kern_rwlock.c revision 1.1.36.8 1 /* $NetBSD: kern_rwlock.c,v 1.1.36.8 2007/02/05 13:03:57 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel reader/writer lock implementation, modeled after those
41 * found in Solaris, a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #include "opt_multiprocessor.h"
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.1.36.8 2007/02/05 13:03:57 ad Exp $");
51
52 #define __RWLOCK_PRIVATE
53
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61
62 #include <dev/lockstat.h>
63
64 #define RW_ABORT(rw, msg) \
65 LOCKDEBUG_ABORT(RW_GETID(rw), rw, &rwlock_lockops, __FUNCTION__, msg)
66
67 /*
68 * LOCKDEBUG
69 */
70
71 #if defined(LOCKDEBUG)
72
73 #define RW_WANTLOCK(rw, op) \
74 LOCKDEBUG_WANTLOCK(RW_GETID(rw), \
75 (uintptr_t)__builtin_return_address(0), op == RW_READER);
76 #define RW_LOCKED(rw, op) \
77 LOCKDEBUG_LOCKED(RW_GETID(rw), \
78 (uintptr_t)__builtin_return_address(0), op == RW_READER);
79 #define RW_UNLOCKED(rw, op) \
80 LOCKDEBUG_UNLOCKED(RW_GETID(rw), \
81 (uintptr_t)__builtin_return_address(0), op == RW_READER);
82 #define RW_DASSERT(rw, cond) \
83 do { \
84 if (!(cond)) \
85 RW_ABORT(rw, "assertion failed: " #cond); \
86 } while (/* CONSTCOND */ 0);
87
88 #else /* LOCKDEBUG */
89
90 #define RW_WANTLOCK(rw, op) /* nothing */
91 #define RW_LOCKED(rw, op) /* nothing */
92 #define RW_UNLOCKED(rw, op) /* nothing */
93 #define RW_DASSERT(rw, cond) /* nothing */
94
95 #endif /* LOCKDEBUG */
96
97 /*
98 * DIAGNOSTIC
99 */
100
101 #if defined(DIAGNOSTIC)
102
103 #define RW_ASSERT(rw, cond) \
104 do { \
105 if (!(cond)) \
106 RW_ABORT(rw, "assertion failed: " #cond); \
107 } while (/* CONSTCOND */ 0)
108
109 #else
110
111 #define RW_ASSERT(rw, cond) /* nothing */
112
113 #endif /* DIAGNOSTIC */
114
115 /*
116 * For platforms that use 'simple' RW locks.
117 */
118 #ifdef __HAVE_SIMPLE_RW_LOCKS
119 #define RW_ACQUIRE(rw, old, new) RW_CAS(&(rw)->rw_owner, old, new)
120 #define RW_RELEASE(rw, old, new) RW_CAS(&(rw)->rw_owner, old, new)
121 #define RW_SETID(rw, id) ((rw)->rw_id = id)
122 #define RW_GETID(rw) ((rw)->rw_id)
123
124 static inline int
125 RW_SET_WAITERS(krwlock_t *rw, uintptr_t need, uintptr_t set)
126 {
127 uintptr_t old;
128
129 if (((old = rw->rw_owner) & need) == 0)
130 return 0;
131 return RW_CAS(&rw->rw_owner, old, old | set);
132 }
133 #endif /* __HAVE_SIMPLE_RW_LOCKS */
134
135 /*
136 * For platforms that do not provide stubs, or for the LOCKDEBUG case.
137 */
138 #ifdef LOCKDEBUG
139 #undef __HAVE_RW_STUBS
140 #endif
141
142 #ifndef __HAVE_RW_STUBS
143 __strong_alias(rw_enter, rw_vector_enter);
144 __strong_alias(rw_exit, rw_vector_exit);
145 #endif
146
147 void rw_dump(volatile void *);
148
149 lockops_t rwlock_lockops = {
150 "Reader / writer lock",
151 1,
152 rw_dump
153 };
154
155 /*
156 * rw_dump:
157 *
158 * Dump the contents of a rwlock structure.
159 */
160 void
161 rw_dump(volatile void *cookie)
162 {
163 volatile krwlock_t *rw = cookie;
164
165 printf_nolog("owner/count : %#018lx flags : %#018x\n",
166 (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
167 }
168
169 /*
170 * rw_init:
171 *
172 * Initialize a rwlock for use.
173 */
174 void
175 rw_init(krwlock_t *rw)
176 {
177 u_int id;
178
179 memset(rw, 0, sizeof(*rw));
180
181 id = LOCKDEBUG_ALLOC(rw, &rwlock_lockops);
182 RW_SETID(rw, id);
183 }
184
185 /*
186 * rw_destroy:
187 *
188 * Tear down a rwlock.
189 */
190 void
191 rw_destroy(krwlock_t *rw)
192 {
193
194 LOCKDEBUG_FREE(rw, RW_GETID(rw));
195 RW_ASSERT(rw, rw->rw_owner == 0);
196 }
197
198 /*
199 * rw_vector_enter:
200 *
201 * Acquire a rwlock.
202 */
203 void
204 rw_vector_enter(krwlock_t *rw, const krw_t op)
205 {
206 uintptr_t owner, incr, need_wait, set_wait, curthread;
207 turnstile_t *ts;
208 int queue;
209 LOCKSTAT_TIMER(slptime);
210 struct lwp *l;
211
212 l = curlwp;
213 curthread = (uintptr_t)l;
214
215 RW_ASSERT(rw, curthread != 0);
216 RW_WANTLOCK(rw, op);
217
218 #ifdef LOCKDEBUG
219 if (panicstr == NULL) {
220 simple_lock_only_held(NULL, "rw_enter");
221 #ifdef MULTIPROCESSOR
222 LOCKDEBUG_BARRIER(&kernel_lock, 1);
223 #else
224 LOCKDEBUG_BARRIER(NULL, 1);
225 #endif
226 }
227 #endif
228
229 /*
230 * We play a slight trick here. If we're a reader, we want
231 * increment the read count. If we're a writer, we want to
232 * set the owner field and whe WRITE_LOCKED bit.
233 *
234 * In the latter case, we expect those bits to be zero,
235 * therefore we can use an add operation to set them, which
236 * means an add operation for both cases.
237 */
238 if (__predict_true(op == RW_READER)) {
239 incr = RW_READ_INCR;
240 set_wait = RW_HAS_WAITERS;
241 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
242 queue = TS_READER_Q;
243 } else {
244 RW_DASSERT(rw, op == RW_WRITER);
245 incr = curthread | RW_WRITE_LOCKED;
246 set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
247 need_wait = RW_WRITE_LOCKED | RW_THREAD;
248 queue = TS_WRITER_Q;
249 }
250
251 for (;;) {
252 /*
253 * Read the lock owner field. If the need-to-wait
254 * indicator is clear, then try to acquire the lock.
255 */
256 owner = rw->rw_owner;
257 if ((owner & need_wait) == 0) {
258 if (RW_ACQUIRE(rw, owner, owner + incr)) {
259 /* Got it! */
260 break;
261 }
262
263 /*
264 * Didn't get it -- spin around again (we'll
265 * probably sleep on the next iteration).
266 */
267 continue;
268 }
269
270 if (panicstr != NULL)
271 return;
272 if (RW_OWNER(rw) == curthread)
273 RW_ABORT(rw, "locking against myself");
274
275 /*
276 * Grab the turnstile chain lock. Once we have that, we
277 * can adjust the waiter bits and sleep queue.
278 */
279 ts = turnstile_lookup(rw);
280
281 /*
282 * XXXSMP if this is a high priority LWP (interrupt handler
283 * or realtime) and acquiring a read hold, then we shouldn't
284 * wait for RW_WRITE_WANTED if our priority is >= that of
285 * the highest priority writer that is waiting.
286 */
287
288 /*
289 * Mark the rwlock as having waiters. If the set fails,
290 * then we may not need to sleep and should spin again.
291 */
292 if (!RW_SET_WAITERS(rw, need_wait, set_wait)) {
293 turnstile_exit(rw);
294 continue;
295 }
296
297 LOCKSTAT_START_TIMER(slptime);
298
299 turnstile_block(ts, queue, sched_kpri(l), rw);
300
301 /* If we wake up and arrive here, we've been handed the lock. */
302 RW_RECEIVE(rw);
303
304 LOCKSTAT_STOP_TIMER(slptime);
305 LOCKSTAT_EVENT(rw,
306 LB_RWLOCK | (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2),
307 1, slptime);
308
309 turnstile_unblock();
310 break;
311 }
312
313 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
314 (op == RW_READER && RW_COUNT(rw) != 0));
315 RW_LOCKED(rw, op);
316 }
317
318 /*
319 * rw_vector_exit:
320 *
321 * Release a rwlock.
322 */
323 void
324 rw_vector_exit(krwlock_t *rw)
325 {
326 uintptr_t curthread, owner, decr, new;
327 turnstile_t *ts;
328 int rcnt, wcnt;
329 struct lwp *l;
330
331 curthread = (uintptr_t)curlwp;
332 RW_ASSERT(rw, curthread != 0);
333
334 if (panicstr != NULL) {
335 /*
336 * XXX What's the correct thing to do here? We should at
337 * least release the lock.
338 */
339 return;
340 }
341
342 /*
343 * Again, we use a trick. Since we used an add operation to
344 * set the required lock bits, we can use a subtract to clear
345 * them, which makes the read-release and write-release path
346 * the same.
347 */
348 owner = rw->rw_owner;
349 if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
350 RW_UNLOCKED(rw, RW_WRITER);
351 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
352 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
353 decr = curthread | RW_WRITE_LOCKED;
354 } else {
355 RW_UNLOCKED(rw, RW_READER);
356 RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
357 RW_ASSERT(rw, RW_COUNT(rw) != 0);
358 decr = RW_READ_INCR;
359 }
360
361 /*
362 * Compute what we expect the new value of the lock to be. Only
363 * proceed to do direct handoff if there are waiters, and if the
364 * lock would become unowned.
365 */
366 for (;; owner = rw->rw_owner) {
367 new = (owner - decr);
368 if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
369 break;
370 if (RW_RELEASE(rw, owner, new))
371 return;
372 }
373
374 for (;;) {
375 /*
376 * Grab the turnstile chain lock. This gets the interlock
377 * on the sleep queue. Once we have that, we can adjust the
378 * waiter bits.
379 */
380 ts = turnstile_lookup(rw);
381 RW_DASSERT(rw, ts != NULL);
382
383 owner = rw->rw_owner;
384 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
385 rcnt = TS_WAITERS(ts, TS_READER_Q);
386
387 /*
388 * Give the lock away.
389 *
390 * If we are releasing a write lock, then wake all
391 * outstanding readers. If we are releasing a read
392 * lock, then wake one writer.
393 */
394 if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
395 RW_DASSERT(rw, wcnt != 0);
396 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
397 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
398
399 /*
400 * Give the lock to the longest waiting
401 * writer.
402 */
403 l = TS_FIRST(ts, TS_WRITER_Q);
404 new = (uintptr_t)l | RW_WRITE_LOCKED;
405
406 if (wcnt > 1)
407 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
408 else if (rcnt != 0)
409 new |= RW_HAS_WAITERS;
410
411 RW_GIVE(rw);
412 if (!RW_RELEASE(rw, owner, new)) {
413 /* Oops, try again. */
414 turnstile_exit(rw);
415 continue;
416 }
417
418 /* Wake the writer. */
419 turnstile_wakeup(ts, TS_WRITER_Q, wcnt, l);
420 } else {
421 RW_DASSERT(rw, rcnt != 0);
422 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
423
424 /*
425 * Give the lock to all blocked readers. We may
426 * retain one read hold if downgrading. If there
427 * is a writer waiting, new readers will be blocked
428 * out.
429 */
430 new = rcnt << RW_READ_COUNT_SHIFT;
431 if (wcnt != 0)
432 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
433
434 RW_GIVE(rw);
435 if (!RW_RELEASE(rw, owner, new)) {
436 /* Oops, try again. */
437 turnstile_exit(rw);
438 continue;
439 }
440
441 /* Wake up all sleeping readers. */
442 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
443 }
444
445 break;
446 }
447 }
448
449 /*
450 * rw_tryenter:
451 *
452 * Try to acquire a rwlock.
453 */
454 int
455 rw_tryenter(krwlock_t *rw, const krw_t op)
456 {
457 uintptr_t curthread, owner, incr, need_wait;
458
459 curthread = (uintptr_t)curlwp;
460
461 RW_ASSERT(rw, curthread != 0);
462 RW_WANTLOCK(rw, op);
463
464 if (op == RW_READER) {
465 incr = RW_READ_INCR;
466 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
467 } else {
468 RW_DASSERT(rw, op == RW_WRITER);
469 incr = curthread | RW_WRITE_LOCKED;
470 need_wait = RW_WRITE_LOCKED | RW_THREAD;
471 }
472
473 for (;;) {
474 owner = rw->rw_owner;
475 if ((owner & need_wait) == 0) {
476 if (RW_ACQUIRE(rw, owner, owner + incr)) {
477 /* Got it! */
478 break;
479 }
480 continue;
481 }
482 return 0;
483 }
484
485 RW_LOCKED(rw, op);
486 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
487 (op == RW_READER && RW_COUNT(rw) != 0));
488 return 1;
489 }
490
491 /*
492 * rw_downgrade:
493 *
494 * Downgrade a write lock to a read lock.
495 */
496 void
497 rw_downgrade(krwlock_t *rw)
498 {
499 uintptr_t owner, curthread, new;
500 turnstile_t *ts;
501 int rcnt, wcnt;
502
503 curthread = (uintptr_t)curlwp;
504 RW_ASSERT(rw, curthread != 0);
505 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
506 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
507 RW_UNLOCKED(rw, RW_WRITER);
508
509 owner = rw->rw_owner;
510 if ((owner & RW_HAS_WAITERS) == 0) {
511 /*
512 * There are no waiters, so we can do this the easy way.
513 * Try swapping us down to one read hold. If it fails, the
514 * lock condition has changed and we most likely now have
515 * waiters.
516 */
517 if (RW_RELEASE(rw, owner, RW_READ_INCR)) {
518 RW_LOCKED(rw, RW_READER);
519 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
520 RW_DASSERT(rw, RW_COUNT(rw) != 0);
521 return;
522 }
523 }
524
525 /*
526 * Grab the turnstile chain lock. This gets the interlock
527 * on the sleep queue. Once we have that, we can adjust the
528 * waiter bits.
529 */
530 for (;;) {
531 ts = turnstile_lookup(rw);
532 RW_DASSERT(rw, ts != NULL);
533
534 owner = rw->rw_owner;
535 rcnt = TS_WAITERS(ts, TS_READER_Q);
536 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
537
538 /*
539 * If there are no readers, just preserve the waiters
540 * bits, swap us down to one read hold and return.
541 */
542 if (rcnt == 0) {
543 RW_DASSERT(rw, wcnt != 0);
544 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
545 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
546
547 new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
548 if (!RW_RELEASE(rw, owner, new)) {
549 /* Oops, try again. */
550 turnstile_exit(ts);
551 continue;
552 }
553 break;
554 }
555
556 /*
557 * Give the lock to all blocked readers. We may
558 * retain one read hold if downgrading. If there
559 * is a writer waiting, new readers will be blocked
560 * out.
561 */
562 new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
563 if (wcnt != 0)
564 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
565
566 RW_GIVE(rw);
567 if (!RW_RELEASE(rw, owner, new)) {
568 /* Oops, try again. */
569 turnstile_exit(rw);
570 continue;
571 }
572
573 /* Wake up all sleeping readers. */
574 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
575 break;
576 }
577
578 RW_LOCKED(rw, RW_READER);
579 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
580 RW_DASSERT(rw, RW_COUNT(rw) != 0);
581 }
582
583 /*
584 * rw_tryupgrade:
585 *
586 * Try to upgrade a read lock to a write lock. We must be the
587 * only reader.
588 */
589 int
590 rw_tryupgrade(krwlock_t *rw)
591 {
592 uintptr_t owner, curthread, new;
593
594 curthread = (uintptr_t)curlwp;
595 RW_ASSERT(rw, curthread != 0);
596 RW_WANTLOCK(rw, RW_WRITER);
597
598 for (;;) {
599 owner = rw->rw_owner;
600 RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
601 if ((owner & RW_THREAD) != RW_READ_INCR) {
602 RW_ASSERT(rw, (owner & RW_THREAD) != 0);
603 return 0;
604 }
605 new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
606 if (RW_ACQUIRE(rw, owner, new))
607 break;
608 }
609
610 RW_UNLOCKED(rw, RW_READER);
611 RW_LOCKED(rw, RW_WRITER);
612 RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
613 RW_DASSERT(rw, RW_OWNER(rw) == curthread);
614
615 return 1;
616 }
617
618 /*
619 * rw_read_held:
620 *
621 * Returns true if the rwlock is held for reading. Must only be
622 * used for diagnostic assertions, and never be used to make
623 * decisions about how to use a rwlock.
624 */
625 int
626 rw_read_held(krwlock_t *rw)
627 {
628 uintptr_t owner;
629
630 if (panicstr != NULL)
631 return 1;
632
633 owner = rw->rw_owner;
634 return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
635 }
636
637 /*
638 * rw_write_held:
639 *
640 * Returns true if the rwlock is held for writing. Must only be
641 * used for diagnostic assertions, and never be used to make
642 * decisions about how to use a rwlock.
643 */
644 int
645 rw_write_held(krwlock_t *rw)
646 {
647
648 if (panicstr != NULL)
649 return 1;
650
651 return (rw->rw_owner & RW_WRITE_LOCKED) != 0;
652 }
653
654 /*
655 * rw_lock_held:
656 *
657 * Returns true if the rwlock is held for reading or writing. Must
658 * only be used for diagnostic assertions, and never be used to make
659 * decisions about how to use a rwlock.
660 */
661 int
662 rw_lock_held(krwlock_t *rw)
663 {
664
665 if (panicstr != NULL)
666 return 1;
667
668 return (rw->rw_owner & RW_THREAD) != 0;
669 }
670