kern_rwlock.c revision 1.76 1 1.76 riastrad /* $NetBSD: kern_rwlock.c,v 1.76 2023/10/15 10:28:48 riastradh Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.73 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020, 2023
5 1.60 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Jason R. Thorpe and Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.2 ad * Kernel reader/writer lock implementation, modeled after those
35 1.2 ad * found in Solaris, a description of which can be found in:
36 1.2 ad *
37 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
38 1.2 ad * Richard McDougall.
39 1.64 ad *
40 1.64 ad * The NetBSD implementation differs from that described in the book, in
41 1.64 ad * that the locks are partially adaptive. Lock waiters spin wait while a
42 1.64 ad * lock is write held and the holder is still running on a CPU. The method
43 1.64 ad * of choosing which threads to awaken when a lock is released also differs,
44 1.64 ad * mainly to take account of the partially adaptive behaviour.
45 1.2 ad */
46 1.2 ad
47 1.10 dsl #include <sys/cdefs.h>
48 1.76 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.76 2023/10/15 10:28:48 riastradh Exp $");
49 1.61 ad
50 1.61 ad #include "opt_lockdebug.h"
51 1.2 ad
52 1.2 ad #define __RWLOCK_PRIVATE
53 1.2 ad
54 1.2 ad #include <sys/param.h>
55 1.76 riastrad
56 1.76 riastrad #include <sys/atomic.h>
57 1.76 riastrad #include <sys/cpu.h>
58 1.76 riastrad #include <sys/lock.h>
59 1.76 riastrad #include <sys/lockdebug.h>
60 1.2 ad #include <sys/proc.h>
61 1.76 riastrad #include <sys/pserialize.h>
62 1.2 ad #include <sys/rwlock.h>
63 1.2 ad #include <sys/sched.h>
64 1.2 ad #include <sys/sleepq.h>
65 1.76 riastrad #include <sys/syncobj.h>
66 1.2 ad #include <sys/systm.h>
67 1.2 ad
68 1.2 ad #include <dev/lockstat.h>
69 1.2 ad
70 1.56 riastrad #include <machine/rwlock.h>
71 1.56 riastrad
72 1.2 ad /*
73 1.2 ad * LOCKDEBUG
74 1.2 ad */
75 1.2 ad
76 1.61 ad #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
77 1.2 ad
78 1.61 ad #define RW_WANTLOCK(rw, op) \
79 1.61 ad LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
80 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
81 1.61 ad #define RW_LOCKED(rw, op) \
82 1.61 ad LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
83 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
84 1.61 ad #define RW_UNLOCKED(rw, op) \
85 1.61 ad LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
86 1.61 ad (uintptr_t)__builtin_return_address(0), op == RW_READER);
87 1.2 ad
88 1.2 ad /*
89 1.2 ad * DIAGNOSTIC
90 1.2 ad */
91 1.2 ad
92 1.2 ad #if defined(DIAGNOSTIC)
93 1.61 ad #define RW_ASSERT(rw, cond) \
94 1.61 ad do { \
95 1.61 ad if (__predict_false(!(cond))) \
96 1.46 christos rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
97 1.2 ad } while (/* CONSTCOND */ 0)
98 1.2 ad #else
99 1.2 ad #define RW_ASSERT(rw, cond) /* nothing */
100 1.2 ad #endif /* DIAGNOSTIC */
101 1.2 ad
102 1.55 ad /*
103 1.2 ad * For platforms that do not provide stubs, or for the LOCKDEBUG case.
104 1.2 ad */
105 1.2 ad #ifdef LOCKDEBUG
106 1.2 ad #undef __HAVE_RW_STUBS
107 1.2 ad #endif
108 1.2 ad
109 1.2 ad #ifndef __HAVE_RW_STUBS
110 1.6 itohy __strong_alias(rw_enter,rw_vector_enter);
111 1.6 itohy __strong_alias(rw_exit,rw_vector_exit);
112 1.16 ad __strong_alias(rw_tryenter,rw_vector_tryenter);
113 1.2 ad #endif
114 1.2 ad
115 1.61 ad static void rw_abort(const char *, size_t, krwlock_t *, const char *);
116 1.61 ad static void rw_dump(const volatile void *, lockop_printer_t);
117 1.61 ad static lwp_t *rw_owner(wchan_t);
118 1.61 ad
119 1.2 ad lockops_t rwlock_lockops = {
120 1.48 ozaki .lo_name = "Reader / writer lock",
121 1.48 ozaki .lo_type = LOCKOPS_SLEEP,
122 1.48 ozaki .lo_dump = rw_dump,
123 1.2 ad };
124 1.2 ad
125 1.73 ad /*
126 1.73 ad * Give rwlock holders an extra-high priority boost on-blocking due to
127 1.73 ad * direct handoff. XXX To be revisited.
128 1.73 ad */
129 1.4 yamt syncobj_t rw_syncobj = {
130 1.74 ad .sobj_name = "rwlock",
131 1.49 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
132 1.73 ad .sobj_boostpri = PRI_KTHREAD,
133 1.49 ozaki .sobj_unsleep = turnstile_unsleep,
134 1.49 ozaki .sobj_changepri = turnstile_changepri,
135 1.49 ozaki .sobj_lendpri = sleepq_lendpri,
136 1.49 ozaki .sobj_owner = rw_owner,
137 1.4 yamt };
138 1.4 yamt
139 1.2 ad /*
140 1.61 ad * rw_cas:
141 1.61 ad *
142 1.61 ad * Do an atomic compare-and-swap on the lock word.
143 1.61 ad */
144 1.61 ad static inline uintptr_t
145 1.61 ad rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
146 1.61 ad {
147 1.61 ad
148 1.61 ad return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
149 1.61 ad (void *)o, (void *)n);
150 1.61 ad }
151 1.61 ad
152 1.61 ad /*
153 1.61 ad * rw_swap:
154 1.61 ad *
155 1.61 ad * Do an atomic swap of the lock word. This is used only when it's
156 1.61 ad * known that the lock word is set up such that it can't be changed
157 1.61 ad * behind us (assert this), so there's no point considering the result.
158 1.61 ad */
159 1.61 ad static inline void
160 1.61 ad rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
161 1.61 ad {
162 1.61 ad
163 1.61 ad n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
164 1.61 ad (void *)n);
165 1.61 ad
166 1.61 ad RW_ASSERT(rw, n == o);
167 1.61 ad RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
168 1.61 ad }
169 1.61 ad
170 1.61 ad /*
171 1.2 ad * rw_dump:
172 1.2 ad *
173 1.2 ad * Dump the contents of a rwlock structure.
174 1.2 ad */
175 1.11 ad static void
176 1.54 ozaki rw_dump(const volatile void *cookie, lockop_printer_t pr)
177 1.2 ad {
178 1.47 christos const volatile krwlock_t *rw = cookie;
179 1.2 ad
180 1.54 ozaki pr("owner/count : %#018lx flags : %#018x\n",
181 1.2 ad (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
182 1.2 ad }
183 1.2 ad
184 1.2 ad /*
185 1.11 ad * rw_abort:
186 1.11 ad *
187 1.11 ad * Dump information about an error and panic the system. This
188 1.11 ad * generates a lot of machine code in the DIAGNOSTIC case, so
189 1.11 ad * we ask the compiler to not inline it.
190 1.11 ad */
191 1.26 ad static void __noinline
192 1.46 christos rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
193 1.11 ad {
194 1.11 ad
195 1.67 ozaki if (__predict_false(panicstr != NULL))
196 1.11 ad return;
197 1.11 ad
198 1.46 christos LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
199 1.11 ad }
200 1.11 ad
201 1.11 ad /*
202 1.2 ad * rw_init:
203 1.2 ad *
204 1.2 ad * Initialize a rwlock for use.
205 1.2 ad */
206 1.2 ad void
207 1.50 ozaki _rw_init(krwlock_t *rw, uintptr_t return_address)
208 1.2 ad {
209 1.2 ad
210 1.62 ad #ifdef LOCKDEBUG
211 1.62 ad /* XXX only because the assembly stubs can't handle RW_NODEBUG */
212 1.61 ad if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
213 1.61 ad rw->rw_owner = 0;
214 1.61 ad else
215 1.61 ad rw->rw_owner = RW_NODEBUG;
216 1.62 ad #else
217 1.62 ad rw->rw_owner = 0;
218 1.62 ad #endif
219 1.2 ad }
220 1.2 ad
221 1.50 ozaki void
222 1.50 ozaki rw_init(krwlock_t *rw)
223 1.50 ozaki {
224 1.50 ozaki
225 1.50 ozaki _rw_init(rw, (uintptr_t)__builtin_return_address(0));
226 1.50 ozaki }
227 1.50 ozaki
228 1.2 ad /*
229 1.2 ad * rw_destroy:
230 1.2 ad *
231 1.2 ad * Tear down a rwlock.
232 1.2 ad */
233 1.2 ad void
234 1.2 ad rw_destroy(krwlock_t *rw)
235 1.2 ad {
236 1.2 ad
237 1.36 skrll RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
238 1.61 ad LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
239 1.2 ad }
240 1.2 ad
241 1.2 ad /*
242 1.37 rmind * rw_oncpu:
243 1.20 ad *
244 1.20 ad * Return true if an rwlock owner is running on a CPU in the system.
245 1.20 ad * If the target is waiting on the kernel big lock, then we must
246 1.20 ad * release it. This is necessary to avoid deadlock.
247 1.20 ad */
248 1.37 rmind static bool
249 1.37 rmind rw_oncpu(uintptr_t owner)
250 1.20 ad {
251 1.20 ad #ifdef MULTIPROCESSOR
252 1.20 ad struct cpu_info *ci;
253 1.20 ad lwp_t *l;
254 1.20 ad
255 1.37 rmind KASSERT(kpreempt_disabled());
256 1.37 rmind
257 1.37 rmind if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
258 1.37 rmind return false;
259 1.37 rmind }
260 1.37 rmind
261 1.37 rmind /*
262 1.37 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
263 1.37 rmind * We must have kernel preemption disabled for that.
264 1.37 rmind */
265 1.20 ad l = (lwp_t *)(owner & RW_THREAD);
266 1.37 rmind ci = l->l_cpu;
267 1.20 ad
268 1.37 rmind if (ci && ci->ci_curlwp == l) {
269 1.37 rmind /* Target is running; do we need to block? */
270 1.37 rmind return (ci->ci_biglock_wanted != l);
271 1.37 rmind }
272 1.37 rmind #endif
273 1.37 rmind /* Not running. It may be safe to block now. */
274 1.37 rmind return false;
275 1.20 ad }
276 1.20 ad
277 1.20 ad /*
278 1.2 ad * rw_vector_enter:
279 1.2 ad *
280 1.2 ad * Acquire a rwlock.
281 1.2 ad */
282 1.2 ad void
283 1.2 ad rw_vector_enter(krwlock_t *rw, const krw_t op)
284 1.2 ad {
285 1.20 ad uintptr_t owner, incr, need_wait, set_wait, curthread, next;
286 1.2 ad turnstile_t *ts;
287 1.2 ad int queue;
288 1.7 ad lwp_t *l;
289 1.2 ad LOCKSTAT_TIMER(slptime);
290 1.20 ad LOCKSTAT_TIMER(slpcnt);
291 1.19 ad LOCKSTAT_TIMER(spintime);
292 1.19 ad LOCKSTAT_COUNTER(spincnt);
293 1.2 ad LOCKSTAT_FLAG(lsflag);
294 1.2 ad
295 1.2 ad l = curlwp;
296 1.2 ad curthread = (uintptr_t)l;
297 1.2 ad
298 1.13 ad RW_ASSERT(rw, !cpu_intr_p());
299 1.2 ad RW_ASSERT(rw, curthread != 0);
300 1.40 mlelstv RW_WANTLOCK(rw, op);
301 1.2 ad
302 1.67 ozaki if (__predict_true(panicstr == NULL)) {
303 1.53 ozaki KDASSERT(pserialize_not_in_read_section());
304 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
305 1.2 ad }
306 1.2 ad
307 1.2 ad /*
308 1.2 ad * We play a slight trick here. If we're a reader, we want
309 1.2 ad * increment the read count. If we're a writer, we want to
310 1.43 ozaki * set the owner field and the WRITE_LOCKED bit.
311 1.2 ad *
312 1.2 ad * In the latter case, we expect those bits to be zero,
313 1.2 ad * therefore we can use an add operation to set them, which
314 1.2 ad * means an add operation for both cases.
315 1.2 ad */
316 1.2 ad if (__predict_true(op == RW_READER)) {
317 1.2 ad incr = RW_READ_INCR;
318 1.2 ad set_wait = RW_HAS_WAITERS;
319 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
320 1.2 ad queue = TS_READER_Q;
321 1.2 ad } else {
322 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
323 1.2 ad incr = curthread | RW_WRITE_LOCKED;
324 1.2 ad set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
325 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
326 1.2 ad queue = TS_WRITER_Q;
327 1.2 ad }
328 1.2 ad
329 1.2 ad LOCKSTAT_ENTER(lsflag);
330 1.2 ad
331 1.37 rmind KPREEMPT_DISABLE(curlwp);
332 1.55 ad for (owner = rw->rw_owner;;) {
333 1.2 ad /*
334 1.2 ad * Read the lock owner field. If the need-to-wait
335 1.2 ad * indicator is clear, then try to acquire the lock.
336 1.2 ad */
337 1.2 ad if ((owner & need_wait) == 0) {
338 1.20 ad next = rw_cas(rw, owner, (owner + incr) &
339 1.20 ad ~RW_WRITE_WANTED);
340 1.20 ad if (__predict_true(next == owner)) {
341 1.2 ad /* Got it! */
342 1.70 riastrad membar_acquire();
343 1.2 ad break;
344 1.2 ad }
345 1.2 ad
346 1.2 ad /*
347 1.2 ad * Didn't get it -- spin around again (we'll
348 1.2 ad * probably sleep on the next iteration).
349 1.2 ad */
350 1.20 ad owner = next;
351 1.2 ad continue;
352 1.2 ad }
353 1.37 rmind if (__predict_false(RW_OWNER(rw) == curthread)) {
354 1.46 christos rw_abort(__func__, __LINE__, rw,
355 1.46 christos "locking against myself");
356 1.37 rmind }
357 1.19 ad /*
358 1.19 ad * If the lock owner is running on another CPU, and
359 1.19 ad * there are no existing waiters, then spin.
360 1.19 ad */
361 1.37 rmind if (rw_oncpu(owner)) {
362 1.19 ad LOCKSTAT_START_TIMER(lsflag, spintime);
363 1.19 ad u_int count = SPINLOCK_BACKOFF_MIN;
364 1.20 ad do {
365 1.38 rmind KPREEMPT_ENABLE(curlwp);
366 1.20 ad SPINLOCK_BACKOFF(count);
367 1.38 rmind KPREEMPT_DISABLE(curlwp);
368 1.19 ad owner = rw->rw_owner;
369 1.37 rmind } while (rw_oncpu(owner));
370 1.19 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
371 1.19 ad LOCKSTAT_COUNT(spincnt, 1);
372 1.19 ad if ((owner & need_wait) == 0)
373 1.19 ad continue;
374 1.19 ad }
375 1.19 ad
376 1.2 ad /*
377 1.2 ad * Grab the turnstile chain lock. Once we have that, we
378 1.2 ad * can adjust the waiter bits and sleep queue.
379 1.2 ad */
380 1.2 ad ts = turnstile_lookup(rw);
381 1.2 ad
382 1.2 ad /*
383 1.2 ad * Mark the rwlock as having waiters. If the set fails,
384 1.2 ad * then we may not need to sleep and should spin again.
385 1.20 ad * Reload rw_owner because turnstile_lookup() may have
386 1.20 ad * spun on the turnstile chain lock.
387 1.2 ad */
388 1.20 ad owner = rw->rw_owner;
389 1.37 rmind if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
390 1.20 ad turnstile_exit(rw);
391 1.20 ad continue;
392 1.20 ad }
393 1.20 ad next = rw_cas(rw, owner, owner | set_wait);
394 1.66 riastrad /* XXX membar? */
395 1.20 ad if (__predict_false(next != owner)) {
396 1.2 ad turnstile_exit(rw);
397 1.20 ad owner = next;
398 1.2 ad continue;
399 1.2 ad }
400 1.2 ad
401 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
402 1.4 yamt turnstile_block(ts, queue, rw, &rw_syncobj);
403 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
404 1.20 ad LOCKSTAT_COUNT(slpcnt, 1);
405 1.2 ad
406 1.20 ad /*
407 1.20 ad * No need for a memory barrier because of context switch.
408 1.20 ad * If not handed the lock, then spin again.
409 1.20 ad */
410 1.58 ad if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
411 1.20 ad break;
412 1.58 ad
413 1.39 yamt owner = rw->rw_owner;
414 1.2 ad }
415 1.37 rmind KPREEMPT_ENABLE(curlwp);
416 1.2 ad
417 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
418 1.60 ad (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
419 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
420 1.60 ad (uintptr_t)__builtin_return_address(0)));
421 1.60 ad LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
422 1.60 ad (l->l_rwcallsite != 0 ? l->l_rwcallsite :
423 1.60 ad (uintptr_t)__builtin_return_address(0)));
424 1.2 ad LOCKSTAT_EXIT(lsflag);
425 1.2 ad
426 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
427 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
428 1.2 ad RW_LOCKED(rw, op);
429 1.2 ad }
430 1.2 ad
431 1.2 ad /*
432 1.2 ad * rw_vector_exit:
433 1.2 ad *
434 1.2 ad * Release a rwlock.
435 1.2 ad */
436 1.2 ad void
437 1.2 ad rw_vector_exit(krwlock_t *rw)
438 1.2 ad {
439 1.44 matt uintptr_t curthread, owner, decr, newown, next;
440 1.2 ad turnstile_t *ts;
441 1.2 ad int rcnt, wcnt;
442 1.7 ad lwp_t *l;
443 1.2 ad
444 1.61 ad l = curlwp;
445 1.61 ad curthread = (uintptr_t)l;
446 1.2 ad RW_ASSERT(rw, curthread != 0);
447 1.2 ad
448 1.2 ad /*
449 1.2 ad * Again, we use a trick. Since we used an add operation to
450 1.2 ad * set the required lock bits, we can use a subtract to clear
451 1.2 ad * them, which makes the read-release and write-release path
452 1.2 ad * the same.
453 1.2 ad */
454 1.2 ad owner = rw->rw_owner;
455 1.2 ad if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
456 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
457 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
458 1.2 ad decr = curthread | RW_WRITE_LOCKED;
459 1.2 ad } else {
460 1.2 ad RW_UNLOCKED(rw, RW_READER);
461 1.2 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
462 1.2 ad decr = RW_READ_INCR;
463 1.2 ad }
464 1.2 ad
465 1.2 ad /*
466 1.2 ad * Compute what we expect the new value of the lock to be. Only
467 1.2 ad * proceed to do direct handoff if there are waiters, and if the
468 1.2 ad * lock would become unowned.
469 1.2 ad */
470 1.70 riastrad membar_release();
471 1.58 ad for (;;) {
472 1.44 matt newown = (owner - decr);
473 1.44 matt if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
474 1.2 ad break;
475 1.44 matt next = rw_cas(rw, owner, newown);
476 1.20 ad if (__predict_true(next == owner))
477 1.2 ad return;
478 1.58 ad owner = next;
479 1.2 ad }
480 1.2 ad
481 1.20 ad /*
482 1.20 ad * Grab the turnstile chain lock. This gets the interlock
483 1.20 ad * on the sleep queue. Once we have that, we can adjust the
484 1.20 ad * waiter bits.
485 1.20 ad */
486 1.20 ad ts = turnstile_lookup(rw);
487 1.20 ad owner = rw->rw_owner;
488 1.61 ad RW_ASSERT(rw, ts != NULL);
489 1.61 ad RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
490 1.2 ad
491 1.20 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
492 1.20 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
493 1.2 ad
494 1.20 ad /*
495 1.20 ad * Give the lock away.
496 1.20 ad *
497 1.20 ad * If we are releasing a write lock, then prefer to wake all
498 1.20 ad * outstanding readers. Otherwise, wake one writer if there
499 1.20 ad * are outstanding readers, or all writers if there are no
500 1.20 ad * pending readers. If waking one specific writer, the writer
501 1.20 ad * is handed the lock here. If waking multiple writers, we
502 1.20 ad * set WRITE_WANTED to block out new readers, and let them
503 1.41 skrll * do the work of acquiring the lock in rw_vector_enter().
504 1.20 ad */
505 1.32 yamt if (rcnt == 0 || decr == RW_READ_INCR) {
506 1.61 ad RW_ASSERT(rw, wcnt != 0);
507 1.61 ad RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
508 1.2 ad
509 1.20 ad if (rcnt != 0) {
510 1.20 ad /* Give the lock to the longest waiting writer. */
511 1.2 ad l = TS_FIRST(ts, TS_WRITER_Q);
512 1.61 ad newown = (uintptr_t)l | (owner & RW_NODEBUG);
513 1.61 ad newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
514 1.28 thorpej if (wcnt > 1)
515 1.44 matt newown |= RW_WRITE_WANTED;
516 1.44 matt rw_swap(rw, owner, newown);
517 1.7 ad turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
518 1.2 ad } else {
519 1.20 ad /* Wake all writers and let them fight it out. */
520 1.61 ad newown = owner & RW_NODEBUG;
521 1.61 ad newown |= RW_WRITE_WANTED;
522 1.61 ad rw_swap(rw, owner, newown);
523 1.20 ad turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
524 1.20 ad }
525 1.20 ad } else {
526 1.61 ad RW_ASSERT(rw, rcnt != 0);
527 1.2 ad
528 1.20 ad /*
529 1.20 ad * Give the lock to all blocked readers. If there
530 1.20 ad * is a writer waiting, new readers that arrive
531 1.20 ad * after the release will be blocked out.
532 1.20 ad */
533 1.61 ad newown = owner & RW_NODEBUG;
534 1.61 ad newown += rcnt << RW_READ_COUNT_SHIFT;
535 1.20 ad if (wcnt != 0)
536 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
537 1.12 yamt
538 1.20 ad /* Wake up all sleeping readers. */
539 1.44 matt rw_swap(rw, owner, newown);
540 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
541 1.2 ad }
542 1.2 ad }
543 1.2 ad
544 1.2 ad /*
545 1.16 ad * rw_vector_tryenter:
546 1.2 ad *
547 1.2 ad * Try to acquire a rwlock.
548 1.2 ad */
549 1.2 ad int
550 1.16 ad rw_vector_tryenter(krwlock_t *rw, const krw_t op)
551 1.2 ad {
552 1.20 ad uintptr_t curthread, owner, incr, need_wait, next;
553 1.61 ad lwp_t *l;
554 1.2 ad
555 1.61 ad l = curlwp;
556 1.61 ad curthread = (uintptr_t)l;
557 1.2 ad
558 1.2 ad RW_ASSERT(rw, curthread != 0);
559 1.2 ad
560 1.2 ad if (op == RW_READER) {
561 1.2 ad incr = RW_READ_INCR;
562 1.2 ad need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
563 1.2 ad } else {
564 1.61 ad RW_ASSERT(rw, op == RW_WRITER);
565 1.2 ad incr = curthread | RW_WRITE_LOCKED;
566 1.2 ad need_wait = RW_WRITE_LOCKED | RW_THREAD;
567 1.2 ad }
568 1.2 ad
569 1.58 ad for (owner = rw->rw_owner;; owner = next) {
570 1.58 ad if (__predict_false((owner & need_wait) != 0))
571 1.58 ad return 0;
572 1.20 ad next = rw_cas(rw, owner, owner + incr);
573 1.20 ad if (__predict_true(next == owner)) {
574 1.20 ad /* Got it! */
575 1.20 ad break;
576 1.2 ad }
577 1.2 ad }
578 1.2 ad
579 1.40 mlelstv RW_WANTLOCK(rw, op);
580 1.2 ad RW_LOCKED(rw, op);
581 1.61 ad RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
582 1.2 ad (op == RW_READER && RW_COUNT(rw) != 0));
583 1.7 ad
584 1.70 riastrad membar_acquire();
585 1.2 ad return 1;
586 1.2 ad }
587 1.2 ad
588 1.2 ad /*
589 1.2 ad * rw_downgrade:
590 1.2 ad *
591 1.61 ad * Downgrade a write lock to a read lock.
592 1.2 ad */
593 1.2 ad void
594 1.2 ad rw_downgrade(krwlock_t *rw)
595 1.2 ad {
596 1.72 ad uintptr_t owner, newown, next, curthread __diagused;
597 1.2 ad turnstile_t *ts;
598 1.2 ad int rcnt, wcnt;
599 1.61 ad lwp_t *l;
600 1.2 ad
601 1.61 ad l = curlwp;
602 1.61 ad curthread = (uintptr_t)l;
603 1.2 ad RW_ASSERT(rw, curthread != 0);
604 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
605 1.2 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
606 1.2 ad RW_UNLOCKED(rw, RW_WRITER);
607 1.42 mrg
608 1.70 riastrad membar_release();
609 1.61 ad for (owner = rw->rw_owner;; owner = next) {
610 1.61 ad /*
611 1.61 ad * If there are no waiters we can do this the easy way. Try
612 1.61 ad * swapping us down to one read hold. If it fails, the lock
613 1.61 ad * condition has changed and we most likely now have
614 1.61 ad * waiters.
615 1.61 ad */
616 1.61 ad if ((owner & RW_HAS_WAITERS) == 0) {
617 1.61 ad newown = (owner & RW_NODEBUG);
618 1.61 ad next = rw_cas(rw, owner, newown + RW_READ_INCR);
619 1.61 ad if (__predict_true(next == owner)) {
620 1.61 ad RW_LOCKED(rw, RW_READER);
621 1.61 ad RW_ASSERT(rw,
622 1.61 ad (rw->rw_owner & RW_WRITE_LOCKED) == 0);
623 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
624 1.61 ad return;
625 1.61 ad }
626 1.61 ad continue;
627 1.61 ad }
628 1.61 ad
629 1.61 ad /*
630 1.61 ad * Grab the turnstile chain lock. This gets the interlock
631 1.61 ad * on the sleep queue. Once we have that, we can adjust the
632 1.61 ad * waiter bits.
633 1.61 ad */
634 1.2 ad ts = turnstile_lookup(rw);
635 1.61 ad RW_ASSERT(rw, ts != NULL);
636 1.2 ad
637 1.2 ad rcnt = TS_WAITERS(ts, TS_READER_Q);
638 1.2 ad wcnt = TS_WAITERS(ts, TS_WRITER_Q);
639 1.2 ad
640 1.2 ad if (rcnt == 0) {
641 1.61 ad /*
642 1.61 ad * If there are no readers, just preserve the
643 1.61 ad * waiters bits, swap us down to one read hold and
644 1.61 ad * return.
645 1.61 ad */
646 1.61 ad RW_ASSERT(rw, wcnt != 0);
647 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
648 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
649 1.61 ad
650 1.61 ad newown = owner & RW_NODEBUG;
651 1.62 ad newown |= RW_READ_INCR | RW_HAS_WAITERS |
652 1.61 ad RW_WRITE_WANTED;
653 1.44 matt next = rw_cas(rw, owner, newown);
654 1.27 rmind turnstile_exit(rw);
655 1.20 ad if (__predict_true(next == owner))
656 1.20 ad break;
657 1.20 ad } else {
658 1.20 ad /*
659 1.20 ad * Give the lock to all blocked readers. We may
660 1.61 ad * retain one read hold if downgrading. If there is
661 1.61 ad * a writer waiting, new readers will be blocked
662 1.20 ad * out.
663 1.20 ad */
664 1.61 ad newown = owner & RW_NODEBUG;
665 1.61 ad newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
666 1.20 ad if (wcnt != 0)
667 1.44 matt newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
668 1.20 ad
669 1.44 matt next = rw_cas(rw, owner, newown);
670 1.20 ad if (__predict_true(next == owner)) {
671 1.20 ad /* Wake up all sleeping readers. */
672 1.20 ad turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
673 1.20 ad break;
674 1.2 ad }
675 1.27 rmind turnstile_exit(rw);
676 1.2 ad }
677 1.2 ad }
678 1.2 ad
679 1.40 mlelstv RW_WANTLOCK(rw, RW_READER);
680 1.2 ad RW_LOCKED(rw, RW_READER);
681 1.61 ad RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
682 1.61 ad RW_ASSERT(rw, RW_COUNT(rw) != 0);
683 1.2 ad }
684 1.2 ad
685 1.2 ad /*
686 1.2 ad * rw_tryupgrade:
687 1.2 ad *
688 1.55 ad * Try to upgrade a read lock to a write lock. We must be the only
689 1.61 ad * reader.
690 1.2 ad */
691 1.2 ad int
692 1.2 ad rw_tryupgrade(krwlock_t *rw)
693 1.2 ad {
694 1.44 matt uintptr_t owner, curthread, newown, next;
695 1.61 ad struct lwp *l;
696 1.2 ad
697 1.61 ad l = curlwp;
698 1.61 ad curthread = (uintptr_t)l;
699 1.2 ad RW_ASSERT(rw, curthread != 0);
700 1.31 yamt RW_ASSERT(rw, rw_read_held(rw));
701 1.2 ad
702 1.55 ad for (owner = RW_READ_INCR;; owner = next) {
703 1.44 matt newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
704 1.44 matt next = rw_cas(rw, owner, newown);
705 1.30 ad if (__predict_true(next == owner)) {
706 1.70 riastrad membar_acquire();
707 1.2 ad break;
708 1.30 ad }
709 1.55 ad RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
710 1.55 ad if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
711 1.55 ad RW_ASSERT(rw, (next & RW_THREAD) != 0);
712 1.55 ad return 0;
713 1.55 ad }
714 1.2 ad }
715 1.2 ad
716 1.2 ad RW_UNLOCKED(rw, RW_READER);
717 1.40 mlelstv RW_WANTLOCK(rw, RW_WRITER);
718 1.2 ad RW_LOCKED(rw, RW_WRITER);
719 1.61 ad RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
720 1.61 ad RW_ASSERT(rw, RW_OWNER(rw) == curthread);
721 1.2 ad
722 1.2 ad return 1;
723 1.2 ad }
724 1.2 ad
725 1.2 ad /*
726 1.2 ad * rw_read_held:
727 1.2 ad *
728 1.2 ad * Returns true if the rwlock is held for reading. Must only be
729 1.2 ad * used for diagnostic assertions, and never be used to make
730 1.2 ad * decisions about how to use a rwlock.
731 1.2 ad */
732 1.2 ad int
733 1.2 ad rw_read_held(krwlock_t *rw)
734 1.2 ad {
735 1.2 ad uintptr_t owner;
736 1.2 ad
737 1.21 ad if (rw == NULL)
738 1.21 ad return 0;
739 1.2 ad owner = rw->rw_owner;
740 1.2 ad return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
741 1.2 ad }
742 1.2 ad
743 1.2 ad /*
744 1.2 ad * rw_write_held:
745 1.2 ad *
746 1.2 ad * Returns true if the rwlock is held for writing. Must only be
747 1.2 ad * used for diagnostic assertions, and never be used to make
748 1.2 ad * decisions about how to use a rwlock.
749 1.2 ad */
750 1.2 ad int
751 1.2 ad rw_write_held(krwlock_t *rw)
752 1.2 ad {
753 1.2 ad
754 1.21 ad if (rw == NULL)
755 1.21 ad return 0;
756 1.17 ad return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
757 1.18 ad (RW_WRITE_LOCKED | (uintptr_t)curlwp);
758 1.2 ad }
759 1.2 ad
760 1.2 ad /*
761 1.2 ad * rw_lock_held:
762 1.2 ad *
763 1.2 ad * Returns true if the rwlock is held for reading or writing. Must
764 1.2 ad * only be used for diagnostic assertions, and never be used to make
765 1.2 ad * decisions about how to use a rwlock.
766 1.2 ad */
767 1.2 ad int
768 1.2 ad rw_lock_held(krwlock_t *rw)
769 1.2 ad {
770 1.2 ad
771 1.21 ad if (rw == NULL)
772 1.21 ad return 0;
773 1.2 ad return (rw->rw_owner & RW_THREAD) != 0;
774 1.2 ad }
775 1.4 yamt
776 1.5 ad /*
777 1.65 ad * rw_lock_op:
778 1.65 ad *
779 1.65 ad * For a rwlock that is known to be held by the caller, return
780 1.65 ad * RW_READER or RW_WRITER to describe the hold type.
781 1.65 ad */
782 1.65 ad krw_t
783 1.65 ad rw_lock_op(krwlock_t *rw)
784 1.65 ad {
785 1.65 ad
786 1.65 ad RW_ASSERT(rw, rw_lock_held(rw));
787 1.65 ad
788 1.65 ad return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
789 1.65 ad }
790 1.65 ad
791 1.65 ad /*
792 1.5 ad * rw_owner:
793 1.5 ad *
794 1.5 ad * Return the current owner of an RW lock, but only if it is write
795 1.5 ad * held. Used for priority inheritance.
796 1.5 ad */
797 1.7 ad static lwp_t *
798 1.4 yamt rw_owner(wchan_t obj)
799 1.4 yamt {
800 1.4 yamt krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
801 1.4 yamt uintptr_t owner = rw->rw_owner;
802 1.4 yamt
803 1.4 yamt if ((owner & RW_WRITE_LOCKED) == 0)
804 1.4 yamt return NULL;
805 1.4 yamt
806 1.4 yamt return (void *)(owner & RW_THREAD);
807 1.4 yamt }
808