kern_rwlock.c revision 1.32 1 /* $NetBSD: kern_rwlock.c,v 1.32 2009/05/16 08:36:32 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel reader/writer lock implementation, modeled after those
34 * found in Solaris, a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.32 2009/05/16 08:36:32 yamt Exp $");
42
43 #define __RWLOCK_PRIVATE
44
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/sched.h>
49 #include <sys/sleepq.h>
50 #include <sys/systm.h>
51 #include <sys/lockdebug.h>
52 #include <sys/cpu.h>
53 #include <sys/atomic.h>
54 #include <sys/lock.h>
55
56 #include <dev/lockstat.h>
57
58 /*
59 * LOCKDEBUG
60 */
61
62 #if defined(LOCKDEBUG)
63
64 #define RW_WANTLOCK(rw, op, t) \
65 LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
66 (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
67 #define RW_LOCKED(rw, op) \
68 LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
69 (uintptr_t)__builtin_return_address(0), op == RW_READER);
70 #define RW_UNLOCKED(rw, op) \
71 LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
72 (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 #define RW_DASSERT(rw, cond) \
74 do { \
75 if (!(cond)) \
76 rw_abort(rw, __func__, "assertion failed: " #cond); \
77 } while (/* CONSTCOND */ 0);
78
79 #else /* LOCKDEBUG */
80
81 #define RW_WANTLOCK(rw, op, t) /* nothing */
82 #define RW_LOCKED(rw, op) /* nothing */
83 #define RW_UNLOCKED(rw, op) /* nothing */
84 #define RW_DASSERT(rw, cond) /* nothing */
85
86 #endif /* LOCKDEBUG */
87
88 /*
89 * DIAGNOSTIC
90 */
91
92 #if defined(DIAGNOSTIC)
93
94 #define RW_ASSERT(rw, cond) \
95 do { \
96 if (!(cond)) \
97 rw_abort(rw, __func__, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0)
99
100 #else
101
102 #define RW_ASSERT(rw, cond) /* nothing */
103
104 #endif /* DIAGNOSTIC */
105
106 #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
107 #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_DEBUG) != 0)
108 #if defined(LOCKDEBUG)
109 #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_DEBUG
110 #else /* defined(LOCKDEBUG) */
111 #define RW_INHERITDEBUG(new, old) /* nothing */
112 #endif /* defined(LOCKDEBUG) */
113
114 static void rw_abort(krwlock_t *, const char *, const char *);
115 static void rw_dump(volatile void *);
116 static lwp_t *rw_owner(wchan_t);
117
118 static inline uintptr_t
119 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
120 {
121
122 RW_INHERITDEBUG(n, o);
123 return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
124 (void *)o, (void *)n);
125 }
126
127 static inline void
128 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
129 {
130
131 RW_INHERITDEBUG(n, o);
132 n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
133 (void *)n);
134 RW_DASSERT(rw, n == o);
135 }
136
137 /*
138 * For platforms that do not provide stubs, or for the LOCKDEBUG case.
139 */
140 #ifdef LOCKDEBUG
141 #undef __HAVE_RW_STUBS
142 #endif
143
144 #ifndef __HAVE_RW_STUBS
145 __strong_alias(rw_enter,rw_vector_enter);
146 __strong_alias(rw_exit,rw_vector_exit);
147 __strong_alias(rw_tryenter,rw_vector_tryenter);
148 #endif
149
150 lockops_t rwlock_lockops = {
151 "Reader / writer lock",
152 LOCKOPS_SLEEP,
153 rw_dump
154 };
155
156 syncobj_t rw_syncobj = {
157 SOBJ_SLEEPQ_SORTED,
158 turnstile_unsleep,
159 turnstile_changepri,
160 sleepq_lendpri,
161 rw_owner,
162 };
163
164 /* Mutex cache */
165 #define RW_OBJ_MAGIC 0x85d3c85d
166 struct krwobj {
167 krwlock_t ro_lock;
168 u_int ro_magic;
169 u_int ro_refcnt;
170 };
171
172 static int rw_obj_ctor(void *, void *, int);
173
174 static pool_cache_t rw_obj_cache;
175
176 /*
177 * rw_dump:
178 *
179 * Dump the contents of a rwlock structure.
180 */
181 static void
182 rw_dump(volatile void *cookie)
183 {
184 volatile krwlock_t *rw = cookie;
185
186 printf_nolog("owner/count : %#018lx flags : %#018x\n",
187 (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
188 }
189
190 /*
191 * rw_abort:
192 *
193 * Dump information about an error and panic the system. This
194 * generates a lot of machine code in the DIAGNOSTIC case, so
195 * we ask the compiler to not inline it.
196 */
197 static void __noinline
198 rw_abort(krwlock_t *rw, const char *func, const char *msg)
199 {
200
201 if (panicstr != NULL)
202 return;
203
204 LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
205 }
206
207 /*
208 * rw_init:
209 *
210 * Initialize a rwlock for use.
211 */
212 void
213 rw_init(krwlock_t *rw)
214 {
215 bool dodebug;
216
217 memset(rw, 0, sizeof(*rw));
218
219 dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
220 (uintptr_t)__builtin_return_address(0));
221 RW_SETDEBUG(rw, dodebug);
222 }
223
224 /*
225 * rw_destroy:
226 *
227 * Tear down a rwlock.
228 */
229 void
230 rw_destroy(krwlock_t *rw)
231 {
232
233 RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
234 LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
235 }
236
237 /*
238 * rw_onproc:
239 *
240 * Return true if an rwlock owner is running on a CPU in the system.
241 * If the target is waiting on the kernel big lock, then we must
242 * release it. This is necessary to avoid deadlock.
243 *
244 * Note that we can't use the rwlock owner field as an LWP pointer. We
245 * don't have full control over the timing of our execution, and so the
246 * pointer could be completely invalid by the time we dereference it.
247 */
248 static int
249 rw_onproc(uintptr_t owner, struct cpu_info **cip)
250 {
251 #ifdef MULTIPROCESSOR
252 CPU_INFO_ITERATOR cii;
253 struct cpu_info *ci;
254 lwp_t *l;
255
256 if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
257 return 0;
258 l = (lwp_t *)(owner & RW_THREAD);
259
260 /* See if the target is running on a CPU somewhere. */
261 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
262 goto run;
263 for (CPU_INFO_FOREACH(cii, ci))
264 if (ci->ci_curlwp == l)
265 goto run;
266
267 /* No: it may be safe to block now. */
268 *cip = NULL;
269 return 0;
270
271 run:
272 /* Target is running; do we need to block? */
273 *cip = ci;
274 return ci->ci_biglock_wanted != l;
275 #else
276 return 0;
277 #endif /* MULTIPROCESSOR */
278 }
279
280 /*
281 * rw_vector_enter:
282 *
283 * Acquire a rwlock.
284 */
285 void
286 rw_vector_enter(krwlock_t *rw, const krw_t op)
287 {
288 uintptr_t owner, incr, need_wait, set_wait, curthread, next;
289 struct cpu_info *ci;
290 turnstile_t *ts;
291 int queue;
292 lwp_t *l;
293 LOCKSTAT_TIMER(slptime);
294 LOCKSTAT_TIMER(slpcnt);
295 LOCKSTAT_TIMER(spintime);
296 LOCKSTAT_COUNTER(spincnt);
297 LOCKSTAT_FLAG(lsflag);
298
299 l = curlwp;
300 curthread = (uintptr_t)l;
301
302 RW_ASSERT(rw, !cpu_intr_p());
303 RW_ASSERT(rw, curthread != 0);
304 RW_WANTLOCK(rw, op, false);
305
306 if (panicstr == NULL) {
307 LOCKDEBUG_BARRIER(&kernel_lock, 1);
308 }
309
310 /*
311 * We play a slight trick here. If we're a reader, we want
312 * increment the read count. If we're a writer, we want to
313 * set the owner field and whe WRITE_LOCKED bit.
314 *
315 * In the latter case, we expect those bits to be zero,
316 * therefore we can use an add operation to set them, which
317 * means an add operation for both cases.
318 */
319 if (__predict_true(op == RW_READER)) {
320 incr = RW_READ_INCR;
321 set_wait = RW_HAS_WAITERS;
322 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
323 queue = TS_READER_Q;
324 } else {
325 RW_DASSERT(rw, op == RW_WRITER);
326 incr = curthread | RW_WRITE_LOCKED;
327 set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
328 need_wait = RW_WRITE_LOCKED | RW_THREAD;
329 queue = TS_WRITER_Q;
330 }
331
332 LOCKSTAT_ENTER(lsflag);
333
334 for (ci = NULL, owner = rw->rw_owner;;) {
335 /*
336 * Read the lock owner field. If the need-to-wait
337 * indicator is clear, then try to acquire the lock.
338 */
339 if ((owner & need_wait) == 0) {
340 next = rw_cas(rw, owner, (owner + incr) &
341 ~RW_WRITE_WANTED);
342 if (__predict_true(next == owner)) {
343 /* Got it! */
344 membar_enter();
345 break;
346 }
347
348 /*
349 * Didn't get it -- spin around again (we'll
350 * probably sleep on the next iteration).
351 */
352 owner = next;
353 continue;
354 }
355
356 if (__predict_false(panicstr != NULL))
357 return;
358 if (__predict_false(RW_OWNER(rw) == curthread))
359 rw_abort(rw, __func__, "locking against myself");
360
361 /*
362 * If the lock owner is running on another CPU, and
363 * there are no existing waiters, then spin.
364 */
365 if (rw_onproc(owner, &ci)) {
366 LOCKSTAT_START_TIMER(lsflag, spintime);
367 u_int count = SPINLOCK_BACKOFF_MIN;
368 do {
369 SPINLOCK_BACKOFF(count);
370 owner = rw->rw_owner;
371 } while (rw_onproc(owner, &ci));
372 LOCKSTAT_STOP_TIMER(lsflag, spintime);
373 LOCKSTAT_COUNT(spincnt, 1);
374 if ((owner & need_wait) == 0)
375 continue;
376 }
377
378 /*
379 * Grab the turnstile chain lock. Once we have that, we
380 * can adjust the waiter bits and sleep queue.
381 */
382 ts = turnstile_lookup(rw);
383
384 /*
385 * Mark the rwlock as having waiters. If the set fails,
386 * then we may not need to sleep and should spin again.
387 * Reload rw_owner because turnstile_lookup() may have
388 * spun on the turnstile chain lock.
389 */
390 owner = rw->rw_owner;
391 if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
392 turnstile_exit(rw);
393 continue;
394 }
395 next = rw_cas(rw, owner, owner | set_wait);
396 if (__predict_false(next != owner)) {
397 turnstile_exit(rw);
398 owner = next;
399 continue;
400 }
401
402 LOCKSTAT_START_TIMER(lsflag, slptime);
403 turnstile_block(ts, queue, rw, &rw_syncobj);
404 LOCKSTAT_STOP_TIMER(lsflag, slptime);
405 LOCKSTAT_COUNT(slpcnt, 1);
406
407 /*
408 * No need for a memory barrier because of context switch.
409 * If not handed the lock, then spin again.
410 */
411 if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
412 break;
413 }
414
415 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
416 (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
417 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
418 LOCKSTAT_EXIT(lsflag);
419
420 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
421 (op == RW_READER && RW_COUNT(rw) != 0));
422 RW_LOCKED(rw, op);
423 }
424
425 /*
426 * rw_vector_exit:
427 *
428 * Release a rwlock.
429 */
430 void
431 rw_vector_exit(krwlock_t *rw)
432 {
433 uintptr_t curthread, owner, decr, new, next;
434 turnstile_t *ts;
435 int rcnt, wcnt;
436 lwp_t *l;
437
438 curthread = (uintptr_t)curlwp;
439 RW_ASSERT(rw, curthread != 0);
440
441 if (__predict_false(panicstr != NULL))
442 return;
443
444 /*
445 * Again, we use a trick. Since we used an add operation to
446 * set the required lock bits, we can use a subtract to clear
447 * them, which makes the read-release and write-release path
448 * the same.
449 */
450 owner = rw->rw_owner;
451 if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
452 RW_UNLOCKED(rw, RW_WRITER);
453 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
454 decr = curthread | RW_WRITE_LOCKED;
455 } else {
456 RW_UNLOCKED(rw, RW_READER);
457 RW_ASSERT(rw, RW_COUNT(rw) != 0);
458 decr = RW_READ_INCR;
459 }
460
461 /*
462 * Compute what we expect the new value of the lock to be. Only
463 * proceed to do direct handoff if there are waiters, and if the
464 * lock would become unowned.
465 */
466 membar_exit();
467 for (;;) {
468 new = (owner - decr);
469 if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
470 break;
471 next = rw_cas(rw, owner, new);
472 if (__predict_true(next == owner))
473 return;
474 owner = next;
475 }
476
477 /*
478 * Grab the turnstile chain lock. This gets the interlock
479 * on the sleep queue. Once we have that, we can adjust the
480 * waiter bits.
481 */
482 ts = turnstile_lookup(rw);
483 owner = rw->rw_owner;
484 RW_DASSERT(rw, ts != NULL);
485 RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
486
487 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
488 rcnt = TS_WAITERS(ts, TS_READER_Q);
489
490 /*
491 * Give the lock away.
492 *
493 * If we are releasing a write lock, then prefer to wake all
494 * outstanding readers. Otherwise, wake one writer if there
495 * are outstanding readers, or all writers if there are no
496 * pending readers. If waking one specific writer, the writer
497 * is handed the lock here. If waking multiple writers, we
498 * set WRITE_WANTED to block out new readers, and let them
499 * do the work of acquring the lock in rw_vector_enter().
500 */
501 if (rcnt == 0 || decr == RW_READ_INCR) {
502 RW_DASSERT(rw, wcnt != 0);
503 RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
504
505 if (rcnt != 0) {
506 /* Give the lock to the longest waiting writer. */
507 l = TS_FIRST(ts, TS_WRITER_Q);
508 new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
509 if (wcnt > 1)
510 new |= RW_WRITE_WANTED;
511 rw_swap(rw, owner, new);
512 turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
513 } else {
514 /* Wake all writers and let them fight it out. */
515 rw_swap(rw, owner, RW_WRITE_WANTED);
516 turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
517 }
518 } else {
519 RW_DASSERT(rw, rcnt != 0);
520
521 /*
522 * Give the lock to all blocked readers. If there
523 * is a writer waiting, new readers that arrive
524 * after the release will be blocked out.
525 */
526 new = rcnt << RW_READ_COUNT_SHIFT;
527 if (wcnt != 0)
528 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
529
530 /* Wake up all sleeping readers. */
531 rw_swap(rw, owner, new);
532 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
533 }
534 }
535
536 /*
537 * rw_vector_tryenter:
538 *
539 * Try to acquire a rwlock.
540 */
541 int
542 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
543 {
544 uintptr_t curthread, owner, incr, need_wait, next;
545
546 curthread = (uintptr_t)curlwp;
547
548 RW_ASSERT(rw, curthread != 0);
549
550 if (op == RW_READER) {
551 incr = RW_READ_INCR;
552 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
553 } else {
554 RW_DASSERT(rw, op == RW_WRITER);
555 incr = curthread | RW_WRITE_LOCKED;
556 need_wait = RW_WRITE_LOCKED | RW_THREAD;
557 }
558
559 for (owner = rw->rw_owner;; owner = next) {
560 owner = rw->rw_owner;
561 if (__predict_false((owner & need_wait) != 0))
562 return 0;
563 next = rw_cas(rw, owner, owner + incr);
564 if (__predict_true(next == owner)) {
565 /* Got it! */
566 membar_enter();
567 break;
568 }
569 }
570
571 RW_WANTLOCK(rw, op, true);
572 RW_LOCKED(rw, op);
573 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
574 (op == RW_READER && RW_COUNT(rw) != 0));
575
576 return 1;
577 }
578
579 /*
580 * rw_downgrade:
581 *
582 * Downgrade a write lock to a read lock.
583 */
584 void
585 rw_downgrade(krwlock_t *rw)
586 {
587 uintptr_t owner, curthread, new, next;
588 turnstile_t *ts;
589 int rcnt, wcnt;
590
591 curthread = (uintptr_t)curlwp;
592 RW_ASSERT(rw, curthread != 0);
593 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
594 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
595 RW_UNLOCKED(rw, RW_WRITER);
596
597 membar_producer();
598 owner = rw->rw_owner;
599 if ((owner & RW_HAS_WAITERS) == 0) {
600 /*
601 * There are no waiters, so we can do this the easy way.
602 * Try swapping us down to one read hold. If it fails, the
603 * lock condition has changed and we most likely now have
604 * waiters.
605 */
606 next = rw_cas(rw, owner, RW_READ_INCR);
607 if (__predict_true(next == owner)) {
608 RW_LOCKED(rw, RW_READER);
609 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
610 RW_DASSERT(rw, RW_COUNT(rw) != 0);
611 return;
612 }
613 owner = next;
614 }
615
616 /*
617 * Grab the turnstile chain lock. This gets the interlock
618 * on the sleep queue. Once we have that, we can adjust the
619 * waiter bits.
620 */
621 for (;; owner = next) {
622 ts = turnstile_lookup(rw);
623 RW_DASSERT(rw, ts != NULL);
624
625 rcnt = TS_WAITERS(ts, TS_READER_Q);
626 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
627
628 /*
629 * If there are no readers, just preserve the waiters
630 * bits, swap us down to one read hold and return.
631 */
632 if (rcnt == 0) {
633 RW_DASSERT(rw, wcnt != 0);
634 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
635 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
636
637 new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
638 next = rw_cas(rw, owner, new);
639 turnstile_exit(rw);
640 if (__predict_true(next == owner))
641 break;
642 } else {
643 /*
644 * Give the lock to all blocked readers. We may
645 * retain one read hold if downgrading. If there
646 * is a writer waiting, new readers will be blocked
647 * out.
648 */
649 new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
650 if (wcnt != 0)
651 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
652
653 next = rw_cas(rw, owner, new);
654 if (__predict_true(next == owner)) {
655 /* Wake up all sleeping readers. */
656 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
657 break;
658 }
659 turnstile_exit(rw);
660 }
661 }
662
663 RW_WANTLOCK(rw, RW_READER, false);
664 RW_LOCKED(rw, RW_READER);
665 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
666 RW_DASSERT(rw, RW_COUNT(rw) != 0);
667 }
668
669 /*
670 * rw_tryupgrade:
671 *
672 * Try to upgrade a read lock to a write lock. We must be the
673 * only reader.
674 */
675 int
676 rw_tryupgrade(krwlock_t *rw)
677 {
678 uintptr_t owner, curthread, new, next;
679
680 curthread = (uintptr_t)curlwp;
681 RW_ASSERT(rw, curthread != 0);
682 RW_ASSERT(rw, rw_read_held(rw));
683
684 for (owner = rw->rw_owner;; owner = next) {
685 RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
686 if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
687 RW_ASSERT(rw, (owner & RW_THREAD) != 0);
688 return 0;
689 }
690 new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
691 next = rw_cas(rw, owner, new);
692 if (__predict_true(next == owner)) {
693 membar_producer();
694 break;
695 }
696 }
697
698 RW_UNLOCKED(rw, RW_READER);
699 RW_WANTLOCK(rw, RW_WRITER, true);
700 RW_LOCKED(rw, RW_WRITER);
701 RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
702 RW_DASSERT(rw, RW_OWNER(rw) == curthread);
703
704 return 1;
705 }
706
707 /*
708 * rw_read_held:
709 *
710 * Returns true if the rwlock is held for reading. Must only be
711 * used for diagnostic assertions, and never be used to make
712 * decisions about how to use a rwlock.
713 */
714 int
715 rw_read_held(krwlock_t *rw)
716 {
717 uintptr_t owner;
718
719 if (panicstr != NULL)
720 return 1;
721 if (rw == NULL)
722 return 0;
723 owner = rw->rw_owner;
724 return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
725 }
726
727 /*
728 * rw_write_held:
729 *
730 * Returns true if the rwlock is held for writing. Must only be
731 * used for diagnostic assertions, and never be used to make
732 * decisions about how to use a rwlock.
733 */
734 int
735 rw_write_held(krwlock_t *rw)
736 {
737
738 if (panicstr != NULL)
739 return 1;
740 if (rw == NULL)
741 return 0;
742 return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
743 (RW_WRITE_LOCKED | (uintptr_t)curlwp);
744 }
745
746 /*
747 * rw_lock_held:
748 *
749 * Returns true if the rwlock is held for reading or writing. Must
750 * only be used for diagnostic assertions, and never be used to make
751 * decisions about how to use a rwlock.
752 */
753 int
754 rw_lock_held(krwlock_t *rw)
755 {
756
757 if (panicstr != NULL)
758 return 1;
759 if (rw == NULL)
760 return 0;
761 return (rw->rw_owner & RW_THREAD) != 0;
762 }
763
764 /*
765 * rw_owner:
766 *
767 * Return the current owner of an RW lock, but only if it is write
768 * held. Used for priority inheritance.
769 */
770 static lwp_t *
771 rw_owner(wchan_t obj)
772 {
773 krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
774 uintptr_t owner = rw->rw_owner;
775
776 if ((owner & RW_WRITE_LOCKED) == 0)
777 return NULL;
778
779 return (void *)(owner & RW_THREAD);
780 }
781
782 /*
783 * rw_obj_init:
784 *
785 * Initialize the rw object store.
786 */
787 void
788 rw_obj_init(void)
789 {
790
791 rw_obj_cache = pool_cache_init(sizeof(struct krwobj),
792 coherency_unit, 0, 0, "rwlock", NULL, IPL_NONE, rw_obj_ctor,
793 NULL, NULL);
794 }
795
796 /*
797 * rw_obj_ctor:
798 *
799 * Initialize a new lock for the cache.
800 */
801 static int
802 rw_obj_ctor(void *arg, void *obj, int flags)
803 {
804 struct krwobj * ro = obj;
805
806 ro->ro_magic = RW_OBJ_MAGIC;
807
808 return 0;
809 }
810
811 /*
812 * rw_obj_alloc:
813 *
814 * Allocate a single lock object.
815 */
816 krwlock_t *
817 rw_obj_alloc(void)
818 {
819 struct krwobj *ro;
820
821 ro = pool_cache_get(rw_obj_cache, PR_WAITOK);
822 rw_init(&ro->ro_lock);
823 ro->ro_refcnt = 1;
824
825 return (krwlock_t *)ro;
826 }
827
828 /*
829 * rw_obj_hold:
830 *
831 * Add a single reference to a lock object. A reference to the object
832 * must already be held, and must be held across this call.
833 */
834 void
835 rw_obj_hold(krwlock_t *lock)
836 {
837 struct krwobj *ro = (struct krwobj *)lock;
838
839 KASSERT(ro->ro_magic == RW_OBJ_MAGIC);
840 KASSERT(ro->ro_refcnt > 0);
841
842 atomic_inc_uint(&ro->ro_refcnt);
843 }
844
845 /*
846 * rw_obj_free:
847 *
848 * Drop a reference from a lock object. If the last reference is being
849 * dropped, free the object and return true. Otherwise, return false.
850 */
851 bool
852 rw_obj_free(krwlock_t *lock)
853 {
854 struct krwobj *ro = (struct krwobj *)lock;
855
856 KASSERT(ro->ro_magic == RW_OBJ_MAGIC);
857 KASSERT(ro->ro_refcnt > 0);
858
859 if (atomic_dec_uint_nv(&ro->ro_refcnt) > 0) {
860 return false;
861 }
862 rw_destroy(&ro->ro_lock);
863 pool_cache_put(rw_obj_cache, ro);
864 return true;
865 }
866