Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.73
      1  1.73        ad /*	$NetBSD: kern_rwlock.c,v 1.73 2023/09/23 18:48:04 ad Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.73        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  1.60        ad  *     The NetBSD Foundation, Inc.
      6   1.2        ad  * All rights reserved.
      7   1.2        ad  *
      8   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      9   1.2        ad  * by Jason R. Thorpe and Andrew Doran.
     10   1.2        ad  *
     11   1.2        ad  * Redistribution and use in source and binary forms, with or without
     12   1.2        ad  * modification, are permitted provided that the following conditions
     13   1.2        ad  * are met:
     14   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     15   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     16   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     18   1.2        ad  *    documentation and/or other materials provided with the distribution.
     19   1.2        ad  *
     20   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     31   1.2        ad  */
     32   1.2        ad 
     33   1.2        ad /*
     34   1.2        ad  * Kernel reader/writer lock implementation, modeled after those
     35   1.2        ad  * found in Solaris, a description of which can be found in:
     36   1.2        ad  *
     37   1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38   1.2        ad  *	    Richard McDougall.
     39  1.64        ad  *
     40  1.64        ad  * The NetBSD implementation differs from that described in the book, in
     41  1.64        ad  * that the locks are partially adaptive.  Lock waiters spin wait while a
     42  1.64        ad  * lock is write held and the holder is still running on a CPU.  The method
     43  1.64        ad  * of choosing which threads to awaken when a lock is released also differs,
     44  1.64        ad  * mainly to take account of the partially adaptive behaviour.
     45   1.2        ad  */
     46   1.2        ad 
     47  1.10       dsl #include <sys/cdefs.h>
     48  1.73        ad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.73 2023/09/23 18:48:04 ad Exp $");
     49  1.61        ad 
     50  1.61        ad #include "opt_lockdebug.h"
     51   1.2        ad 
     52   1.2        ad #define	__RWLOCK_PRIVATE
     53   1.2        ad 
     54   1.2        ad #include <sys/param.h>
     55   1.2        ad #include <sys/proc.h>
     56   1.2        ad #include <sys/rwlock.h>
     57   1.2        ad #include <sys/sched.h>
     58   1.2        ad #include <sys/sleepq.h>
     59   1.2        ad #include <sys/systm.h>
     60   1.2        ad #include <sys/lockdebug.h>
     61  1.11        ad #include <sys/cpu.h>
     62  1.14        ad #include <sys/atomic.h>
     63  1.15        ad #include <sys/lock.h>
     64  1.51     ozaki #include <sys/pserialize.h>
     65   1.2        ad 
     66   1.2        ad #include <dev/lockstat.h>
     67   1.2        ad 
     68  1.56  riastrad #include <machine/rwlock.h>
     69  1.56  riastrad 
     70   1.2        ad /*
     71   1.2        ad  * LOCKDEBUG
     72   1.2        ad  */
     73   1.2        ad 
     74  1.61        ad #define	RW_DEBUG_P(rw)		(((rw)->rw_owner & RW_NODEBUG) == 0)
     75   1.2        ad 
     76  1.61        ad #define	RW_WANTLOCK(rw, op) \
     77  1.61        ad     LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
     78  1.61        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     79  1.61        ad #define	RW_LOCKED(rw, op) \
     80  1.61        ad     LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
     81  1.61        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     82  1.61        ad #define	RW_UNLOCKED(rw, op) \
     83  1.61        ad     LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
     84  1.61        ad         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     85   1.2        ad 
     86   1.2        ad /*
     87   1.2        ad  * DIAGNOSTIC
     88   1.2        ad  */
     89   1.2        ad 
     90   1.2        ad #if defined(DIAGNOSTIC)
     91  1.61        ad #define	RW_ASSERT(rw, cond) \
     92  1.61        ad do { \
     93  1.61        ad 	if (__predict_false(!(cond))) \
     94  1.46  christos 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     95   1.2        ad } while (/* CONSTCOND */ 0)
     96   1.2        ad #else
     97   1.2        ad #define	RW_ASSERT(rw, cond)	/* nothing */
     98   1.2        ad #endif	/* DIAGNOSTIC */
     99   1.2        ad 
    100  1.55        ad /*
    101   1.2        ad  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    102   1.2        ad  */
    103   1.2        ad #ifdef LOCKDEBUG
    104   1.2        ad #undef	__HAVE_RW_STUBS
    105   1.2        ad #endif
    106   1.2        ad 
    107   1.2        ad #ifndef __HAVE_RW_STUBS
    108   1.6     itohy __strong_alias(rw_enter,rw_vector_enter);
    109   1.6     itohy __strong_alias(rw_exit,rw_vector_exit);
    110  1.16        ad __strong_alias(rw_tryenter,rw_vector_tryenter);
    111   1.2        ad #endif
    112   1.2        ad 
    113  1.61        ad static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    114  1.61        ad static void	rw_dump(const volatile void *, lockop_printer_t);
    115  1.61        ad static lwp_t	*rw_owner(wchan_t);
    116  1.61        ad 
    117   1.2        ad lockops_t rwlock_lockops = {
    118  1.48     ozaki 	.lo_name = "Reader / writer lock",
    119  1.48     ozaki 	.lo_type = LOCKOPS_SLEEP,
    120  1.48     ozaki 	.lo_dump = rw_dump,
    121   1.2        ad };
    122   1.2        ad 
    123  1.73        ad /*
    124  1.73        ad  * Give rwlock holders an extra-high priority boost on-blocking due to
    125  1.73        ad  * direct handoff.  XXX To be revisited.
    126  1.73        ad  */
    127   1.4      yamt syncobj_t rw_syncobj = {
    128  1.71  riastrad 	.sobj_name	= "rw",
    129  1.49     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    130  1.73        ad 	.sobj_boostpri  = PRI_KTHREAD,
    131  1.49     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    132  1.49     ozaki 	.sobj_changepri	= turnstile_changepri,
    133  1.49     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    134  1.49     ozaki 	.sobj_owner	= rw_owner,
    135   1.4      yamt };
    136   1.4      yamt 
    137   1.2        ad /*
    138  1.61        ad  * rw_cas:
    139  1.61        ad  *
    140  1.61        ad  *	Do an atomic compare-and-swap on the lock word.
    141  1.61        ad  */
    142  1.61        ad static inline uintptr_t
    143  1.61        ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    144  1.61        ad {
    145  1.61        ad 
    146  1.61        ad 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    147  1.61        ad 	    (void *)o, (void *)n);
    148  1.61        ad }
    149  1.61        ad 
    150  1.61        ad /*
    151  1.61        ad  * rw_swap:
    152  1.61        ad  *
    153  1.61        ad  *	Do an atomic swap of the lock word.  This is used only when it's
    154  1.61        ad  *	known that the lock word is set up such that it can't be changed
    155  1.61        ad  *	behind us (assert this), so there's no point considering the result.
    156  1.61        ad  */
    157  1.61        ad static inline void
    158  1.61        ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    159  1.61        ad {
    160  1.61        ad 
    161  1.61        ad 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    162  1.61        ad 	    (void *)n);
    163  1.61        ad 
    164  1.61        ad 	RW_ASSERT(rw, n == o);
    165  1.61        ad 	RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
    166  1.61        ad }
    167  1.61        ad 
    168  1.61        ad /*
    169   1.2        ad  * rw_dump:
    170   1.2        ad  *
    171   1.2        ad  *	Dump the contents of a rwlock structure.
    172   1.2        ad  */
    173  1.11        ad static void
    174  1.54     ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
    175   1.2        ad {
    176  1.47  christos 	const volatile krwlock_t *rw = cookie;
    177   1.2        ad 
    178  1.54     ozaki 	pr("owner/count  : %#018lx flags    : %#018x\n",
    179   1.2        ad 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    180   1.2        ad }
    181   1.2        ad 
    182   1.2        ad /*
    183  1.11        ad  * rw_abort:
    184  1.11        ad  *
    185  1.11        ad  *	Dump information about an error and panic the system.  This
    186  1.11        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    187  1.11        ad  *	we ask the compiler to not inline it.
    188  1.11        ad  */
    189  1.26        ad static void __noinline
    190  1.46  christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    191  1.11        ad {
    192  1.11        ad 
    193  1.67     ozaki 	if (__predict_false(panicstr != NULL))
    194  1.11        ad 		return;
    195  1.11        ad 
    196  1.46  christos 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    197  1.11        ad }
    198  1.11        ad 
    199  1.11        ad /*
    200   1.2        ad  * rw_init:
    201   1.2        ad  *
    202   1.2        ad  *	Initialize a rwlock for use.
    203   1.2        ad  */
    204   1.2        ad void
    205  1.50     ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
    206   1.2        ad {
    207   1.2        ad 
    208  1.62        ad #ifdef LOCKDEBUG
    209  1.62        ad 	/* XXX only because the assembly stubs can't handle RW_NODEBUG */
    210  1.61        ad 	if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
    211  1.61        ad 		rw->rw_owner = 0;
    212  1.61        ad 	else
    213  1.61        ad 		rw->rw_owner = RW_NODEBUG;
    214  1.62        ad #else
    215  1.62        ad 	rw->rw_owner = 0;
    216  1.62        ad #endif
    217   1.2        ad }
    218   1.2        ad 
    219  1.50     ozaki void
    220  1.50     ozaki rw_init(krwlock_t *rw)
    221  1.50     ozaki {
    222  1.50     ozaki 
    223  1.50     ozaki 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    224  1.50     ozaki }
    225  1.50     ozaki 
    226   1.2        ad /*
    227   1.2        ad  * rw_destroy:
    228   1.2        ad  *
    229   1.2        ad  *	Tear down a rwlock.
    230   1.2        ad  */
    231   1.2        ad void
    232   1.2        ad rw_destroy(krwlock_t *rw)
    233   1.2        ad {
    234   1.2        ad 
    235  1.36     skrll 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    236  1.61        ad 	LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
    237   1.2        ad }
    238   1.2        ad 
    239   1.2        ad /*
    240  1.37     rmind  * rw_oncpu:
    241  1.20        ad  *
    242  1.20        ad  *	Return true if an rwlock owner is running on a CPU in the system.
    243  1.20        ad  *	If the target is waiting on the kernel big lock, then we must
    244  1.20        ad  *	release it.  This is necessary to avoid deadlock.
    245  1.20        ad  */
    246  1.37     rmind static bool
    247  1.37     rmind rw_oncpu(uintptr_t owner)
    248  1.20        ad {
    249  1.20        ad #ifdef MULTIPROCESSOR
    250  1.20        ad 	struct cpu_info *ci;
    251  1.20        ad 	lwp_t *l;
    252  1.20        ad 
    253  1.37     rmind 	KASSERT(kpreempt_disabled());
    254  1.37     rmind 
    255  1.37     rmind 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    256  1.37     rmind 		return false;
    257  1.37     rmind 	}
    258  1.37     rmind 
    259  1.37     rmind 	/*
    260  1.37     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    261  1.37     rmind 	 * We must have kernel preemption disabled for that.
    262  1.37     rmind 	 */
    263  1.20        ad 	l = (lwp_t *)(owner & RW_THREAD);
    264  1.37     rmind 	ci = l->l_cpu;
    265  1.20        ad 
    266  1.37     rmind 	if (ci && ci->ci_curlwp == l) {
    267  1.37     rmind 		/* Target is running; do we need to block? */
    268  1.37     rmind 		return (ci->ci_biglock_wanted != l);
    269  1.37     rmind 	}
    270  1.37     rmind #endif
    271  1.37     rmind 	/* Not running.  It may be safe to block now. */
    272  1.37     rmind 	return false;
    273  1.20        ad }
    274  1.20        ad 
    275  1.20        ad /*
    276   1.2        ad  * rw_vector_enter:
    277   1.2        ad  *
    278   1.2        ad  *	Acquire a rwlock.
    279   1.2        ad  */
    280   1.2        ad void
    281   1.2        ad rw_vector_enter(krwlock_t *rw, const krw_t op)
    282   1.2        ad {
    283  1.20        ad 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    284   1.2        ad 	turnstile_t *ts;
    285   1.2        ad 	int queue;
    286   1.7        ad 	lwp_t *l;
    287   1.2        ad 	LOCKSTAT_TIMER(slptime);
    288  1.20        ad 	LOCKSTAT_TIMER(slpcnt);
    289  1.19        ad 	LOCKSTAT_TIMER(spintime);
    290  1.19        ad 	LOCKSTAT_COUNTER(spincnt);
    291   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    292   1.2        ad 
    293   1.2        ad 	l = curlwp;
    294   1.2        ad 	curthread = (uintptr_t)l;
    295   1.2        ad 
    296  1.13        ad 	RW_ASSERT(rw, !cpu_intr_p());
    297   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    298  1.40   mlelstv 	RW_WANTLOCK(rw, op);
    299   1.2        ad 
    300  1.67     ozaki 	if (__predict_true(panicstr == NULL)) {
    301  1.53     ozaki 		KDASSERT(pserialize_not_in_read_section());
    302   1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    303   1.2        ad 	}
    304   1.2        ad 
    305   1.2        ad 	/*
    306   1.2        ad 	 * We play a slight trick here.  If we're a reader, we want
    307   1.2        ad 	 * increment the read count.  If we're a writer, we want to
    308  1.43     ozaki 	 * set the owner field and the WRITE_LOCKED bit.
    309   1.2        ad 	 *
    310   1.2        ad 	 * In the latter case, we expect those bits to be zero,
    311   1.2        ad 	 * therefore we can use an add operation to set them, which
    312   1.2        ad 	 * means an add operation for both cases.
    313   1.2        ad 	 */
    314   1.2        ad 	if (__predict_true(op == RW_READER)) {
    315   1.2        ad 		incr = RW_READ_INCR;
    316   1.2        ad 		set_wait = RW_HAS_WAITERS;
    317   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    318   1.2        ad 		queue = TS_READER_Q;
    319   1.2        ad 	} else {
    320  1.61        ad 		RW_ASSERT(rw, op == RW_WRITER);
    321   1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    322   1.2        ad 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    323   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    324   1.2        ad 		queue = TS_WRITER_Q;
    325   1.2        ad 	}
    326   1.2        ad 
    327   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    328   1.2        ad 
    329  1.37     rmind 	KPREEMPT_DISABLE(curlwp);
    330  1.55        ad 	for (owner = rw->rw_owner;;) {
    331   1.2        ad 		/*
    332   1.2        ad 		 * Read the lock owner field.  If the need-to-wait
    333   1.2        ad 		 * indicator is clear, then try to acquire the lock.
    334   1.2        ad 		 */
    335   1.2        ad 		if ((owner & need_wait) == 0) {
    336  1.20        ad 			next = rw_cas(rw, owner, (owner + incr) &
    337  1.20        ad 			    ~RW_WRITE_WANTED);
    338  1.20        ad 			if (__predict_true(next == owner)) {
    339   1.2        ad 				/* Got it! */
    340  1.70  riastrad 				membar_acquire();
    341   1.2        ad 				break;
    342   1.2        ad 			}
    343   1.2        ad 
    344   1.2        ad 			/*
    345   1.2        ad 			 * Didn't get it -- spin around again (we'll
    346   1.2        ad 			 * probably sleep on the next iteration).
    347   1.2        ad 			 */
    348  1.20        ad 			owner = next;
    349   1.2        ad 			continue;
    350   1.2        ad 		}
    351  1.37     rmind 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    352  1.46  christos 			rw_abort(__func__, __LINE__, rw,
    353  1.46  christos 			    "locking against myself");
    354  1.37     rmind 		}
    355  1.19        ad 		/*
    356  1.19        ad 		 * If the lock owner is running on another CPU, and
    357  1.19        ad 		 * there are no existing waiters, then spin.
    358  1.19        ad 		 */
    359  1.37     rmind 		if (rw_oncpu(owner)) {
    360  1.19        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    361  1.19        ad 			u_int count = SPINLOCK_BACKOFF_MIN;
    362  1.20        ad 			do {
    363  1.38     rmind 				KPREEMPT_ENABLE(curlwp);
    364  1.20        ad 				SPINLOCK_BACKOFF(count);
    365  1.38     rmind 				KPREEMPT_DISABLE(curlwp);
    366  1.19        ad 				owner = rw->rw_owner;
    367  1.37     rmind 			} while (rw_oncpu(owner));
    368  1.19        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    369  1.19        ad 			LOCKSTAT_COUNT(spincnt, 1);
    370  1.19        ad 			if ((owner & need_wait) == 0)
    371  1.19        ad 				continue;
    372  1.19        ad 		}
    373  1.19        ad 
    374   1.2        ad 		/*
    375   1.2        ad 		 * Grab the turnstile chain lock.  Once we have that, we
    376   1.2        ad 		 * can adjust the waiter bits and sleep queue.
    377   1.2        ad 		 */
    378   1.2        ad 		ts = turnstile_lookup(rw);
    379   1.2        ad 
    380   1.2        ad 		/*
    381   1.2        ad 		 * Mark the rwlock as having waiters.  If the set fails,
    382   1.2        ad 		 * then we may not need to sleep and should spin again.
    383  1.20        ad 		 * Reload rw_owner because turnstile_lookup() may have
    384  1.20        ad 		 * spun on the turnstile chain lock.
    385   1.2        ad 		 */
    386  1.20        ad 		owner = rw->rw_owner;
    387  1.37     rmind 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    388  1.20        ad 			turnstile_exit(rw);
    389  1.20        ad 			continue;
    390  1.20        ad 		}
    391  1.20        ad 		next = rw_cas(rw, owner, owner | set_wait);
    392  1.66  riastrad 		/* XXX membar? */
    393  1.20        ad 		if (__predict_false(next != owner)) {
    394   1.2        ad 			turnstile_exit(rw);
    395  1.20        ad 			owner = next;
    396   1.2        ad 			continue;
    397   1.2        ad 		}
    398   1.2        ad 
    399   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    400   1.4      yamt 		turnstile_block(ts, queue, rw, &rw_syncobj);
    401   1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    402  1.20        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    403   1.2        ad 
    404  1.20        ad 		/*
    405  1.20        ad 		 * No need for a memory barrier because of context switch.
    406  1.20        ad 		 * If not handed the lock, then spin again.
    407  1.20        ad 		 */
    408  1.58        ad 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    409  1.20        ad 			break;
    410  1.58        ad 
    411  1.39      yamt 		owner = rw->rw_owner;
    412   1.2        ad 	}
    413  1.37     rmind 	KPREEMPT_ENABLE(curlwp);
    414   1.2        ad 
    415  1.60        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
    416  1.60        ad 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
    417  1.60        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    418  1.60        ad 	      (uintptr_t)__builtin_return_address(0)));
    419  1.60        ad 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
    420  1.60        ad 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    421  1.60        ad 	      (uintptr_t)__builtin_return_address(0)));
    422   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    423   1.2        ad 
    424  1.61        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    425   1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    426   1.2        ad 	RW_LOCKED(rw, op);
    427   1.2        ad }
    428   1.2        ad 
    429   1.2        ad /*
    430   1.2        ad  * rw_vector_exit:
    431   1.2        ad  *
    432   1.2        ad  *	Release a rwlock.
    433   1.2        ad  */
    434   1.2        ad void
    435   1.2        ad rw_vector_exit(krwlock_t *rw)
    436   1.2        ad {
    437  1.44      matt 	uintptr_t curthread, owner, decr, newown, next;
    438   1.2        ad 	turnstile_t *ts;
    439   1.2        ad 	int rcnt, wcnt;
    440   1.7        ad 	lwp_t *l;
    441   1.2        ad 
    442  1.61        ad 	l = curlwp;
    443  1.61        ad 	curthread = (uintptr_t)l;
    444   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    445   1.2        ad 
    446   1.2        ad 	/*
    447   1.2        ad 	 * Again, we use a trick.  Since we used an add operation to
    448   1.2        ad 	 * set the required lock bits, we can use a subtract to clear
    449   1.2        ad 	 * them, which makes the read-release and write-release path
    450   1.2        ad 	 * the same.
    451   1.2        ad 	 */
    452   1.2        ad 	owner = rw->rw_owner;
    453   1.2        ad 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    454   1.2        ad 		RW_UNLOCKED(rw, RW_WRITER);
    455   1.2        ad 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    456   1.2        ad 		decr = curthread | RW_WRITE_LOCKED;
    457   1.2        ad 	} else {
    458   1.2        ad 		RW_UNLOCKED(rw, RW_READER);
    459   1.2        ad 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    460   1.2        ad 		decr = RW_READ_INCR;
    461   1.2        ad 	}
    462   1.2        ad 
    463   1.2        ad 	/*
    464   1.2        ad 	 * Compute what we expect the new value of the lock to be. Only
    465   1.2        ad 	 * proceed to do direct handoff if there are waiters, and if the
    466   1.2        ad 	 * lock would become unowned.
    467   1.2        ad 	 */
    468  1.70  riastrad 	membar_release();
    469  1.58        ad 	for (;;) {
    470  1.44      matt 		newown = (owner - decr);
    471  1.44      matt 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    472   1.2        ad 			break;
    473  1.44      matt 		next = rw_cas(rw, owner, newown);
    474  1.20        ad 		if (__predict_true(next == owner))
    475   1.2        ad 			return;
    476  1.58        ad 		owner = next;
    477   1.2        ad 	}
    478   1.2        ad 
    479  1.20        ad 	/*
    480  1.20        ad 	 * Grab the turnstile chain lock.  This gets the interlock
    481  1.20        ad 	 * on the sleep queue.  Once we have that, we can adjust the
    482  1.20        ad 	 * waiter bits.
    483  1.20        ad 	 */
    484  1.20        ad 	ts = turnstile_lookup(rw);
    485  1.20        ad 	owner = rw->rw_owner;
    486  1.61        ad 	RW_ASSERT(rw, ts != NULL);
    487  1.61        ad 	RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    488   1.2        ad 
    489  1.20        ad 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    490  1.20        ad 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    491   1.2        ad 
    492  1.20        ad 	/*
    493  1.20        ad 	 * Give the lock away.
    494  1.20        ad 	 *
    495  1.20        ad 	 * If we are releasing a write lock, then prefer to wake all
    496  1.20        ad 	 * outstanding readers.  Otherwise, wake one writer if there
    497  1.20        ad 	 * are outstanding readers, or all writers if there are no
    498  1.20        ad 	 * pending readers.  If waking one specific writer, the writer
    499  1.20        ad 	 * is handed the lock here.  If waking multiple writers, we
    500  1.20        ad 	 * set WRITE_WANTED to block out new readers, and let them
    501  1.41     skrll 	 * do the work of acquiring the lock in rw_vector_enter().
    502  1.20        ad 	 */
    503  1.32      yamt 	if (rcnt == 0 || decr == RW_READ_INCR) {
    504  1.61        ad 		RW_ASSERT(rw, wcnt != 0);
    505  1.61        ad 		RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    506   1.2        ad 
    507  1.20        ad 		if (rcnt != 0) {
    508  1.20        ad 			/* Give the lock to the longest waiting writer. */
    509   1.2        ad 			l = TS_FIRST(ts, TS_WRITER_Q);
    510  1.61        ad 			newown = (uintptr_t)l | (owner & RW_NODEBUG);
    511  1.61        ad 			newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
    512  1.28   thorpej 			if (wcnt > 1)
    513  1.44      matt 				newown |= RW_WRITE_WANTED;
    514  1.44      matt 			rw_swap(rw, owner, newown);
    515   1.7        ad 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    516   1.2        ad 		} else {
    517  1.20        ad 			/* Wake all writers and let them fight it out. */
    518  1.61        ad 			newown = owner & RW_NODEBUG;
    519  1.61        ad 			newown |= RW_WRITE_WANTED;
    520  1.61        ad 			rw_swap(rw, owner, newown);
    521  1.20        ad 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    522  1.20        ad 		}
    523  1.20        ad 	} else {
    524  1.61        ad 		RW_ASSERT(rw, rcnt != 0);
    525   1.2        ad 
    526  1.20        ad 		/*
    527  1.20        ad 		 * Give the lock to all blocked readers.  If there
    528  1.20        ad 		 * is a writer waiting, new readers that arrive
    529  1.20        ad 		 * after the release will be blocked out.
    530  1.20        ad 		 */
    531  1.61        ad 		newown = owner & RW_NODEBUG;
    532  1.61        ad 		newown += rcnt << RW_READ_COUNT_SHIFT;
    533  1.20        ad 		if (wcnt != 0)
    534  1.44      matt 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    535  1.12      yamt 
    536  1.20        ad 		/* Wake up all sleeping readers. */
    537  1.44      matt 		rw_swap(rw, owner, newown);
    538  1.20        ad 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    539   1.2        ad 	}
    540   1.2        ad }
    541   1.2        ad 
    542   1.2        ad /*
    543  1.16        ad  * rw_vector_tryenter:
    544   1.2        ad  *
    545   1.2        ad  *	Try to acquire a rwlock.
    546   1.2        ad  */
    547   1.2        ad int
    548  1.16        ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    549   1.2        ad {
    550  1.20        ad 	uintptr_t curthread, owner, incr, need_wait, next;
    551  1.61        ad 	lwp_t *l;
    552   1.2        ad 
    553  1.61        ad 	l = curlwp;
    554  1.61        ad 	curthread = (uintptr_t)l;
    555   1.2        ad 
    556   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    557   1.2        ad 
    558   1.2        ad 	if (op == RW_READER) {
    559   1.2        ad 		incr = RW_READ_INCR;
    560   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    561   1.2        ad 	} else {
    562  1.61        ad 		RW_ASSERT(rw, op == RW_WRITER);
    563   1.2        ad 		incr = curthread | RW_WRITE_LOCKED;
    564   1.2        ad 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    565   1.2        ad 	}
    566   1.2        ad 
    567  1.58        ad 	for (owner = rw->rw_owner;; owner = next) {
    568  1.58        ad 		if (__predict_false((owner & need_wait) != 0))
    569  1.58        ad 			return 0;
    570  1.20        ad 		next = rw_cas(rw, owner, owner + incr);
    571  1.20        ad 		if (__predict_true(next == owner)) {
    572  1.20        ad 			/* Got it! */
    573  1.20        ad 			break;
    574   1.2        ad 		}
    575   1.2        ad 	}
    576   1.2        ad 
    577  1.40   mlelstv 	RW_WANTLOCK(rw, op);
    578   1.2        ad 	RW_LOCKED(rw, op);
    579  1.61        ad 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    580   1.2        ad 	    (op == RW_READER && RW_COUNT(rw) != 0));
    581   1.7        ad 
    582  1.70  riastrad 	membar_acquire();
    583   1.2        ad 	return 1;
    584   1.2        ad }
    585   1.2        ad 
    586   1.2        ad /*
    587   1.2        ad  * rw_downgrade:
    588   1.2        ad  *
    589  1.61        ad  *	Downgrade a write lock to a read lock.
    590   1.2        ad  */
    591   1.2        ad void
    592   1.2        ad rw_downgrade(krwlock_t *rw)
    593   1.2        ad {
    594  1.72        ad 	uintptr_t owner, newown, next, curthread __diagused;
    595   1.2        ad 	turnstile_t *ts;
    596   1.2        ad 	int rcnt, wcnt;
    597  1.61        ad 	lwp_t *l;
    598   1.2        ad 
    599  1.61        ad 	l = curlwp;
    600  1.61        ad 	curthread = (uintptr_t)l;
    601   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    602  1.61        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    603   1.2        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    604   1.2        ad 	RW_UNLOCKED(rw, RW_WRITER);
    605  1.42       mrg 
    606  1.70  riastrad 	membar_release();
    607  1.61        ad 	for (owner = rw->rw_owner;; owner = next) {
    608  1.61        ad 		/*
    609  1.61        ad 		 * If there are no waiters we can do this the easy way.  Try
    610  1.61        ad 		 * swapping us down to one read hold.  If it fails, the lock
    611  1.61        ad 		 * condition has changed and we most likely now have
    612  1.61        ad 		 * waiters.
    613  1.61        ad 		 */
    614  1.61        ad 		if ((owner & RW_HAS_WAITERS) == 0) {
    615  1.61        ad 			newown = (owner & RW_NODEBUG);
    616  1.61        ad 			next = rw_cas(rw, owner, newown + RW_READ_INCR);
    617  1.61        ad 			if (__predict_true(next == owner)) {
    618  1.61        ad 				RW_LOCKED(rw, RW_READER);
    619  1.61        ad 				RW_ASSERT(rw,
    620  1.61        ad 				    (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    621  1.61        ad 				RW_ASSERT(rw, RW_COUNT(rw) != 0);
    622  1.61        ad 				return;
    623  1.61        ad 			}
    624  1.61        ad 			continue;
    625  1.61        ad 		}
    626  1.61        ad 
    627  1.61        ad 		/*
    628  1.61        ad 		 * Grab the turnstile chain lock.  This gets the interlock
    629  1.61        ad 		 * on the sleep queue.  Once we have that, we can adjust the
    630  1.61        ad 		 * waiter bits.
    631  1.61        ad 		 */
    632   1.2        ad 		ts = turnstile_lookup(rw);
    633  1.61        ad 		RW_ASSERT(rw, ts != NULL);
    634   1.2        ad 
    635   1.2        ad 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    636   1.2        ad 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    637   1.2        ad 
    638   1.2        ad 		if (rcnt == 0) {
    639  1.61        ad 			/*
    640  1.61        ad 			 * If there are no readers, just preserve the
    641  1.61        ad 			 * waiters bits, swap us down to one read hold and
    642  1.61        ad 			 * return.
    643  1.61        ad 			 */
    644  1.61        ad 			RW_ASSERT(rw, wcnt != 0);
    645  1.61        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    646  1.61        ad 			RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    647  1.61        ad 
    648  1.61        ad 			newown = owner & RW_NODEBUG;
    649  1.62        ad 			newown |= RW_READ_INCR | RW_HAS_WAITERS |
    650  1.61        ad 			    RW_WRITE_WANTED;
    651  1.44      matt 			next = rw_cas(rw, owner, newown);
    652  1.27     rmind 			turnstile_exit(rw);
    653  1.20        ad 			if (__predict_true(next == owner))
    654  1.20        ad 				break;
    655  1.20        ad 		} else {
    656  1.20        ad 			/*
    657  1.20        ad 			 * Give the lock to all blocked readers.  We may
    658  1.61        ad 			 * retain one read hold if downgrading.  If there is
    659  1.61        ad 			 * a writer waiting, new readers will be blocked
    660  1.20        ad 			 * out.
    661  1.20        ad 			 */
    662  1.61        ad 			newown = owner & RW_NODEBUG;
    663  1.61        ad 			newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    664  1.20        ad 			if (wcnt != 0)
    665  1.44      matt 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    666  1.20        ad 
    667  1.44      matt 			next = rw_cas(rw, owner, newown);
    668  1.20        ad 			if (__predict_true(next == owner)) {
    669  1.20        ad 				/* Wake up all sleeping readers. */
    670  1.20        ad 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    671  1.20        ad 				break;
    672   1.2        ad 			}
    673  1.27     rmind 			turnstile_exit(rw);
    674   1.2        ad 		}
    675   1.2        ad 	}
    676   1.2        ad 
    677  1.40   mlelstv 	RW_WANTLOCK(rw, RW_READER);
    678   1.2        ad 	RW_LOCKED(rw, RW_READER);
    679  1.61        ad 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    680  1.61        ad 	RW_ASSERT(rw, RW_COUNT(rw) != 0);
    681   1.2        ad }
    682   1.2        ad 
    683   1.2        ad /*
    684   1.2        ad  * rw_tryupgrade:
    685   1.2        ad  *
    686  1.55        ad  *	Try to upgrade a read lock to a write lock.  We must be the only
    687  1.61        ad  *	reader.
    688   1.2        ad  */
    689   1.2        ad int
    690   1.2        ad rw_tryupgrade(krwlock_t *rw)
    691   1.2        ad {
    692  1.44      matt 	uintptr_t owner, curthread, newown, next;
    693  1.61        ad 	struct lwp *l;
    694   1.2        ad 
    695  1.61        ad 	l = curlwp;
    696  1.61        ad 	curthread = (uintptr_t)l;
    697   1.2        ad 	RW_ASSERT(rw, curthread != 0);
    698  1.31      yamt 	RW_ASSERT(rw, rw_read_held(rw));
    699   1.2        ad 
    700  1.55        ad 	for (owner = RW_READ_INCR;; owner = next) {
    701  1.44      matt 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    702  1.44      matt 		next = rw_cas(rw, owner, newown);
    703  1.30        ad 		if (__predict_true(next == owner)) {
    704  1.70  riastrad 			membar_acquire();
    705   1.2        ad 			break;
    706  1.30        ad 		}
    707  1.55        ad 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    708  1.55        ad 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    709  1.55        ad 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    710  1.55        ad 			return 0;
    711  1.55        ad 		}
    712   1.2        ad 	}
    713   1.2        ad 
    714   1.2        ad 	RW_UNLOCKED(rw, RW_READER);
    715  1.40   mlelstv 	RW_WANTLOCK(rw, RW_WRITER);
    716   1.2        ad 	RW_LOCKED(rw, RW_WRITER);
    717  1.61        ad 	RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    718  1.61        ad 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    719   1.2        ad 
    720   1.2        ad 	return 1;
    721   1.2        ad }
    722   1.2        ad 
    723   1.2        ad /*
    724   1.2        ad  * rw_read_held:
    725   1.2        ad  *
    726   1.2        ad  *	Returns true if the rwlock is held for reading.  Must only be
    727   1.2        ad  *	used for diagnostic assertions, and never be used to make
    728   1.2        ad  * 	decisions about how to use a rwlock.
    729   1.2        ad  */
    730   1.2        ad int
    731   1.2        ad rw_read_held(krwlock_t *rw)
    732   1.2        ad {
    733   1.2        ad 	uintptr_t owner;
    734   1.2        ad 
    735  1.21        ad 	if (rw == NULL)
    736  1.21        ad 		return 0;
    737   1.2        ad 	owner = rw->rw_owner;
    738   1.2        ad 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    739   1.2        ad }
    740   1.2        ad 
    741   1.2        ad /*
    742   1.2        ad  * rw_write_held:
    743   1.2        ad  *
    744   1.2        ad  *	Returns true if the rwlock is held for writing.  Must only be
    745   1.2        ad  *	used for diagnostic assertions, and never be used to make
    746   1.2        ad  *	decisions about how to use a rwlock.
    747   1.2        ad  */
    748   1.2        ad int
    749   1.2        ad rw_write_held(krwlock_t *rw)
    750   1.2        ad {
    751   1.2        ad 
    752  1.21        ad 	if (rw == NULL)
    753  1.21        ad 		return 0;
    754  1.17        ad 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    755  1.18        ad 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    756   1.2        ad }
    757   1.2        ad 
    758   1.2        ad /*
    759   1.2        ad  * rw_lock_held:
    760   1.2        ad  *
    761   1.2        ad  *	Returns true if the rwlock is held for reading or writing.  Must
    762   1.2        ad  *	only be used for diagnostic assertions, and never be used to make
    763   1.2        ad  *	decisions about how to use a rwlock.
    764   1.2        ad  */
    765   1.2        ad int
    766   1.2        ad rw_lock_held(krwlock_t *rw)
    767   1.2        ad {
    768   1.2        ad 
    769  1.21        ad 	if (rw == NULL)
    770  1.21        ad 		return 0;
    771   1.2        ad 	return (rw->rw_owner & RW_THREAD) != 0;
    772   1.2        ad }
    773   1.4      yamt 
    774   1.5        ad /*
    775  1.65        ad  * rw_lock_op:
    776  1.65        ad  *
    777  1.65        ad  *	For a rwlock that is known to be held by the caller, return
    778  1.65        ad  *	RW_READER or RW_WRITER to describe the hold type.
    779  1.65        ad  */
    780  1.65        ad krw_t
    781  1.65        ad rw_lock_op(krwlock_t *rw)
    782  1.65        ad {
    783  1.65        ad 
    784  1.65        ad 	RW_ASSERT(rw, rw_lock_held(rw));
    785  1.65        ad 
    786  1.65        ad 	return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
    787  1.65        ad }
    788  1.65        ad 
    789  1.65        ad /*
    790   1.5        ad  * rw_owner:
    791   1.5        ad  *
    792   1.5        ad  *	Return the current owner of an RW lock, but only if it is write
    793   1.5        ad  *	held.  Used for priority inheritance.
    794   1.5        ad  */
    795   1.7        ad static lwp_t *
    796   1.4      yamt rw_owner(wchan_t obj)
    797   1.4      yamt {
    798   1.4      yamt 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    799   1.4      yamt 	uintptr_t owner = rw->rw_owner;
    800   1.4      yamt 
    801   1.4      yamt 	if ((owner & RW_WRITE_LOCKED) == 0)
    802   1.4      yamt 		return NULL;
    803   1.4      yamt 
    804   1.4      yamt 	return (void *)(owner & RW_THREAD);
    805   1.4      yamt }
    806