Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.20
      1 /*	$NetBSD: kern_rwlock.c,v 1.20 2008/04/11 14:55:51 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Kernel reader/writer lock implementation, modeled after those
     41  * found in Solaris, a description of which can be found in:
     42  *
     43  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     44  *	    Richard McDougall.
     45  */
     46 
     47 #include <sys/cdefs.h>
     48 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.20 2008/04/11 14:55:51 ad Exp $");
     49 
     50 #include "opt_multiprocessor.h"
     51 
     52 #define	__RWLOCK_PRIVATE
     53 
     54 #include <sys/param.h>
     55 #include <sys/proc.h>
     56 #include <sys/rwlock.h>
     57 #include <sys/sched.h>
     58 #include <sys/sleepq.h>
     59 #include <sys/systm.h>
     60 #include <sys/lockdebug.h>
     61 #include <sys/cpu.h>
     62 #include <sys/atomic.h>
     63 #include <sys/lock.h>
     64 
     65 #include <dev/lockstat.h>
     66 
     67 /*
     68  * LOCKDEBUG
     69  */
     70 
     71 #if defined(LOCKDEBUG)
     72 
     73 #define	RW_WANTLOCK(rw, op)						\
     74 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     75 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     76 #define	RW_LOCKED(rw, op)						\
     77 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw),				\
     78 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     79 #define	RW_UNLOCKED(rw, op)						\
     80 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     81 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     82 #define	RW_DASSERT(rw, cond)						\
     83 do {									\
     84 	if (!(cond))							\
     85 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
     86 } while (/* CONSTCOND */ 0);
     87 
     88 #else	/* LOCKDEBUG */
     89 
     90 #define	RW_WANTLOCK(rw, op)	/* nothing */
     91 #define	RW_LOCKED(rw, op)	/* nothing */
     92 #define	RW_UNLOCKED(rw, op)	/* nothing */
     93 #define	RW_DASSERT(rw, cond)	/* nothing */
     94 
     95 #endif	/* LOCKDEBUG */
     96 
     97 /*
     98  * DIAGNOSTIC
     99  */
    100 
    101 #if defined(DIAGNOSTIC)
    102 
    103 #define	RW_ASSERT(rw, cond)						\
    104 do {									\
    105 	if (!(cond))							\
    106 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
    107 } while (/* CONSTCOND */ 0)
    108 
    109 #else
    110 
    111 #define	RW_ASSERT(rw, cond)	/* nothing */
    112 
    113 #endif	/* DIAGNOSTIC */
    114 
    115 #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
    116 #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_DEBUG) != 0)
    117 #if defined(LOCKDEBUG)
    118 #define	RW_INHERITDEBUG(new, old)	(new) |= (old) & RW_DEBUG
    119 #else /* defined(LOCKDEBUG) */
    120 #define	RW_INHERITDEBUG(new, old)	/* nothing */
    121 #endif /* defined(LOCKDEBUG) */
    122 
    123 static void	rw_abort(krwlock_t *, const char *, const char *);
    124 static void	rw_dump(volatile void *);
    125 static lwp_t	*rw_owner(wchan_t);
    126 
    127 static inline uintptr_t
    128 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    129 {
    130 
    131 	RW_INHERITDEBUG(n, o);
    132 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    133 	    (void *)o, (void *)n);
    134 }
    135 
    136 static inline void
    137 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    138 {
    139 
    140 	RW_INHERITDEBUG(n, o);
    141 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    142 	    (void *)n);
    143 	RW_DASSERT(rw, n == o);
    144 }
    145 
    146 /*
    147  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    148  */
    149 #ifdef LOCKDEBUG
    150 #undef	__HAVE_RW_STUBS
    151 #endif
    152 
    153 #ifndef __HAVE_RW_STUBS
    154 __strong_alias(rw_enter,rw_vector_enter);
    155 __strong_alias(rw_exit,rw_vector_exit);
    156 __strong_alias(rw_tryenter,rw_vector_tryenter);
    157 #endif
    158 
    159 lockops_t rwlock_lockops = {
    160 	"Reader / writer lock",
    161 	1,
    162 	rw_dump
    163 };
    164 
    165 syncobj_t rw_syncobj = {
    166 	SOBJ_SLEEPQ_SORTED,
    167 	turnstile_unsleep,
    168 	turnstile_changepri,
    169 	sleepq_lendpri,
    170 	rw_owner,
    171 };
    172 
    173 /*
    174  * rw_dump:
    175  *
    176  *	Dump the contents of a rwlock structure.
    177  */
    178 static void
    179 rw_dump(volatile void *cookie)
    180 {
    181 	volatile krwlock_t *rw = cookie;
    182 
    183 	printf_nolog("owner/count  : %#018lx flags    : %#018x\n",
    184 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    185 }
    186 
    187 /*
    188  * rw_abort:
    189  *
    190  *	Dump information about an error and panic the system.  This
    191  *	generates a lot of machine code in the DIAGNOSTIC case, so
    192  *	we ask the compiler to not inline it.
    193  */
    194 #if __GNUC_PREREQ__(3, 0)
    195 __attribute ((noinline))
    196 #endif
    197 static void
    198 rw_abort(krwlock_t *rw, const char *func, const char *msg)
    199 {
    200 
    201 	if (panicstr != NULL)
    202 		return;
    203 
    204 	LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
    205 }
    206 
    207 /*
    208  * rw_init:
    209  *
    210  *	Initialize a rwlock for use.
    211  */
    212 void
    213 rw_init(krwlock_t *rw)
    214 {
    215 	bool dodebug;
    216 
    217 	memset(rw, 0, sizeof(*rw));
    218 
    219 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
    220 	    (uintptr_t)__builtin_return_address(0));
    221 	RW_SETDEBUG(rw, dodebug);
    222 }
    223 
    224 /*
    225  * rw_destroy:
    226  *
    227  *	Tear down a rwlock.
    228  */
    229 void
    230 rw_destroy(krwlock_t *rw)
    231 {
    232 
    233 	RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
    234 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    235 }
    236 
    237 /*
    238  * rw_onproc:
    239  *
    240  *	Return true if an rwlock owner is running on a CPU in the system.
    241  *	If the target is waiting on the kernel big lock, then we must
    242  *	release it.  This is necessary to avoid deadlock.
    243  *
    244  *	Note that we can't use the rwlock owner field as an LWP pointer.  We
    245  *	don't have full control over the timing of our execution, and so the
    246  *	pointer could be completely invalid by the time we dereference it.
    247  */
    248 static int
    249 rw_onproc(uintptr_t owner, struct cpu_info **cip)
    250 {
    251 #ifdef MULTIPROCESSOR
    252 	CPU_INFO_ITERATOR cii;
    253 	struct cpu_info *ci;
    254 	lwp_t *l;
    255 
    256 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
    257 		return 0;
    258 	l = (lwp_t *)(owner & RW_THREAD);
    259 
    260 	/* See if the target is running on a CPU somewhere. */
    261 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    262 		goto run;
    263 	for (CPU_INFO_FOREACH(cii, ci))
    264 		if (ci->ci_curlwp == l)
    265 			goto run;
    266 
    267 	/* No: it may be safe to block now. */
    268 	*cip = NULL;
    269 	return 0;
    270 
    271  run:
    272  	/* Target is running; do we need to block? */
    273  	*cip = ci;
    274 	return ci->ci_biglock_wanted != l;
    275 #else
    276 	return 0;
    277 #endif	/* MULTIPROCESSOR */
    278 }
    279 
    280 /*
    281  * rw_vector_enter:
    282  *
    283  *	Acquire a rwlock.
    284  */
    285 void
    286 rw_vector_enter(krwlock_t *rw, const krw_t op)
    287 {
    288 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    289 	struct cpu_info *ci;
    290 	turnstile_t *ts;
    291 	int queue;
    292 	lwp_t *l;
    293 	LOCKSTAT_TIMER(slptime);
    294 	LOCKSTAT_TIMER(slpcnt);
    295 	LOCKSTAT_TIMER(spintime);
    296 	LOCKSTAT_COUNTER(spincnt);
    297 	LOCKSTAT_FLAG(lsflag);
    298 
    299 	l = curlwp;
    300 	curthread = (uintptr_t)l;
    301 
    302 	RW_ASSERT(rw, !cpu_intr_p());
    303 	RW_ASSERT(rw, curthread != 0);
    304 	RW_WANTLOCK(rw, op);
    305 
    306 	if (panicstr == NULL) {
    307 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    308 	}
    309 
    310 	/*
    311 	 * We play a slight trick here.  If we're a reader, we want
    312 	 * increment the read count.  If we're a writer, we want to
    313 	 * set the owner field and whe WRITE_LOCKED bit.
    314 	 *
    315 	 * In the latter case, we expect those bits to be zero,
    316 	 * therefore we can use an add operation to set them, which
    317 	 * means an add operation for both cases.
    318 	 */
    319 	if (__predict_true(op == RW_READER)) {
    320 		incr = RW_READ_INCR;
    321 		set_wait = RW_HAS_WAITERS;
    322 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    323 		queue = TS_READER_Q;
    324 	} else {
    325 		RW_DASSERT(rw, op == RW_WRITER);
    326 		incr = curthread | RW_WRITE_LOCKED;
    327 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    328 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    329 		queue = TS_WRITER_Q;
    330 	}
    331 
    332 	LOCKSTAT_ENTER(lsflag);
    333 
    334 	for (ci = NULL, owner = rw->rw_owner;;) {
    335 		/*
    336 		 * Read the lock owner field.  If the need-to-wait
    337 		 * indicator is clear, then try to acquire the lock.
    338 		 */
    339 		if ((owner & need_wait) == 0) {
    340 			next = rw_cas(rw, owner, (owner + incr) &
    341 			    ~RW_WRITE_WANTED);
    342 			if (__predict_true(next == owner)) {
    343 				/* Got it! */
    344 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    345 				membar_enter();
    346 #endif
    347 				break;
    348 			}
    349 
    350 			/*
    351 			 * Didn't get it -- spin around again (we'll
    352 			 * probably sleep on the next iteration).
    353 			 */
    354 			owner = next;
    355 			continue;
    356 		}
    357 
    358 		if (__predict_false(panicstr != NULL))
    359 			return;
    360 		if (__predict_false(RW_OWNER(rw) == curthread))
    361 			rw_abort(rw, __func__, "locking against myself");
    362 
    363 		/*
    364 		 * If the lock owner is running on another CPU, and
    365 		 * there are no existing waiters, then spin.
    366 		 */
    367 		if (rw_onproc(owner, &ci)) {
    368 			LOCKSTAT_START_TIMER(lsflag, spintime);
    369 			u_int count = SPINLOCK_BACKOFF_MIN;
    370 			do {
    371 				SPINLOCK_BACKOFF(count);
    372 				owner = rw->rw_owner;
    373 			} while (rw_onproc(owner, &ci));
    374 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    375 			LOCKSTAT_COUNT(spincnt, 1);
    376 			if ((owner & need_wait) == 0)
    377 				continue;
    378 		}
    379 
    380 		/*
    381 		 * Grab the turnstile chain lock.  Once we have that, we
    382 		 * can adjust the waiter bits and sleep queue.
    383 		 */
    384 		ts = turnstile_lookup(rw);
    385 
    386 		/*
    387 		 * Mark the rwlock as having waiters.  If the set fails,
    388 		 * then we may not need to sleep and should spin again.
    389 		 * Reload rw_owner because turnstile_lookup() may have
    390 		 * spun on the turnstile chain lock.
    391 		 */
    392 		owner = rw->rw_owner;
    393 		if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
    394 			turnstile_exit(rw);
    395 			continue;
    396 		}
    397 		next = rw_cas(rw, owner, owner | set_wait);
    398 		if (__predict_false(next != owner)) {
    399 			turnstile_exit(rw);
    400 			owner = next;
    401 			continue;
    402 		}
    403 
    404 		LOCKSTAT_START_TIMER(lsflag, slptime);
    405 		turnstile_block(ts, queue, rw, &rw_syncobj);
    406 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    407 		LOCKSTAT_COUNT(slpcnt, 1);
    408 
    409 		/*
    410 		 * No need for a memory barrier because of context switch.
    411 		 * If not handed the lock, then spin again.
    412 		 */
    413 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    414 			break;
    415 	}
    416 
    417 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    418 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    419 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    420 	LOCKSTAT_EXIT(lsflag);
    421 
    422 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    423 	    (op == RW_READER && RW_COUNT(rw) != 0));
    424 	RW_LOCKED(rw, op);
    425 }
    426 
    427 /*
    428  * rw_vector_exit:
    429  *
    430  *	Release a rwlock.
    431  */
    432 void
    433 rw_vector_exit(krwlock_t *rw)
    434 {
    435 	uintptr_t curthread, owner, decr, new, next;
    436 	turnstile_t *ts;
    437 	int rcnt, wcnt;
    438 	lwp_t *l;
    439 
    440 	curthread = (uintptr_t)curlwp;
    441 	RW_ASSERT(rw, curthread != 0);
    442 
    443 	if (__predict_false(panicstr != NULL))
    444 		return;
    445 
    446 	/*
    447 	 * Again, we use a trick.  Since we used an add operation to
    448 	 * set the required lock bits, we can use a subtract to clear
    449 	 * them, which makes the read-release and write-release path
    450 	 * the same.
    451 	 */
    452 	owner = rw->rw_owner;
    453 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    454 		RW_UNLOCKED(rw, RW_WRITER);
    455 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    456 		decr = curthread | RW_WRITE_LOCKED;
    457 	} else {
    458 		RW_UNLOCKED(rw, RW_READER);
    459 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    460 		decr = RW_READ_INCR;
    461 	}
    462 
    463 	/*
    464 	 * Compute what we expect the new value of the lock to be. Only
    465 	 * proceed to do direct handoff if there are waiters, and if the
    466 	 * lock would become unowned.
    467 	 */
    468 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    469 	membar_exit();
    470 #endif
    471 	for (;;) {
    472 		new = (owner - decr);
    473 		if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    474 			break;
    475 		next = rw_cas(rw, owner, new);
    476 		if (__predict_true(next == owner))
    477 			return;
    478 		owner = next;
    479 	}
    480 
    481 	/*
    482 	 * Grab the turnstile chain lock.  This gets the interlock
    483 	 * on the sleep queue.  Once we have that, we can adjust the
    484 	 * waiter bits.
    485 	 */
    486 	ts = turnstile_lookup(rw);
    487 	owner = rw->rw_owner;
    488 	RW_DASSERT(rw, ts != NULL);
    489 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    490 
    491 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    492 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    493 
    494 	/*
    495 	 * Give the lock away.
    496 	 *
    497 	 * If we are releasing a write lock, then prefer to wake all
    498 	 * outstanding readers.  Otherwise, wake one writer if there
    499 	 * are outstanding readers, or all writers if there are no
    500 	 * pending readers.  If waking one specific writer, the writer
    501 	 * is handed the lock here.  If waking multiple writers, we
    502 	 * set WRITE_WANTED to block out new readers, and let them
    503 	 * do the work of acquring the lock in rw_vector_enter().
    504 	 */
    505 	if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
    506 		RW_DASSERT(rw, wcnt != 0);
    507 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    508 
    509 		if (rcnt != 0) {
    510 			/* Give the lock to the longest waiting writer. */
    511 			l = TS_FIRST(ts, TS_WRITER_Q);
    512 			new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    513 			if (wcnt != 0)
    514 				new |= RW_WRITE_WANTED;
    515 			rw_swap(rw, owner, new);
    516 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    517 		} else {
    518 			/* Wake all writers and let them fight it out. */
    519 			rw_swap(rw, owner, RW_WRITE_WANTED);
    520 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    521 		}
    522 	} else {
    523 		RW_DASSERT(rw, rcnt != 0);
    524 
    525 		/*
    526 		 * Give the lock to all blocked readers.  If there
    527 		 * is a writer waiting, new readers that arrive
    528 		 * after the release will be blocked out.
    529 		 */
    530 		new = rcnt << RW_READ_COUNT_SHIFT;
    531 		if (wcnt != 0)
    532 			new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    533 
    534 		/* Wake up all sleeping readers. */
    535 		rw_swap(rw, owner, new);
    536 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    537 	}
    538 }
    539 
    540 /*
    541  * rw_vector_tryenter:
    542  *
    543  *	Try to acquire a rwlock.
    544  */
    545 int
    546 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    547 {
    548 	uintptr_t curthread, owner, incr, need_wait, next;
    549 
    550 	curthread = (uintptr_t)curlwp;
    551 
    552 	RW_ASSERT(rw, curthread != 0);
    553 
    554 	if (op == RW_READER) {
    555 		incr = RW_READ_INCR;
    556 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    557 	} else {
    558 		RW_DASSERT(rw, op == RW_WRITER);
    559 		incr = curthread | RW_WRITE_LOCKED;
    560 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    561 	}
    562 
    563 	for (owner = rw->rw_owner;; owner = next) {
    564 		owner = rw->rw_owner;
    565 		if (__predict_false((owner & need_wait) != 0))
    566 			return 0;
    567 		next = rw_cas(rw, owner, owner + incr);
    568 		if (__predict_true(next == owner)) {
    569 			/* Got it! */
    570 			break;
    571 		}
    572 	}
    573 
    574 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    575 	membar_enter();
    576 #endif
    577 	RW_WANTLOCK(rw, op);
    578 	RW_LOCKED(rw, op);
    579 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    580 	    (op == RW_READER && RW_COUNT(rw) != 0));
    581 
    582 	return 1;
    583 }
    584 
    585 /*
    586  * rw_downgrade:
    587  *
    588  *	Downgrade a write lock to a read lock.
    589  */
    590 void
    591 rw_downgrade(krwlock_t *rw)
    592 {
    593 	uintptr_t owner, curthread, new, next;
    594 	turnstile_t *ts;
    595 	int rcnt, wcnt;
    596 
    597 	curthread = (uintptr_t)curlwp;
    598 	RW_ASSERT(rw, curthread != 0);
    599 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    600 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    601 	RW_UNLOCKED(rw, RW_WRITER);
    602 
    603 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    604 	membar_producer();
    605 #endif
    606 
    607 	owner = rw->rw_owner;
    608 	if ((owner & RW_HAS_WAITERS) == 0) {
    609 		/*
    610 		 * There are no waiters, so we can do this the easy way.
    611 		 * Try swapping us down to one read hold.  If it fails, the
    612 		 * lock condition has changed and we most likely now have
    613 		 * waiters.
    614 		 */
    615 		next = rw_cas(rw, owner, RW_READ_INCR);
    616 		if (__predict_true(next == owner)) {
    617 			RW_LOCKED(rw, RW_READER);
    618 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    619 			RW_DASSERT(rw, RW_COUNT(rw) != 0);
    620 			return;
    621 		}
    622 		owner = next;
    623 	}
    624 
    625 	/*
    626 	 * Grab the turnstile chain lock.  This gets the interlock
    627 	 * on the sleep queue.  Once we have that, we can adjust the
    628 	 * waiter bits.
    629 	 */
    630 	for (;; owner = next) {
    631 		ts = turnstile_lookup(rw);
    632 		RW_DASSERT(rw, ts != NULL);
    633 
    634 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    635 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    636 
    637 		/*
    638 		 * If there are no readers, just preserve the waiters
    639 		 * bits, swap us down to one read hold and return.
    640 		 */
    641 		if (rcnt == 0) {
    642 			RW_DASSERT(rw, wcnt != 0);
    643 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    644 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    645 
    646 			new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    647 			next = rw_cas(rw, owner, new);
    648 			turnstile_exit(ts);
    649 			if (__predict_true(next == owner))
    650 				break;
    651 		} else {
    652 			/*
    653 			 * Give the lock to all blocked readers.  We may
    654 			 * retain one read hold if downgrading.  If there
    655 			 * is a writer waiting, new readers will be blocked
    656 			 * out.
    657 			 */
    658 			new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    659 			if (wcnt != 0)
    660 				new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    661 
    662 			next = rw_cas(rw, owner, new);
    663 			if (__predict_true(next == owner)) {
    664 				/* Wake up all sleeping readers. */
    665 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    666 				break;
    667 			}
    668 			turnstile_exit(ts);
    669 		}
    670 	}
    671 
    672 	RW_LOCKED(rw, RW_READER);
    673 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    674 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    675 }
    676 
    677 /*
    678  * rw_tryupgrade:
    679  *
    680  *	Try to upgrade a read lock to a write lock.  We must be the
    681  *	only reader.
    682  */
    683 int
    684 rw_tryupgrade(krwlock_t *rw)
    685 {
    686 	uintptr_t owner, curthread, new, next;
    687 
    688 	curthread = (uintptr_t)curlwp;
    689 	RW_ASSERT(rw, curthread != 0);
    690 	RW_WANTLOCK(rw, RW_WRITER);
    691 
    692 	for (owner = rw->rw_owner;; owner = next) {
    693 		RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
    694 		if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
    695 			RW_ASSERT(rw, (owner & RW_THREAD) != 0);
    696 			return 0;
    697 		}
    698 		new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    699 		next = rw_cas(rw, owner, new);
    700 		if (__predict_true(next == owner))
    701 			break;
    702 	}
    703 
    704 	RW_UNLOCKED(rw, RW_READER);
    705 	RW_LOCKED(rw, RW_WRITER);
    706 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    707 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    708 
    709 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    710 	membar_producer();
    711 #endif
    712 
    713 	return 1;
    714 }
    715 
    716 /*
    717  * rw_read_held:
    718  *
    719  *	Returns true if the rwlock is held for reading.  Must only be
    720  *	used for diagnostic assertions, and never be used to make
    721  * 	decisions about how to use a rwlock.
    722  */
    723 int
    724 rw_read_held(krwlock_t *rw)
    725 {
    726 	uintptr_t owner;
    727 
    728 	if (panicstr != NULL)
    729 		return 1;
    730 
    731 	owner = rw->rw_owner;
    732 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    733 }
    734 
    735 /*
    736  * rw_write_held:
    737  *
    738  *	Returns true if the rwlock is held for writing.  Must only be
    739  *	used for diagnostic assertions, and never be used to make
    740  *	decisions about how to use a rwlock.
    741  */
    742 int
    743 rw_write_held(krwlock_t *rw)
    744 {
    745 
    746 	if (panicstr != NULL)
    747 		return 1;
    748 
    749 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    750 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    751 }
    752 
    753 /*
    754  * rw_lock_held:
    755  *
    756  *	Returns true if the rwlock is held for reading or writing.  Must
    757  *	only be used for diagnostic assertions, and never be used to make
    758  *	decisions about how to use a rwlock.
    759  */
    760 int
    761 rw_lock_held(krwlock_t *rw)
    762 {
    763 
    764 	if (panicstr != NULL)
    765 		return 1;
    766 
    767 	return (rw->rw_owner & RW_THREAD) != 0;
    768 }
    769 
    770 /*
    771  * rw_owner:
    772  *
    773  *	Return the current owner of an RW lock, but only if it is write
    774  *	held.  Used for priority inheritance.
    775  */
    776 static lwp_t *
    777 rw_owner(wchan_t obj)
    778 {
    779 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    780 	uintptr_t owner = rw->rw_owner;
    781 
    782 	if ((owner & RW_WRITE_LOCKED) == 0)
    783 		return NULL;
    784 
    785 	return (void *)(owner & RW_THREAD);
    786 }
    787