kern_rwlock.c revision 1.25 1 /* $NetBSD: kern_rwlock.c,v 1.25 2008/05/31 13:15:21 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel reader/writer lock implementation, modeled after those
34 * found in Solaris, a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.25 2008/05/31 13:15:21 ad Exp $");
42
43 #define __RWLOCK_PRIVATE
44
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/sched.h>
49 #include <sys/sleepq.h>
50 #include <sys/systm.h>
51 #include <sys/lockdebug.h>
52 #include <sys/cpu.h>
53 #include <sys/atomic.h>
54 #include <sys/lock.h>
55
56 #include <dev/lockstat.h>
57
58 /*
59 * LOCKDEBUG
60 */
61
62 #if defined(LOCKDEBUG)
63
64 #define RW_WANTLOCK(rw, op, t) \
65 LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
66 (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
67 #define RW_LOCKED(rw, op) \
68 LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
69 (uintptr_t)__builtin_return_address(0), op == RW_READER);
70 #define RW_UNLOCKED(rw, op) \
71 LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
72 (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 #define RW_DASSERT(rw, cond) \
74 do { \
75 if (!(cond)) \
76 rw_abort(rw, __func__, "assertion failed: " #cond); \
77 } while (/* CONSTCOND */ 0);
78
79 #else /* LOCKDEBUG */
80
81 #define RW_WANTLOCK(rw, op, t) /* nothing */
82 #define RW_LOCKED(rw, op) /* nothing */
83 #define RW_UNLOCKED(rw, op) /* nothing */
84 #define RW_DASSERT(rw, cond) /* nothing */
85
86 #endif /* LOCKDEBUG */
87
88 /*
89 * DIAGNOSTIC
90 */
91
92 #if defined(DIAGNOSTIC)
93
94 #define RW_ASSERT(rw, cond) \
95 do { \
96 if (!(cond)) \
97 rw_abort(rw, __func__, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0)
99
100 #else
101
102 #define RW_ASSERT(rw, cond) /* nothing */
103
104 #endif /* DIAGNOSTIC */
105
106 #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
107 #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_DEBUG) != 0)
108 #if defined(LOCKDEBUG)
109 #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_DEBUG
110 #else /* defined(LOCKDEBUG) */
111 #define RW_INHERITDEBUG(new, old) /* nothing */
112 #endif /* defined(LOCKDEBUG) */
113
114 static void rw_abort(krwlock_t *, const char *, const char *);
115 static void rw_dump(volatile void *);
116 static lwp_t *rw_owner(wchan_t);
117
118 static inline uintptr_t
119 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
120 {
121
122 RW_INHERITDEBUG(n, o);
123 return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
124 (void *)o, (void *)n);
125 }
126
127 static inline void
128 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
129 {
130
131 RW_INHERITDEBUG(n, o);
132 n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
133 (void *)n);
134 RW_DASSERT(rw, n == o);
135 }
136
137 /*
138 * For platforms that do not provide stubs, or for the LOCKDEBUG case.
139 */
140 #ifdef LOCKDEBUG
141 #undef __HAVE_RW_STUBS
142 #endif
143
144 #ifndef __HAVE_RW_STUBS
145 __strong_alias(rw_enter,rw_vector_enter);
146 __strong_alias(rw_exit,rw_vector_exit);
147 __strong_alias(rw_tryenter,rw_vector_tryenter);
148 #endif
149
150 lockops_t rwlock_lockops = {
151 "Reader / writer lock",
152 LOCKOPS_SLEEP,
153 rw_dump
154 };
155
156 syncobj_t rw_syncobj = {
157 SOBJ_SLEEPQ_SORTED,
158 turnstile_unsleep,
159 turnstile_changepri,
160 sleepq_lendpri,
161 rw_owner,
162 };
163
164 /*
165 * rw_dump:
166 *
167 * Dump the contents of a rwlock structure.
168 */
169 static void
170 rw_dump(volatile void *cookie)
171 {
172 volatile krwlock_t *rw = cookie;
173
174 printf_nolog("owner/count : %#018lx flags : %#018x\n",
175 (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
176 }
177
178 /*
179 * rw_abort:
180 *
181 * Dump information about an error and panic the system. This
182 * generates a lot of machine code in the DIAGNOSTIC case, so
183 * we ask the compiler to not inline it.
184 */
185 #if __GNUC_PREREQ__(3, 0)
186 __attribute ((noinline))
187 #endif
188 static void
189 rw_abort(krwlock_t *rw, const char *func, const char *msg)
190 {
191
192 if (panicstr != NULL)
193 return;
194
195 LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
196 }
197
198 /*
199 * rw_init:
200 *
201 * Initialize a rwlock for use.
202 */
203 void
204 rw_init(krwlock_t *rw)
205 {
206 bool dodebug;
207
208 memset(rw, 0, sizeof(*rw));
209
210 dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
211 (uintptr_t)__builtin_return_address(0));
212 RW_SETDEBUG(rw, dodebug);
213 }
214
215 /*
216 * rw_destroy:
217 *
218 * Tear down a rwlock.
219 */
220 void
221 rw_destroy(krwlock_t *rw)
222 {
223
224 RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
225 LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
226 }
227
228 /*
229 * rw_onproc:
230 *
231 * Return true if an rwlock owner is running on a CPU in the system.
232 * If the target is waiting on the kernel big lock, then we must
233 * release it. This is necessary to avoid deadlock.
234 *
235 * Note that we can't use the rwlock owner field as an LWP pointer. We
236 * don't have full control over the timing of our execution, and so the
237 * pointer could be completely invalid by the time we dereference it.
238 */
239 static int
240 rw_onproc(uintptr_t owner, struct cpu_info **cip)
241 {
242 #ifdef MULTIPROCESSOR
243 CPU_INFO_ITERATOR cii;
244 struct cpu_info *ci;
245 lwp_t *l;
246
247 if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
248 return 0;
249 l = (lwp_t *)(owner & RW_THREAD);
250
251 /* See if the target is running on a CPU somewhere. */
252 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
253 goto run;
254 for (CPU_INFO_FOREACH(cii, ci))
255 if (ci->ci_curlwp == l)
256 goto run;
257
258 /* No: it may be safe to block now. */
259 *cip = NULL;
260 return 0;
261
262 run:
263 /* Target is running; do we need to block? */
264 *cip = ci;
265 return ci->ci_biglock_wanted != l;
266 #else
267 return 0;
268 #endif /* MULTIPROCESSOR */
269 }
270
271 /*
272 * rw_vector_enter:
273 *
274 * Acquire a rwlock.
275 */
276 void
277 rw_vector_enter(krwlock_t *rw, const krw_t op)
278 {
279 uintptr_t owner, incr, need_wait, set_wait, curthread, next;
280 struct cpu_info *ci;
281 turnstile_t *ts;
282 int queue;
283 lwp_t *l;
284 LOCKSTAT_TIMER(slptime);
285 LOCKSTAT_TIMER(slpcnt);
286 LOCKSTAT_TIMER(spintime);
287 LOCKSTAT_COUNTER(spincnt);
288 LOCKSTAT_FLAG(lsflag);
289
290 l = curlwp;
291 curthread = (uintptr_t)l;
292
293 RW_ASSERT(rw, !cpu_intr_p());
294 RW_ASSERT(rw, curthread != 0);
295 RW_WANTLOCK(rw, op, false);
296
297 if (panicstr == NULL) {
298 LOCKDEBUG_BARRIER(&kernel_lock, 1);
299 }
300
301 /*
302 * We play a slight trick here. If we're a reader, we want
303 * increment the read count. If we're a writer, we want to
304 * set the owner field and whe WRITE_LOCKED bit.
305 *
306 * In the latter case, we expect those bits to be zero,
307 * therefore we can use an add operation to set them, which
308 * means an add operation for both cases.
309 */
310 if (__predict_true(op == RW_READER)) {
311 incr = RW_READ_INCR;
312 set_wait = RW_HAS_WAITERS;
313 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
314 queue = TS_READER_Q;
315 } else {
316 RW_DASSERT(rw, op == RW_WRITER);
317 incr = curthread | RW_WRITE_LOCKED;
318 set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
319 need_wait = RW_WRITE_LOCKED | RW_THREAD;
320 queue = TS_WRITER_Q;
321 }
322
323 LOCKSTAT_ENTER(lsflag);
324
325 for (ci = NULL, owner = rw->rw_owner;;) {
326 /*
327 * Read the lock owner field. If the need-to-wait
328 * indicator is clear, then try to acquire the lock.
329 */
330 if ((owner & need_wait) == 0) {
331 next = rw_cas(rw, owner, (owner + incr) &
332 ~RW_WRITE_WANTED);
333 if (__predict_true(next == owner)) {
334 /* Got it! */
335 #ifndef __HAVE_ATOMIC_AS_MEMBAR
336 membar_enter();
337 #endif
338 break;
339 }
340
341 /*
342 * Didn't get it -- spin around again (we'll
343 * probably sleep on the next iteration).
344 */
345 owner = next;
346 continue;
347 }
348
349 if (__predict_false(panicstr != NULL))
350 return;
351 if (__predict_false(RW_OWNER(rw) == curthread))
352 rw_abort(rw, __func__, "locking against myself");
353
354 /*
355 * If the lock owner is running on another CPU, and
356 * there are no existing waiters, then spin.
357 */
358 if (rw_onproc(owner, &ci)) {
359 LOCKSTAT_START_TIMER(lsflag, spintime);
360 u_int count = SPINLOCK_BACKOFF_MIN;
361 do {
362 SPINLOCK_BACKOFF(count);
363 owner = rw->rw_owner;
364 } while (rw_onproc(owner, &ci));
365 LOCKSTAT_STOP_TIMER(lsflag, spintime);
366 LOCKSTAT_COUNT(spincnt, 1);
367 if ((owner & need_wait) == 0)
368 continue;
369 }
370
371 /*
372 * Grab the turnstile chain lock. Once we have that, we
373 * can adjust the waiter bits and sleep queue.
374 */
375 ts = turnstile_lookup(rw);
376
377 /*
378 * Mark the rwlock as having waiters. If the set fails,
379 * then we may not need to sleep and should spin again.
380 * Reload rw_owner because turnstile_lookup() may have
381 * spun on the turnstile chain lock.
382 */
383 owner = rw->rw_owner;
384 if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
385 turnstile_exit(rw);
386 continue;
387 }
388 next = rw_cas(rw, owner, owner | set_wait);
389 if (__predict_false(next != owner)) {
390 turnstile_exit(rw);
391 owner = next;
392 continue;
393 }
394
395 LOCKSTAT_START_TIMER(lsflag, slptime);
396 turnstile_block(ts, queue, rw, &rw_syncobj);
397 LOCKSTAT_STOP_TIMER(lsflag, slptime);
398 LOCKSTAT_COUNT(slpcnt, 1);
399
400 /*
401 * No need for a memory barrier because of context switch.
402 * If not handed the lock, then spin again.
403 */
404 if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
405 break;
406 }
407
408 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
409 (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
410 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
411 LOCKSTAT_EXIT(lsflag);
412
413 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
414 (op == RW_READER && RW_COUNT(rw) != 0));
415 RW_LOCKED(rw, op);
416 }
417
418 /*
419 * rw_vector_exit:
420 *
421 * Release a rwlock.
422 */
423 void
424 rw_vector_exit(krwlock_t *rw)
425 {
426 uintptr_t curthread, owner, decr, new, next;
427 turnstile_t *ts;
428 int rcnt, wcnt;
429 lwp_t *l;
430
431 curthread = (uintptr_t)curlwp;
432 RW_ASSERT(rw, curthread != 0);
433
434 if (__predict_false(panicstr != NULL))
435 return;
436
437 /*
438 * Again, we use a trick. Since we used an add operation to
439 * set the required lock bits, we can use a subtract to clear
440 * them, which makes the read-release and write-release path
441 * the same.
442 */
443 owner = rw->rw_owner;
444 if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
445 RW_UNLOCKED(rw, RW_WRITER);
446 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
447 decr = curthread | RW_WRITE_LOCKED;
448 } else {
449 RW_UNLOCKED(rw, RW_READER);
450 RW_ASSERT(rw, RW_COUNT(rw) != 0);
451 decr = RW_READ_INCR;
452 }
453
454 /*
455 * Compute what we expect the new value of the lock to be. Only
456 * proceed to do direct handoff if there are waiters, and if the
457 * lock would become unowned.
458 */
459 #ifndef __HAVE_ATOMIC_AS_MEMBAR
460 membar_exit();
461 #endif
462 for (;;) {
463 new = (owner - decr);
464 if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
465 break;
466 next = rw_cas(rw, owner, new);
467 if (__predict_true(next == owner))
468 return;
469 owner = next;
470 }
471
472 /*
473 * Grab the turnstile chain lock. This gets the interlock
474 * on the sleep queue. Once we have that, we can adjust the
475 * waiter bits.
476 */
477 ts = turnstile_lookup(rw);
478 owner = rw->rw_owner;
479 RW_DASSERT(rw, ts != NULL);
480 RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
481
482 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
483 rcnt = TS_WAITERS(ts, TS_READER_Q);
484
485 /*
486 * Give the lock away.
487 *
488 * If we are releasing a write lock, then prefer to wake all
489 * outstanding readers. Otherwise, wake one writer if there
490 * are outstanding readers, or all writers if there are no
491 * pending readers. If waking one specific writer, the writer
492 * is handed the lock here. If waking multiple writers, we
493 * set WRITE_WANTED to block out new readers, and let them
494 * do the work of acquring the lock in rw_vector_enter().
495 */
496 if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
497 RW_DASSERT(rw, wcnt != 0);
498 RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
499
500 if (rcnt != 0) {
501 /* Give the lock to the longest waiting writer. */
502 l = TS_FIRST(ts, TS_WRITER_Q);
503 new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
504 if (wcnt != 0)
505 new |= RW_WRITE_WANTED;
506 rw_swap(rw, owner, new);
507 turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
508 } else {
509 /* Wake all writers and let them fight it out. */
510 rw_swap(rw, owner, RW_WRITE_WANTED);
511 turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
512 }
513 } else {
514 RW_DASSERT(rw, rcnt != 0);
515
516 /*
517 * Give the lock to all blocked readers. If there
518 * is a writer waiting, new readers that arrive
519 * after the release will be blocked out.
520 */
521 new = rcnt << RW_READ_COUNT_SHIFT;
522 if (wcnt != 0)
523 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
524
525 /* Wake up all sleeping readers. */
526 rw_swap(rw, owner, new);
527 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
528 }
529 }
530
531 /*
532 * rw_vector_tryenter:
533 *
534 * Try to acquire a rwlock.
535 */
536 int
537 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
538 {
539 uintptr_t curthread, owner, incr, need_wait, next;
540
541 curthread = (uintptr_t)curlwp;
542
543 RW_ASSERT(rw, curthread != 0);
544
545 if (op == RW_READER) {
546 incr = RW_READ_INCR;
547 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
548 } else {
549 RW_DASSERT(rw, op == RW_WRITER);
550 incr = curthread | RW_WRITE_LOCKED;
551 need_wait = RW_WRITE_LOCKED | RW_THREAD;
552 }
553
554 for (owner = rw->rw_owner;; owner = next) {
555 owner = rw->rw_owner;
556 if (__predict_false((owner & need_wait) != 0))
557 return 0;
558 next = rw_cas(rw, owner, owner + incr);
559 if (__predict_true(next == owner)) {
560 /* Got it! */
561 break;
562 }
563 }
564
565 #ifndef __HAVE_ATOMIC_AS_MEMBAR
566 membar_enter();
567 #endif
568 RW_WANTLOCK(rw, op, true);
569 RW_LOCKED(rw, op);
570 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
571 (op == RW_READER && RW_COUNT(rw) != 0));
572
573 return 1;
574 }
575
576 /*
577 * rw_downgrade:
578 *
579 * Downgrade a write lock to a read lock.
580 */
581 void
582 rw_downgrade(krwlock_t *rw)
583 {
584 uintptr_t owner, curthread, new, next;
585 turnstile_t *ts;
586 int rcnt, wcnt;
587
588 curthread = (uintptr_t)curlwp;
589 RW_ASSERT(rw, curthread != 0);
590 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
591 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
592 RW_UNLOCKED(rw, RW_WRITER);
593
594 #ifndef __HAVE_ATOMIC_AS_MEMBAR
595 membar_producer();
596 #endif
597
598 owner = rw->rw_owner;
599 if ((owner & RW_HAS_WAITERS) == 0) {
600 /*
601 * There are no waiters, so we can do this the easy way.
602 * Try swapping us down to one read hold. If it fails, the
603 * lock condition has changed and we most likely now have
604 * waiters.
605 */
606 next = rw_cas(rw, owner, RW_READ_INCR);
607 if (__predict_true(next == owner)) {
608 RW_LOCKED(rw, RW_READER);
609 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
610 RW_DASSERT(rw, RW_COUNT(rw) != 0);
611 return;
612 }
613 owner = next;
614 }
615
616 /*
617 * Grab the turnstile chain lock. This gets the interlock
618 * on the sleep queue. Once we have that, we can adjust the
619 * waiter bits.
620 */
621 for (;; owner = next) {
622 ts = turnstile_lookup(rw);
623 RW_DASSERT(rw, ts != NULL);
624
625 rcnt = TS_WAITERS(ts, TS_READER_Q);
626 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
627
628 /*
629 * If there are no readers, just preserve the waiters
630 * bits, swap us down to one read hold and return.
631 */
632 if (rcnt == 0) {
633 RW_DASSERT(rw, wcnt != 0);
634 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
635 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
636
637 new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
638 next = rw_cas(rw, owner, new);
639 turnstile_exit(ts);
640 if (__predict_true(next == owner))
641 break;
642 } else {
643 /*
644 * Give the lock to all blocked readers. We may
645 * retain one read hold if downgrading. If there
646 * is a writer waiting, new readers will be blocked
647 * out.
648 */
649 new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
650 if (wcnt != 0)
651 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
652
653 next = rw_cas(rw, owner, new);
654 if (__predict_true(next == owner)) {
655 /* Wake up all sleeping readers. */
656 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
657 break;
658 }
659 turnstile_exit(ts);
660 }
661 }
662
663 RW_LOCKED(rw, RW_READER);
664 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
665 RW_DASSERT(rw, RW_COUNT(rw) != 0);
666 }
667
668 /*
669 * rw_tryupgrade:
670 *
671 * Try to upgrade a read lock to a write lock. We must be the
672 * only reader.
673 */
674 int
675 rw_tryupgrade(krwlock_t *rw)
676 {
677 uintptr_t owner, curthread, new, next;
678
679 curthread = (uintptr_t)curlwp;
680 RW_ASSERT(rw, curthread != 0);
681 RW_WANTLOCK(rw, RW_WRITER, true);
682
683 for (owner = rw->rw_owner;; owner = next) {
684 RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
685 if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
686 RW_ASSERT(rw, (owner & RW_THREAD) != 0);
687 return 0;
688 }
689 new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
690 next = rw_cas(rw, owner, new);
691 if (__predict_true(next == owner))
692 break;
693 }
694
695 RW_UNLOCKED(rw, RW_READER);
696 RW_LOCKED(rw, RW_WRITER);
697 RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
698 RW_DASSERT(rw, RW_OWNER(rw) == curthread);
699
700 #ifndef __HAVE_ATOMIC_AS_MEMBAR
701 membar_producer();
702 #endif
703
704 return 1;
705 }
706
707 /*
708 * rw_read_held:
709 *
710 * Returns true if the rwlock is held for reading. Must only be
711 * used for diagnostic assertions, and never be used to make
712 * decisions about how to use a rwlock.
713 */
714 int
715 rw_read_held(krwlock_t *rw)
716 {
717 uintptr_t owner;
718
719 if (panicstr != NULL)
720 return 1;
721 if (rw == NULL)
722 return 0;
723 owner = rw->rw_owner;
724 return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
725 }
726
727 /*
728 * rw_write_held:
729 *
730 * Returns true if the rwlock is held for writing. Must only be
731 * used for diagnostic assertions, and never be used to make
732 * decisions about how to use a rwlock.
733 */
734 int
735 rw_write_held(krwlock_t *rw)
736 {
737
738 if (panicstr != NULL)
739 return 1;
740 if (rw == NULL)
741 return 0;
742 return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
743 (RW_WRITE_LOCKED | (uintptr_t)curlwp);
744 }
745
746 /*
747 * rw_lock_held:
748 *
749 * Returns true if the rwlock is held for reading or writing. Must
750 * only be used for diagnostic assertions, and never be used to make
751 * decisions about how to use a rwlock.
752 */
753 int
754 rw_lock_held(krwlock_t *rw)
755 {
756
757 if (panicstr != NULL)
758 return 1;
759 if (rw == NULL)
760 return 0;
761 return (rw->rw_owner & RW_THREAD) != 0;
762 }
763
764 /*
765 * rw_owner:
766 *
767 * Return the current owner of an RW lock, but only if it is write
768 * held. Used for priority inheritance.
769 */
770 static lwp_t *
771 rw_owner(wchan_t obj)
772 {
773 krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
774 uintptr_t owner = rw->rw_owner;
775
776 if ((owner & RW_WRITE_LOCKED) == 0)
777 return NULL;
778
779 return (void *)(owner & RW_THREAD);
780 }
781