  */
    429   1.2        ad void
    430   1.2        ad rw_vector_exit(krwlock_t *rw)
    431   1.2        ad {
    432  1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    433   1.2        ad 	turnstile_t *ts;
    434   1.2        ad 	int rcnt, wcnt;
    435   1.7        ad 	lwp_t *l;
    436   1.2        ad 
    437  1.61        ad 	l = curlwp;
    438  1.61        ad 	curthread = (uintptr_t)l;
    439   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    440   1.2        ad 
    441   1.2        ad 	/*
    442   1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    443   1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    444   1.2        ad 	 * them, which makes the read-release and write-release path
    445   1.2        ad 	 * the same.
    446   1.2        ad 	 */
    447   1.2        ad 	owner = rw->rw_owner;
    448   1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    449   1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    450   1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    451   1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    452   1.2        ad 	} else {
    453   1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    454   1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    455   1.2        ad 		decr = RW_READ_INCR;
    456   1.2        ad 	}
    457   1.2        ad 
    458   1.2        ad 	/*
    459   1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    460   1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    461   1.2        ad 	 * lock would become unowned.
    462   1.2        ad 	 */
    463  1.70  riastrad 	membar_release();
    464  1.58        ad 	for (;;) {
    465  1.44      matt 		newown = (owner - decr);
    466  1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    467   1.2        ad 			break;
    468  1.44      matt 		next = rw_cas(rw, owner, newown);
    469  1.20        ad 		if (__predict_true(next == owner))
    470   1.2        ad 			return;
    471  1.58        ad 		owner = next;
    472   1.2        ad 	}
    473   1.2        ad 
    474  1.20        ad 	/*
    475  1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    476  1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    477  1.20        ad 	 * waiter bits.
    478  1.20        ad 	 */
    479  1.20        ad 	ts = turnstile_lookup(rw);
    480  1.20        ad 	owner = rw->rw_owner;
    481  1.61        ad 	RW_ASSERT(rw, ts != NULL);
    482  1.61        ad 	RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    483   1.2        ad 
    484  1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    485  1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    486   1.2        ad 
    487  1.20        ad 	/*
    488  1.20        ad 	 * Give the lock away.
    489  1.20        ad 	 *
    490  1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    491  1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    492  1.20        ad 	 * are outstanding readers, or all writers if there are no
    493  1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    494  1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    495  1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    496  1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    497  1.20        ad 	 */
    498  1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    499  1.61        ad 		RW_ASSERT(rw, wcnt != 0);
    500  1.61        ad 		RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    501   1.2        ad 
    502  1.20        ad 		if (rcnt != 0) {
    503  1.20        ad 			/* Give the lock to the longest waiting writer. */
    504   1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    505  1.61        ad 			newown = (uintptr_t)l | (owner & RW_NODEBUG);
    506  1.61        ad 			newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
    507  1.28   thorpej 			if (wcnt > 1)
    508  1.44      matt 				newown |= RW_WRITE_WANTED;
    509  1.44      matt 			rw_swap(rw, owner, newown);
    510   1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    511   1.2        ad 		} else {
    512  1.20        ad 			/* Wake all writers and let them fight it out. */
    513  1.61        ad 			newown = owner & RW_NODEBUG;
    514  1.61        ad 			newown |= RW_WRITE_WANTED;
    515  1.61        ad 			rw_swap(rw, owner, newown);
    516  1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    517  1.20        ad 		}
    518  1.20        ad 	} else {
    519  1.61        ad 		RW_ASSERT(rw, rcnt != 0);
    520   1.2        ad 
    521  1.20        ad 		/*
    522  1.20        ad 		 * Give the lock to all blocked readers.  If there
    523  1.20        ad 		 * is a writer waiting, new readers that arrive
    524  1.20        ad 		 * after the release will be blocked out.
    525  1.20        ad 		 */
    526  1.61        ad 		newown = owner & RW_NODEBUG;
    527  1.61        ad 		newown += rcnt << RW_READ_COUNT_SHIFT;
    528  1.20        ad 		if (wcnt != 0)
    529  1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    530  1.12      yamt 
    531  1.20        ad 		/* Wake up all sleeping readers. */
    532  1.44      matt 		rw_swap(rw, owner, newown);
    533  1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    534   1.2        ad 	}
    535   1.2        ad }
    536   1.2        ad 
    537   1.2        ad /*
    538  1.16        ad  * rw_vector_tryenter:
    539   1.2        ad  *
    540   1.2        ad  *	Try to acquire a rwlock.
    541   1.2        ad  */
    542   1.2        ad int
    543  1.16        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    544   1.2        ad {
    545  1.20        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    546  1.61        ad 	lwp_t *l;
    547   1.2        ad 
    548  1.61        ad 	l = curlwp;
    549  1.61        ad 	curthread = (uintptr_t)l;
    550   1.2        ad 
    551   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    552   1.2        ad 
    553   1.2        ad 	if (op == RW_READER) {
    554   1.2        ad 		incr = RW_READ_INCR;
    555   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    556   1.2        ad 	} else {
    557  1.61        ad 		RW_ASSERT(rw, op == RW_WRITER);
    558   1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    559   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    560   1.2        ad 	}
    561   1.2        ad 
    562  1.58        ad 	for (owner = rw->rw_owner;; owner = next) {
    563  1.58        ad 		if (__predict_false((owner & need_wait) != 0))
    564  1.58        ad 			return 0;
    565  1.20        ad 		next = rw_cas(rw, owner, owner + incr);
    566  1.20        ad 		if (__predict_true(next == owner)) {
    567  1.20        ad 			/* Got it! */
    568  1.20        ad 			break;
    569   1.2        ad 		}
    570   1.2        ad 	}
    571   1.2        ad 
    572  1.40   mlelstv 	RW_WANTLOCK(rw, op);
    573   1.2        ad 	RW_LOCKED(rw, op);
    574  1.61        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    575   1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    576   1.7        ad 
    577  1.70  riastrad 	membar_acquire();
    578   1.2        ad 	return 1;
    579   1.2        ad }
    580   1.2        ad 
    581   1.2        ad /*
    582   1.2        ad  * rw_downgrade:
    583   1.2        ad  *
    584  1.61        ad  *	Downgrade a write lock to a read lock.
    585   1.2        ad  */
    586   1.2        ad void
    587   1.2        ad rw_downgrade(krwlock_t *rw)
    588   1.2        ad {
    589  1.72        ad 	uintptr_t owner, newown, next, curthread __diagused;
    590   1.2        ad 	turnstile_t *ts;
    591   1.2        ad 	int rcnt, wcnt;
    592  1.61        ad 	lwp_t *l;
    593   1.2        ad 
    594  1.61        ad 	l = curlwp;
    595  1.61        ad 	curthread = (uintptr_t)l;
    596   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    597  1.61        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    598   1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    599   1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    600  1.42       mrg 
    601  1.70  riastrad 	membar_release();
    602  1.61        ad 	for (owner = rw->rw_owner;; owner = next) {
    603  1.61        ad 		/*
    604  1.61        ad 		 * If there are no waiters we can do this the easy way.  Try
    605  1.61        ad 		 * swapping us down to one read hold.  If it fails, the lock
    606  1.61        ad 		 * condition has changed and we most likely now have
    607  1.61        ad 		 * waiters.
    608  1.61        ad 		 */
    609  1.61        ad 		if ((owner & RW_HAS_WAITERS) == 0) {
    610  1.61        ad 			newown = (owner & RW_NODEBUG);
    611  1.61        ad 			next = rw_cas(rw, owner, newown + RW_READ_INCR);
    612  1.61        ad 			if (__predict_true(next == owner)) {
    613  1.61        ad 				RW_LOCKED(rw, RW_READER);
    614  1.61        ad 				RW_ASSERT(rw,
    615  1.61        ad 				    (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    616  1.61        ad 				RW_ASSERT(rw, RW_COUNT(rw) != 0);
    617  1.61        ad 				return;
    618  1.61        ad 			}
    619  1.61        ad 			continue;
    620  1.61        ad 		}
    621  1.61        ad 
    622  1.61        ad 		/*
    623  1.61        ad 		 * Grab the turnstile chain lock.  This gets the interlock
    624  1.61        ad 		 * on the sleep queue.  Once we have that, we can adjust the
    625  1.61        ad 		 * waiter bits.
    626  1.61        ad 		 */
    627   1.2        ad 		ts = turnstile_lookup(rw);
    628  1.61        ad 		RW_ASSERT(rw, ts != NULL);
    629   1.2        ad 
    630   1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    631   1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    632   1.2        ad 
    633   1.2        ad 		if (rcnt == 0) {
    634  1.61        ad 			/*
    635  1.61        ad 			 * If there are no readers, just preserve the
    636  1.61        ad 			 * waiters bits, swap us down to one read hold and
    637  1.61        ad 			 * return.
    638  1.61        ad 			 */
    639  1.61        ad 			RW_ASSERT(rw, wcnt != 0);
    640  1.61        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    641  1.61        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    642  1.61        ad 
    643  1.61        ad 			newown = owner & RW_NODEBUG;
    644  1.62        ad 			newown |= RW_READ_INCR | RW_HAS_WAITERS |
    645  1.61        ad 			    RW_WRITE_WANTED;
    646  1.44      matt 			next = rw_cas(rw, owner, newown);
    647  1.27     rmind 			turnstile_exit(rw);
    648  1.20        ad 			if (__predict_true(next == owner))
    649  1.20        ad 				break;
    650  1.20        ad 		} else {
    651  1.20        ad 			/*
    652  1.20        ad 			 * Give the lock to all blocked readers.  We may
    653  1.61        ad 			 * retain one read hold if downgrading.  If there is
    654  1.61        ad 			 * a writer waiting, new readers will be blocked
    655  1.20        ad 			 * out.
    656  1.20        ad 			 */
    657  1.61        ad 			newown = owner & RW_NODEBUG;
    658  1.61        ad 			newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    659  1.20        ad 			if (wcnt != 0)
    660  1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    661  1.20        ad 
    662  1.44      matt 			next = rw_cas(rw, owner, newown);
    663  1.20        ad 			if (__predict_true(next == owner)) {
    664  1.20        ad 				/* Wake up all sleeping readers. */
    665  1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    666  1.20        ad 				break;
    667   1.2        ad 			}
    668  1.27     rmind 			turnstile_exit(rw);
    669   1.2        ad 		}
    670   1.2        ad 	}
    671   1.2        ad 
    672  1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    673   1.2        ad 	RW_LOCKED(rw, RW_READER);
    674  1.61        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    675  1.61        ad 	RW_ASSERT(rw, RW_COUNT(rw) != 0);
    676   1.2        ad }
    677   1.2        ad 
    678   1.2        ad /*
    679   1.2        ad  * rw_tryupgrade:
    680   1.2        ad  *
    681  1.55        ad  *	Try to upgrade a read lock to a write lock.  We must be the only
    682  1.61        ad  *	reader.
    683   1.2        ad  */
    684   1.2        ad int
    685   1.2        ad rw_tryupgrade(krwlock_t *rw)
    686   1.2        ad {
    687  1.44      matt 	uintptr_t owner, curthread, newown, next;
    688  1.61        ad 	struct lwp *l;
    689   1.2        ad 
    690  1.61        ad 	l = curlwp;
    691  1.61        ad 	curthread = (uintptr_t)l;
    692   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    693  1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    694   1.2        ad 
    695  1.55        ad 	for (owner = RW_READ_INCR;; owner = next) {
    696  1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    697  1.44      matt 		next = rw_cas(rw, owner, newown);
    698  1.30        ad 		if (__predict_true(next == owner)) {
    699  1.70  riastrad 			membar_acquire();
    700   1.2        ad 			break;
    701  1.30        ad 		}
    702  1.55        ad 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    703  1.55        ad 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    704  1.55        ad 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    705  1.55        ad 			return 0;
    706  1.55        ad 		}
    707   1.2        ad 	}
    708   1.2        ad 
    709   1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    710  1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    711   1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    712  1.61        ad 	RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    713  1.61        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    714   1.2        ad 
    715   1.2        ad 	return 1;
    716   1.2        ad }
    717   1.2        ad 
    718   1.2        ad /*
    719   1.2        ad  * rw_read_held:
    720   1.2        ad  *
    721   1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    722   1.2        ad  *	used for diagnostic assertions, and never be used to make
    723   1.2        ad  * 	decisions about how to use a rwlock.
    724   1.2        ad  */
    725   1.2        ad int
    726   1.2        ad rw_read_held(krwlock_t *rw)
    727   1.2        ad {
    728   1.2        ad 	uintptr_t owner;
    729   1.2        ad 
    730  1.21        ad 	if (rw == NULL)
    731  1.21        ad 		return 0;
    732   1.2        ad 	owner = rw->rw_owner;
    733   1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    734   1.2        ad }
    735   1.2        ad 
    736   1.2        ad /*
    737   1.2        ad  * rw_write_held:
    738   1.2        ad  *
    739   1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    740   1.2        ad  *	used for diagnostic assertions, and never be used to make
    741   1.2        ad  *	decisions about how to use a rwlock.
    742   1.2        ad  */
    743   1.2        ad int
    744   1.2        ad rw_write_held(krwlock_t *rw)
    745   1.2        ad {
    746   1.2        ad 
    747  1.21        ad 	if (rw == NULL)
    748  1.21        ad 		return 0;
    749  1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    750  1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    751   1.2        ad }
    752   1.2        ad 
    753   1.2        ad /*
    754   1.2        ad  * rw_lock_held:
    755   1.2        ad  *
    756   1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    757   1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    758   1.2        ad  *	decisions about how to use a rwlock.
    759   1.2        ad  */
    760   1.2        ad int
    761   1.2        ad rw_lock_held(krwlock_t *rw)
    762   1.2        ad {
    763   1.2        ad 
    764  1.21        ad 	if (rw == NULL)
    765  1.21        ad 		return 0;
    766   1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    767   1.2        ad }
    768   1.4      yamt 
    769   1.5        ad /*
    770  1.65        ad  * rw_lock_op:
    771  1.65        ad  *
    772  1.65        ad  *	For a rwlock that is known to be held by the caller, return
    773  1.65        ad  *	RW_READER or RW_WRITER to describe the hold type.
    774  1.65        ad  */
    775  1.65        ad krw_t
    776  1.65        ad rw_lock_op(krwlock_t *rw)
    777  1.65        ad {
    778  1.65        ad 
    779  1.65        ad 	RW_ASSERT(rw, rw_lock_held(rw));
    780  1.65        ad 
    781  1.65        ad 	return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
    782  1.65        ad }
    783  1.65        ad 
    784  1.65        ad /*
    785   1.5        ad  * rw_owner:
    786   1.5        ad  *
    787   1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    788   1.5        ad  *	held.  Used for priority inheritance.
    789   1.5        ad  */
    790   1.7        ad static lwp_t *
    791   1.4      yamt rw_owner(wchan_t obj)
    792   1.4      yamt {
    793   1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    794   1.4      yamt 	uintptr_t owner = rw->rw_owner;
    795   1.4      yamt 
    796   1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    797   1.4      yamt 		return NULL;
    798   1.4      yamt 
    799   1.4      yamt 	return (void *)(owner & RW_THREAD);
    800   1.4      yamt }
    801