kern_rwlock.c revision 1.28 1 /* $NetBSD: kern_rwlock.c,v 1.28 2008/07/29 16:13:39 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel reader/writer lock implementation, modeled after those
34 * found in Solaris, a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.28 2008/07/29 16:13:39 thorpej Exp $");
42
43 #define __RWLOCK_PRIVATE
44
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/sched.h>
49 #include <sys/sleepq.h>
50 #include <sys/systm.h>
51 #include <sys/lockdebug.h>
52 #include <sys/cpu.h>
53 #include <sys/atomic.h>
54 #include <sys/lock.h>
55
56 #include <dev/lockstat.h>
57
58 /*
59 * LOCKDEBUG
60 */
61
62 #if defined(LOCKDEBUG)
63
64 #define RW_WANTLOCK(rw, op, t) \
65 LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
66 (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
67 #define RW_LOCKED(rw, op) \
68 LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
69 (uintptr_t)__builtin_return_address(0), op == RW_READER);
70 #define RW_UNLOCKED(rw, op) \
71 LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
72 (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 #define RW_DASSERT(rw, cond) \
74 do { \
75 if (!(cond)) \
76 rw_abort(rw, __func__, "assertion failed: " #cond); \
77 } while (/* CONSTCOND */ 0);
78
79 #else /* LOCKDEBUG */
80
81 #define RW_WANTLOCK(rw, op, t) /* nothing */
82 #define RW_LOCKED(rw, op) /* nothing */
83 #define RW_UNLOCKED(rw, op) /* nothing */
84 #define RW_DASSERT(rw, cond) /* nothing */
85
86 #endif /* LOCKDEBUG */
87
88 /*
89 * DIAGNOSTIC
90 */
91
92 #if defined(DIAGNOSTIC)
93
94 #define RW_ASSERT(rw, cond) \
95 do { \
96 if (!(cond)) \
97 rw_abort(rw, __func__, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0)
99
100 #else
101
102 #define RW_ASSERT(rw, cond) /* nothing */
103
104 #endif /* DIAGNOSTIC */
105
106 #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
107 #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_DEBUG) != 0)
108 #if defined(LOCKDEBUG)
109 #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_DEBUG
110 #else /* defined(LOCKDEBUG) */
111 #define RW_INHERITDEBUG(new, old) /* nothing */
112 #endif /* defined(LOCKDEBUG) */
113
114 static void rw_abort(krwlock_t *, const char *, const char *);
115 static void rw_dump(volatile void *);
116 static lwp_t *rw_owner(wchan_t);
117
118 static inline uintptr_t
119 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
120 {
121
122 RW_INHERITDEBUG(n, o);
123 return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
124 (void *)o, (void *)n);
125 }
126
127 static inline void
128 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
129 {
130
131 RW_INHERITDEBUG(n, o);
132 n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
133 (void *)n);
134 RW_DASSERT(rw, n == o);
135 }
136
137 /*
138 * For platforms that do not provide stubs, or for the LOCKDEBUG case.
139 */
140 #ifdef LOCKDEBUG
141 #undef __HAVE_RW_STUBS
142 #endif
143
144 #ifndef __HAVE_RW_STUBS
145 __strong_alias(rw_enter,rw_vector_enter);
146 __strong_alias(rw_exit,rw_vector_exit);
147 __strong_alias(rw_tryenter,rw_vector_tryenter);
148 #endif
149
150 lockops_t rwlock_lockops = {
151 "Reader / writer lock",
152 LOCKOPS_SLEEP,
153 rw_dump
154 };
155
156 syncobj_t rw_syncobj = {
157 SOBJ_SLEEPQ_SORTED,
158 turnstile_unsleep,
159 turnstile_changepri,
160 sleepq_lendpri,
161 rw_owner,
162 };
163
164 /*
165 * rw_dump:
166 *
167 * Dump the contents of a rwlock structure.
168 */
169 static void
170 rw_dump(volatile void *cookie)
171 {
172 volatile krwlock_t *rw = cookie;
173
174 printf_nolog("owner/count : %#018lx flags : %#018x\n",
175 (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
176 }
177
178 /*
179 * rw_abort:
180 *
181 * Dump information about an error and panic the system. This
182 * generates a lot of machine code in the DIAGNOSTIC case, so
183 * we ask the compiler to not inline it.
184 */
185 static void __noinline
186 rw_abort(krwlock_t *rw, const char *func, const char *msg)
187 {
188
189 if (panicstr != NULL)
190 return;
191
192 LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
193 }
194
195 /*
196 * rw_init:
197 *
198 * Initialize a rwlock for use.
199 */
200 void
201 rw_init(krwlock_t *rw)
202 {
203 bool dodebug;
204
205 memset(rw, 0, sizeof(*rw));
206
207 dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
208 (uintptr_t)__builtin_return_address(0));
209 RW_SETDEBUG(rw, dodebug);
210 }
211
212 /*
213 * rw_destroy:
214 *
215 * Tear down a rwlock.
216 */
217 void
218 rw_destroy(krwlock_t *rw)
219 {
220
221 RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
222 LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
223 }
224
225 /*
226 * rw_onproc:
227 *
228 * Return true if an rwlock owner is running on a CPU in the system.
229 * If the target is waiting on the kernel big lock, then we must
230 * release it. This is necessary to avoid deadlock.
231 *
232 * Note that we can't use the rwlock owner field as an LWP pointer. We
233 * don't have full control over the timing of our execution, and so the
234 * pointer could be completely invalid by the time we dereference it.
235 */
236 static int
237 rw_onproc(uintptr_t owner, struct cpu_info **cip)
238 {
239 #ifdef MULTIPROCESSOR
240 CPU_INFO_ITERATOR cii;
241 struct cpu_info *ci;
242 lwp_t *l;
243
244 if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
245 return 0;
246 l = (lwp_t *)(owner & RW_THREAD);
247
248 /* See if the target is running on a CPU somewhere. */
249 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
250 goto run;
251 for (CPU_INFO_FOREACH(cii, ci))
252 if (ci->ci_curlwp == l)
253 goto run;
254
255 /* No: it may be safe to block now. */
256 *cip = NULL;
257 return 0;
258
259 run:
260 /* Target is running; do we need to block? */
261 *cip = ci;
262 return ci->ci_biglock_wanted != l;
263 #else
264 return 0;
265 #endif /* MULTIPROCESSOR */
266 }
267
268 /*
269 * rw_vector_enter:
270 *
271 * Acquire a rwlock.
272 */
273 void
274 rw_vector_enter(krwlock_t *rw, const krw_t op)
275 {
276 uintptr_t owner, incr, need_wait, set_wait, curthread, next;
277 struct cpu_info *ci;
278 turnstile_t *ts;
279 int queue;
280 lwp_t *l;
281 LOCKSTAT_TIMER(slptime);
282 LOCKSTAT_TIMER(slpcnt);
283 LOCKSTAT_TIMER(spintime);
284 LOCKSTAT_COUNTER(spincnt);
285 LOCKSTAT_FLAG(lsflag);
286
287 l = curlwp;
288 curthread = (uintptr_t)l;
289
290 RW_ASSERT(rw, !cpu_intr_p());
291 RW_ASSERT(rw, curthread != 0);
292 RW_WANTLOCK(rw, op, false);
293
294 if (panicstr == NULL) {
295 LOCKDEBUG_BARRIER(&kernel_lock, 1);
296 }
297
298 /*
299 * We play a slight trick here. If we're a reader, we want
300 * increment the read count. If we're a writer, we want to
301 * set the owner field and whe WRITE_LOCKED bit.
302 *
303 * In the latter case, we expect those bits to be zero,
304 * therefore we can use an add operation to set them, which
305 * means an add operation for both cases.
306 */
307 if (__predict_true(op == RW_READER)) {
308 incr = RW_READ_INCR;
309 set_wait = RW_HAS_WAITERS;
310 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
311 queue = TS_READER_Q;
312 } else {
313 RW_DASSERT(rw, op == RW_WRITER);
314 incr = curthread | RW_WRITE_LOCKED;
315 set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
316 need_wait = RW_WRITE_LOCKED | RW_THREAD;
317 queue = TS_WRITER_Q;
318 }
319
320 LOCKSTAT_ENTER(lsflag);
321
322 for (ci = NULL, owner = rw->rw_owner;;) {
323 /*
324 * Read the lock owner field. If the need-to-wait
325 * indicator is clear, then try to acquire the lock.
326 */
327 if ((owner & need_wait) == 0) {
328 next = rw_cas(rw, owner, (owner + incr) &
329 ~RW_WRITE_WANTED);
330 if (__predict_true(next == owner)) {
331 /* Got it! */
332 #ifndef __HAVE_ATOMIC_AS_MEMBAR
333 membar_enter();
334 #endif
335 break;
336 }
337
338 /*
339 * Didn't get it -- spin around again (we'll
340 * probably sleep on the next iteration).
341 */
342 owner = next;
343 continue;
344 }
345
346 if (__predict_false(panicstr != NULL))
347 return;
348 if (__predict_false(RW_OWNER(rw) == curthread))
349 rw_abort(rw, __func__, "locking against myself");
350
351 /*
352 * If the lock owner is running on another CPU, and
353 * there are no existing waiters, then spin.
354 */
355 if (rw_onproc(owner, &ci)) {
356 LOCKSTAT_START_TIMER(lsflag, spintime);
357 u_int count = SPINLOCK_BACKOFF_MIN;
358 do {
359 SPINLOCK_BACKOFF(count);
360 owner = rw->rw_owner;
361 } while (rw_onproc(owner, &ci));
362 LOCKSTAT_STOP_TIMER(lsflag, spintime);
363 LOCKSTAT_COUNT(spincnt, 1);
364 if ((owner & need_wait) == 0)
365 continue;
366 }
367
368 /*
369 * Grab the turnstile chain lock. Once we have that, we
370 * can adjust the waiter bits and sleep queue.
371 */
372 ts = turnstile_lookup(rw);
373
374 /*
375 * Mark the rwlock as having waiters. If the set fails,
376 * then we may not need to sleep and should spin again.
377 * Reload rw_owner because turnstile_lookup() may have
378 * spun on the turnstile chain lock.
379 */
380 owner = rw->rw_owner;
381 if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
382 turnstile_exit(rw);
383 continue;
384 }
385 next = rw_cas(rw, owner, owner | set_wait);
386 if (__predict_false(next != owner)) {
387 turnstile_exit(rw);
388 owner = next;
389 continue;
390 }
391
392 LOCKSTAT_START_TIMER(lsflag, slptime);
393 turnstile_block(ts, queue, rw, &rw_syncobj);
394 LOCKSTAT_STOP_TIMER(lsflag, slptime);
395 LOCKSTAT_COUNT(slpcnt, 1);
396
397 /*
398 * No need for a memory barrier because of context switch.
399 * If not handed the lock, then spin again.
400 */
401 if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
402 break;
403 }
404
405 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
406 (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
407 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
408 LOCKSTAT_EXIT(lsflag);
409
410 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
411 (op == RW_READER && RW_COUNT(rw) != 0));
412 RW_LOCKED(rw, op);
413 }
414
415 /*
416 * rw_vector_exit:
417 *
418 * Release a rwlock.
419 */
420 void
421 rw_vector_exit(krwlock_t *rw)
422 {
423 uintptr_t curthread, owner, decr, new, next;
424 turnstile_t *ts;
425 int rcnt, wcnt;
426 lwp_t *l;
427
428 curthread = (uintptr_t)curlwp;
429 RW_ASSERT(rw, curthread != 0);
430
431 if (__predict_false(panicstr != NULL))
432 return;
433
434 /*
435 * Again, we use a trick. Since we used an add operation to
436 * set the required lock bits, we can use a subtract to clear
437 * them, which makes the read-release and write-release path
438 * the same.
439 */
440 owner = rw->rw_owner;
441 if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
442 RW_UNLOCKED(rw, RW_WRITER);
443 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
444 decr = curthread | RW_WRITE_LOCKED;
445 } else {
446 RW_UNLOCKED(rw, RW_READER);
447 RW_ASSERT(rw, RW_COUNT(rw) != 0);
448 decr = RW_READ_INCR;
449 }
450
451 /*
452 * Compute what we expect the new value of the lock to be. Only
453 * proceed to do direct handoff if there are waiters, and if the
454 * lock would become unowned.
455 */
456 #ifndef __HAVE_ATOMIC_AS_MEMBAR
457 membar_exit();
458 #endif
459 for (;;) {
460 new = (owner - decr);
461 if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
462 break;
463 next = rw_cas(rw, owner, new);
464 if (__predict_true(next == owner))
465 return;
466 owner = next;
467 }
468
469 /*
470 * Grab the turnstile chain lock. This gets the interlock
471 * on the sleep queue. Once we have that, we can adjust the
472 * waiter bits.
473 */
474 ts = turnstile_lookup(rw);
475 owner = rw->rw_owner;
476 RW_DASSERT(rw, ts != NULL);
477 RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
478
479 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
480 rcnt = TS_WAITERS(ts, TS_READER_Q);
481
482 /*
483 * Give the lock away.
484 *
485 * If we are releasing a write lock, then prefer to wake all
486 * outstanding readers. Otherwise, wake one writer if there
487 * are outstanding readers, or all writers if there are no
488 * pending readers. If waking one specific writer, the writer
489 * is handed the lock here. If waking multiple writers, we
490 * set WRITE_WANTED to block out new readers, and let them
491 * do the work of acquring the lock in rw_vector_enter().
492 */
493 if (rcnt == 0 || (decr == RW_READ_INCR && wcnt != 0)) {
494 RW_DASSERT(rw, wcnt != 0);
495 RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
496
497 if (rcnt != 0) {
498 /* Give the lock to the longest waiting writer. */
499 l = TS_FIRST(ts, TS_WRITER_Q);
500 new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
501 if (wcnt > 1)
502 new |= RW_WRITE_WANTED;
503 rw_swap(rw, owner, new);
504 turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
505 } else {
506 /* Wake all writers and let them fight it out. */
507 rw_swap(rw, owner, RW_WRITE_WANTED);
508 turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
509 }
510 } else {
511 RW_DASSERT(rw, rcnt != 0);
512
513 /*
514 * Give the lock to all blocked readers. If there
515 * is a writer waiting, new readers that arrive
516 * after the release will be blocked out.
517 */
518 new = rcnt << RW_READ_COUNT_SHIFT;
519 if (wcnt != 0)
520 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
521
522 /* Wake up all sleeping readers. */
523 rw_swap(rw, owner, new);
524 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
525 }
526 }
527
528 /*
529 * rw_vector_tryenter:
530 *
531 * Try to acquire a rwlock.
532 */
533 int
534 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
535 {
536 uintptr_t curthread, owner, incr, need_wait, next;
537
538 curthread = (uintptr_t)curlwp;
539
540 RW_ASSERT(rw, curthread != 0);
541
542 if (op == RW_READER) {
543 incr = RW_READ_INCR;
544 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
545 } else {
546 RW_DASSERT(rw, op == RW_WRITER);
547 incr = curthread | RW_WRITE_LOCKED;
548 need_wait = RW_WRITE_LOCKED | RW_THREAD;
549 }
550
551 for (owner = rw->rw_owner;; owner = next) {
552 owner = rw->rw_owner;
553 if (__predict_false((owner & need_wait) != 0))
554 return 0;
555 next = rw_cas(rw, owner, owner + incr);
556 if (__predict_true(next == owner)) {
557 /* Got it! */
558 break;
559 }
560 }
561
562 #ifndef __HAVE_ATOMIC_AS_MEMBAR
563 membar_enter();
564 #endif
565 RW_WANTLOCK(rw, op, true);
566 RW_LOCKED(rw, op);
567 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
568 (op == RW_READER && RW_COUNT(rw) != 0));
569
570 return 1;
571 }
572
573 /*
574 * rw_downgrade:
575 *
576 * Downgrade a write lock to a read lock.
577 */
578 void
579 rw_downgrade(krwlock_t *rw)
580 {
581 uintptr_t owner, curthread, new, next;
582 turnstile_t *ts;
583 int rcnt, wcnt;
584
585 curthread = (uintptr_t)curlwp;
586 RW_ASSERT(rw, curthread != 0);
587 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
588 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
589 RW_UNLOCKED(rw, RW_WRITER);
590
591 #ifndef __HAVE_ATOMIC_AS_MEMBAR
592 membar_producer();
593 #endif
594
595 owner = rw->rw_owner;
596 if ((owner & RW_HAS_WAITERS) == 0) {
597 /*
598 * There are no waiters, so we can do this the easy way.
599 * Try swapping us down to one read hold. If it fails, the
600 * lock condition has changed and we most likely now have
601 * waiters.
602 */
603 next = rw_cas(rw, owner, RW_READ_INCR);
604 if (__predict_true(next == owner)) {
605 RW_LOCKED(rw, RW_READER);
606 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
607 RW_DASSERT(rw, RW_COUNT(rw) != 0);
608 return;
609 }
610 owner = next;
611 }
612
613 /*
614 * Grab the turnstile chain lock. This gets the interlock
615 * on the sleep queue. Once we have that, we can adjust the
616 * waiter bits.
617 */
618 for (;; owner = next) {
619 ts = turnstile_lookup(rw);
620 RW_DASSERT(rw, ts != NULL);
621
622 rcnt = TS_WAITERS(ts, TS_READER_Q);
623 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
624
625 /*
626 * If there are no readers, just preserve the waiters
627 * bits, swap us down to one read hold and return.
628 */
629 if (rcnt == 0) {
630 RW_DASSERT(rw, wcnt != 0);
631 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
632 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
633
634 new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
635 next = rw_cas(rw, owner, new);
636 turnstile_exit(rw);
637 if (__predict_true(next == owner))
638 break;
639 } else {
640 /*
641 * Give the lock to all blocked readers. We may
642 * retain one read hold if downgrading. If there
643 * is a writer waiting, new readers will be blocked
644 * out.
645 */
646 new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
647 if (wcnt != 0)
648 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
649
650 next = rw_cas(rw, owner, new);
651 if (__predict_true(next == owner)) {
652 /* Wake up all sleeping readers. */
653 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
654 break;
655 }
656 turnstile_exit(rw);
657 }
658 }
659
660 RW_LOCKED(rw, RW_READER);
661 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
662 RW_DASSERT(rw, RW_COUNT(rw) != 0);
663 }
664
665 /*
666 * rw_tryupgrade:
667 *
668 * Try to upgrade a read lock to a write lock. We must be the
669 * only reader.
670 */
671 int
672 rw_tryupgrade(krwlock_t *rw)
673 {
674 uintptr_t owner, curthread, new, next;
675
676 curthread = (uintptr_t)curlwp;
677 RW_ASSERT(rw, curthread != 0);
678 RW_WANTLOCK(rw, RW_WRITER, true);
679
680 for (owner = rw->rw_owner;; owner = next) {
681 RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
682 if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
683 RW_ASSERT(rw, (owner & RW_THREAD) != 0);
684 return 0;
685 }
686 new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
687 next = rw_cas(rw, owner, new);
688 if (__predict_true(next == owner))
689 break;
690 }
691
692 RW_UNLOCKED(rw, RW_READER);
693 RW_LOCKED(rw, RW_WRITER);
694 RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
695 RW_DASSERT(rw, RW_OWNER(rw) == curthread);
696
697 #ifndef __HAVE_ATOMIC_AS_MEMBAR
698 membar_producer();
699 #endif
700
701 return 1;
702 }
703
704 /*
705 * rw_read_held:
706 *
707 * Returns true if the rwlock is held for reading. Must only be
708 * used for diagnostic assertions, and never be used to make
709 * decisions about how to use a rwlock.
710 */
711 int
712 rw_read_held(krwlock_t *rw)
713 {
714 uintptr_t owner;
715
716 if (panicstr != NULL)
717 return 1;
718 if (rw == NULL)
719 return 0;
720 owner = rw->rw_owner;
721 return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
722 }
723
724 /*
725 * rw_write_held:
726 *
727 * Returns true if the rwlock is held for writing. Must only be
728 * used for diagnostic assertions, and never be used to make
729 * decisions about how to use a rwlock.
730 */
731 int
732 rw_write_held(krwlock_t *rw)
733 {
734
735 if (panicstr != NULL)
736 return 1;
737 if (rw == NULL)
738 return 0;
739 return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
740 (RW_WRITE_LOCKED | (uintptr_t)curlwp);
741 }
742
743 /*
744 * rw_lock_held:
745 *
746 * Returns true if the rwlock is held for reading or writing. Must
747 * only be used for diagnostic assertions, and never be used to make
748 * decisions about how to use a rwlock.
749 */
750 int
751 rw_lock_held(krwlock_t *rw)
752 {
753
754 if (panicstr != NULL)
755 return 1;
756 if (rw == NULL)
757 return 0;
758 return (rw->rw_owner & RW_THREAD) != 0;
759 }
760
761 /*
762 * rw_owner:
763 *
764 * Return the current owner of an RW lock, but only if it is write
765 * held. Used for priority inheritance.
766 */
767 static lwp_t *
768 rw_owner(wchan_t obj)
769 {
770 krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
771 uintptr_t owner = rw->rw_owner;
772
773 if ((owner & RW_WRITE_LOCKED) == 0)
774 return NULL;
775
776 return (void *)(owner & RW_THREAD);
777 }
778