kern_rwlock.c revision 1.38 1 /* $NetBSD: kern_rwlock.c,v 1.38 2012/02/25 22:32:44 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel reader/writer lock implementation, modeled after those
34 * found in Solaris, a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.38 2012/02/25 22:32:44 rmind Exp $");
42
43 #define __RWLOCK_PRIVATE
44
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/sched.h>
49 #include <sys/sleepq.h>
50 #include <sys/systm.h>
51 #include <sys/lockdebug.h>
52 #include <sys/cpu.h>
53 #include <sys/atomic.h>
54 #include <sys/lock.h>
55
56 #include <dev/lockstat.h>
57
58 /*
59 * LOCKDEBUG
60 */
61
62 #if defined(LOCKDEBUG)
63
64 #define RW_WANTLOCK(rw, op, t) \
65 LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
66 (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
67 #define RW_LOCKED(rw, op) \
68 LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
69 (uintptr_t)__builtin_return_address(0), op == RW_READER);
70 #define RW_UNLOCKED(rw, op) \
71 LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
72 (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 #define RW_DASSERT(rw, cond) \
74 do { \
75 if (!(cond)) \
76 rw_abort(rw, __func__, "assertion failed: " #cond); \
77 } while (/* CONSTCOND */ 0);
78
79 #else /* LOCKDEBUG */
80
81 #define RW_WANTLOCK(rw, op, t) /* nothing */
82 #define RW_LOCKED(rw, op) /* nothing */
83 #define RW_UNLOCKED(rw, op) /* nothing */
84 #define RW_DASSERT(rw, cond) /* nothing */
85
86 #endif /* LOCKDEBUG */
87
88 /*
89 * DIAGNOSTIC
90 */
91
92 #if defined(DIAGNOSTIC)
93
94 #define RW_ASSERT(rw, cond) \
95 do { \
96 if (!(cond)) \
97 rw_abort(rw, __func__, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0)
99
100 #else
101
102 #define RW_ASSERT(rw, cond) /* nothing */
103
104 #endif /* DIAGNOSTIC */
105
106 #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
107 #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
108 #if defined(LOCKDEBUG)
109 #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_NODEBUG
110 #else /* defined(LOCKDEBUG) */
111 #define RW_INHERITDEBUG(new, old) /* nothing */
112 #endif /* defined(LOCKDEBUG) */
113
114 static void rw_abort(krwlock_t *, const char *, const char *);
115 static void rw_dump(volatile void *);
116 static lwp_t *rw_owner(wchan_t);
117
118 static inline uintptr_t
119 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
120 {
121
122 RW_INHERITDEBUG(n, o);
123 return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
124 (void *)o, (void *)n);
125 }
126
127 static inline void
128 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
129 {
130
131 RW_INHERITDEBUG(n, o);
132 n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
133 (void *)n);
134 RW_DASSERT(rw, n == o);
135 }
136
137 /*
138 * For platforms that do not provide stubs, or for the LOCKDEBUG case.
139 */
140 #ifdef LOCKDEBUG
141 #undef __HAVE_RW_STUBS
142 #endif
143
144 #ifndef __HAVE_RW_STUBS
145 __strong_alias(rw_enter,rw_vector_enter);
146 __strong_alias(rw_exit,rw_vector_exit);
147 __strong_alias(rw_tryenter,rw_vector_tryenter);
148 #endif
149
150 lockops_t rwlock_lockops = {
151 "Reader / writer lock",
152 LOCKOPS_SLEEP,
153 rw_dump
154 };
155
156 syncobj_t rw_syncobj = {
157 SOBJ_SLEEPQ_SORTED,
158 turnstile_unsleep,
159 turnstile_changepri,
160 sleepq_lendpri,
161 rw_owner,
162 };
163
164 /*
165 * rw_dump:
166 *
167 * Dump the contents of a rwlock structure.
168 */
169 static void
170 rw_dump(volatile void *cookie)
171 {
172 volatile krwlock_t *rw = cookie;
173
174 printf_nolog("owner/count : %#018lx flags : %#018x\n",
175 (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
176 }
177
178 /*
179 * rw_abort:
180 *
181 * Dump information about an error and panic the system. This
182 * generates a lot of machine code in the DIAGNOSTIC case, so
183 * we ask the compiler to not inline it.
184 */
185 static void __noinline
186 rw_abort(krwlock_t *rw, const char *func, const char *msg)
187 {
188
189 if (panicstr != NULL)
190 return;
191
192 LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
193 }
194
195 /*
196 * rw_init:
197 *
198 * Initialize a rwlock for use.
199 */
200 void
201 rw_init(krwlock_t *rw)
202 {
203 bool dodebug;
204
205 memset(rw, 0, sizeof(*rw));
206
207 dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
208 (uintptr_t)__builtin_return_address(0));
209 RW_SETDEBUG(rw, dodebug);
210 }
211
212 /*
213 * rw_destroy:
214 *
215 * Tear down a rwlock.
216 */
217 void
218 rw_destroy(krwlock_t *rw)
219 {
220
221 RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
222 LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
223 }
224
225 /*
226 * rw_oncpu:
227 *
228 * Return true if an rwlock owner is running on a CPU in the system.
229 * If the target is waiting on the kernel big lock, then we must
230 * release it. This is necessary to avoid deadlock.
231 */
232 static bool
233 rw_oncpu(uintptr_t owner)
234 {
235 #ifdef MULTIPROCESSOR
236 struct cpu_info *ci;
237 lwp_t *l;
238
239 KASSERT(kpreempt_disabled());
240
241 if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
242 return false;
243 }
244
245 /*
246 * See lwp_dtor() why dereference of the LWP pointer is safe.
247 * We must have kernel preemption disabled for that.
248 */
249 l = (lwp_t *)(owner & RW_THREAD);
250 ci = l->l_cpu;
251
252 if (ci && ci->ci_curlwp == l) {
253 /* Target is running; do we need to block? */
254 return (ci->ci_biglock_wanted != l);
255 }
256 #endif
257 /* Not running. It may be safe to block now. */
258 return false;
259 }
260
261 /*
262 * rw_vector_enter:
263 *
264 * Acquire a rwlock.
265 */
266 void
267 rw_vector_enter(krwlock_t *rw, const krw_t op)
268 {
269 uintptr_t owner, incr, need_wait, set_wait, curthread, next;
270 turnstile_t *ts;
271 int queue;
272 lwp_t *l;
273 LOCKSTAT_TIMER(slptime);
274 LOCKSTAT_TIMER(slpcnt);
275 LOCKSTAT_TIMER(spintime);
276 LOCKSTAT_COUNTER(spincnt);
277 LOCKSTAT_FLAG(lsflag);
278
279 l = curlwp;
280 curthread = (uintptr_t)l;
281
282 RW_ASSERT(rw, !cpu_intr_p());
283 RW_ASSERT(rw, curthread != 0);
284 RW_WANTLOCK(rw, op, false);
285
286 if (panicstr == NULL) {
287 LOCKDEBUG_BARRIER(&kernel_lock, 1);
288 }
289
290 /*
291 * We play a slight trick here. If we're a reader, we want
292 * increment the read count. If we're a writer, we want to
293 * set the owner field and whe WRITE_LOCKED bit.
294 *
295 * In the latter case, we expect those bits to be zero,
296 * therefore we can use an add operation to set them, which
297 * means an add operation for both cases.
298 */
299 if (__predict_true(op == RW_READER)) {
300 incr = RW_READ_INCR;
301 set_wait = RW_HAS_WAITERS;
302 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
303 queue = TS_READER_Q;
304 } else {
305 RW_DASSERT(rw, op == RW_WRITER);
306 incr = curthread | RW_WRITE_LOCKED;
307 set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
308 need_wait = RW_WRITE_LOCKED | RW_THREAD;
309 queue = TS_WRITER_Q;
310 }
311
312 LOCKSTAT_ENTER(lsflag);
313
314 KPREEMPT_DISABLE(curlwp);
315 for (owner = rw->rw_owner; ;) {
316 /*
317 * Read the lock owner field. If the need-to-wait
318 * indicator is clear, then try to acquire the lock.
319 */
320 if ((owner & need_wait) == 0) {
321 next = rw_cas(rw, owner, (owner + incr) &
322 ~RW_WRITE_WANTED);
323 if (__predict_true(next == owner)) {
324 /* Got it! */
325 membar_enter();
326 break;
327 }
328
329 /*
330 * Didn't get it -- spin around again (we'll
331 * probably sleep on the next iteration).
332 */
333 owner = next;
334 continue;
335 }
336 if (__predict_false(panicstr != NULL)) {
337 kpreempt_enable();
338 return;
339 }
340 if (__predict_false(RW_OWNER(rw) == curthread)) {
341 rw_abort(rw, __func__, "locking against myself");
342 }
343 /*
344 * If the lock owner is running on another CPU, and
345 * there are no existing waiters, then spin.
346 */
347 if (rw_oncpu(owner)) {
348 LOCKSTAT_START_TIMER(lsflag, spintime);
349 u_int count = SPINLOCK_BACKOFF_MIN;
350 do {
351 KPREEMPT_ENABLE(curlwp);
352 SPINLOCK_BACKOFF(count);
353 KPREEMPT_DISABLE(curlwp);
354 owner = rw->rw_owner;
355 } while (rw_oncpu(owner));
356 LOCKSTAT_STOP_TIMER(lsflag, spintime);
357 LOCKSTAT_COUNT(spincnt, 1);
358 if ((owner & need_wait) == 0)
359 continue;
360 }
361
362 /*
363 * Grab the turnstile chain lock. Once we have that, we
364 * can adjust the waiter bits and sleep queue.
365 */
366 ts = turnstile_lookup(rw);
367
368 /*
369 * Mark the rwlock as having waiters. If the set fails,
370 * then we may not need to sleep and should spin again.
371 * Reload rw_owner because turnstile_lookup() may have
372 * spun on the turnstile chain lock.
373 */
374 owner = rw->rw_owner;
375 if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
376 turnstile_exit(rw);
377 continue;
378 }
379 next = rw_cas(rw, owner, owner | set_wait);
380 if (__predict_false(next != owner)) {
381 turnstile_exit(rw);
382 owner = next;
383 continue;
384 }
385
386 LOCKSTAT_START_TIMER(lsflag, slptime);
387 turnstile_block(ts, queue, rw, &rw_syncobj);
388 LOCKSTAT_STOP_TIMER(lsflag, slptime);
389 LOCKSTAT_COUNT(slpcnt, 1);
390
391 /*
392 * No need for a memory barrier because of context switch.
393 * If not handed the lock, then spin again.
394 */
395 if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
396 break;
397 }
398 KPREEMPT_ENABLE(curlwp);
399
400 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
401 (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
402 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
403 LOCKSTAT_EXIT(lsflag);
404
405 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
406 (op == RW_READER && RW_COUNT(rw) != 0));
407 RW_LOCKED(rw, op);
408 }
409
410 /*
411 * rw_vector_exit:
412 *
413 * Release a rwlock.
414 */
415 void
416 rw_vector_exit(krwlock_t *rw)
417 {
418 uintptr_t curthread, owner, decr, new, next;
419 turnstile_t *ts;
420 int rcnt, wcnt;
421 lwp_t *l;
422
423 curthread = (uintptr_t)curlwp;
424 RW_ASSERT(rw, curthread != 0);
425
426 if (__predict_false(panicstr != NULL))
427 return;
428
429 /*
430 * Again, we use a trick. Since we used an add operation to
431 * set the required lock bits, we can use a subtract to clear
432 * them, which makes the read-release and write-release path
433 * the same.
434 */
435 owner = rw->rw_owner;
436 if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
437 RW_UNLOCKED(rw, RW_WRITER);
438 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
439 decr = curthread | RW_WRITE_LOCKED;
440 } else {
441 RW_UNLOCKED(rw, RW_READER);
442 RW_ASSERT(rw, RW_COUNT(rw) != 0);
443 decr = RW_READ_INCR;
444 }
445
446 /*
447 * Compute what we expect the new value of the lock to be. Only
448 * proceed to do direct handoff if there are waiters, and if the
449 * lock would become unowned.
450 */
451 membar_exit();
452 for (;;) {
453 new = (owner - decr);
454 if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
455 break;
456 next = rw_cas(rw, owner, new);
457 if (__predict_true(next == owner))
458 return;
459 owner = next;
460 }
461
462 /*
463 * Grab the turnstile chain lock. This gets the interlock
464 * on the sleep queue. Once we have that, we can adjust the
465 * waiter bits.
466 */
467 ts = turnstile_lookup(rw);
468 owner = rw->rw_owner;
469 RW_DASSERT(rw, ts != NULL);
470 RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
471
472 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
473 rcnt = TS_WAITERS(ts, TS_READER_Q);
474
475 /*
476 * Give the lock away.
477 *
478 * If we are releasing a write lock, then prefer to wake all
479 * outstanding readers. Otherwise, wake one writer if there
480 * are outstanding readers, or all writers if there are no
481 * pending readers. If waking one specific writer, the writer
482 * is handed the lock here. If waking multiple writers, we
483 * set WRITE_WANTED to block out new readers, and let them
484 * do the work of acquring the lock in rw_vector_enter().
485 */
486 if (rcnt == 0 || decr == RW_READ_INCR) {
487 RW_DASSERT(rw, wcnt != 0);
488 RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
489
490 if (rcnt != 0) {
491 /* Give the lock to the longest waiting writer. */
492 l = TS_FIRST(ts, TS_WRITER_Q);
493 new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
494 if (wcnt > 1)
495 new |= RW_WRITE_WANTED;
496 rw_swap(rw, owner, new);
497 turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
498 } else {
499 /* Wake all writers and let them fight it out. */
500 rw_swap(rw, owner, RW_WRITE_WANTED);
501 turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
502 }
503 } else {
504 RW_DASSERT(rw, rcnt != 0);
505
506 /*
507 * Give the lock to all blocked readers. If there
508 * is a writer waiting, new readers that arrive
509 * after the release will be blocked out.
510 */
511 new = rcnt << RW_READ_COUNT_SHIFT;
512 if (wcnt != 0)
513 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
514
515 /* Wake up all sleeping readers. */
516 rw_swap(rw, owner, new);
517 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
518 }
519 }
520
521 /*
522 * rw_vector_tryenter:
523 *
524 * Try to acquire a rwlock.
525 */
526 int
527 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
528 {
529 uintptr_t curthread, owner, incr, need_wait, next;
530
531 curthread = (uintptr_t)curlwp;
532
533 RW_ASSERT(rw, curthread != 0);
534
535 if (op == RW_READER) {
536 incr = RW_READ_INCR;
537 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
538 } else {
539 RW_DASSERT(rw, op == RW_WRITER);
540 incr = curthread | RW_WRITE_LOCKED;
541 need_wait = RW_WRITE_LOCKED | RW_THREAD;
542 }
543
544 for (owner = rw->rw_owner;; owner = next) {
545 owner = rw->rw_owner;
546 if (__predict_false((owner & need_wait) != 0))
547 return 0;
548 next = rw_cas(rw, owner, owner + incr);
549 if (__predict_true(next == owner)) {
550 /* Got it! */
551 membar_enter();
552 break;
553 }
554 }
555
556 RW_WANTLOCK(rw, op, true);
557 RW_LOCKED(rw, op);
558 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
559 (op == RW_READER && RW_COUNT(rw) != 0));
560
561 return 1;
562 }
563
564 /*
565 * rw_downgrade:
566 *
567 * Downgrade a write lock to a read lock.
568 */
569 void
570 rw_downgrade(krwlock_t *rw)
571 {
572 uintptr_t owner, curthread, new, next;
573 turnstile_t *ts;
574 int rcnt, wcnt;
575
576 curthread = (uintptr_t)curlwp;
577 RW_ASSERT(rw, curthread != 0);
578 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
579 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
580 RW_UNLOCKED(rw, RW_WRITER);
581
582 membar_producer();
583 owner = rw->rw_owner;
584 if ((owner & RW_HAS_WAITERS) == 0) {
585 /*
586 * There are no waiters, so we can do this the easy way.
587 * Try swapping us down to one read hold. If it fails, the
588 * lock condition has changed and we most likely now have
589 * waiters.
590 */
591 next = rw_cas(rw, owner, RW_READ_INCR);
592 if (__predict_true(next == owner)) {
593 RW_LOCKED(rw, RW_READER);
594 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
595 RW_DASSERT(rw, RW_COUNT(rw) != 0);
596 return;
597 }
598 owner = next;
599 }
600
601 /*
602 * Grab the turnstile chain lock. This gets the interlock
603 * on the sleep queue. Once we have that, we can adjust the
604 * waiter bits.
605 */
606 for (;; owner = next) {
607 ts = turnstile_lookup(rw);
608 RW_DASSERT(rw, ts != NULL);
609
610 rcnt = TS_WAITERS(ts, TS_READER_Q);
611 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
612
613 /*
614 * If there are no readers, just preserve the waiters
615 * bits, swap us down to one read hold and return.
616 */
617 if (rcnt == 0) {
618 RW_DASSERT(rw, wcnt != 0);
619 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
620 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
621
622 new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
623 next = rw_cas(rw, owner, new);
624 turnstile_exit(rw);
625 if (__predict_true(next == owner))
626 break;
627 } else {
628 /*
629 * Give the lock to all blocked readers. We may
630 * retain one read hold if downgrading. If there
631 * is a writer waiting, new readers will be blocked
632 * out.
633 */
634 new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
635 if (wcnt != 0)
636 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
637
638 next = rw_cas(rw, owner, new);
639 if (__predict_true(next == owner)) {
640 /* Wake up all sleeping readers. */
641 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
642 break;
643 }
644 turnstile_exit(rw);
645 }
646 }
647
648 RW_WANTLOCK(rw, RW_READER, false);
649 RW_LOCKED(rw, RW_READER);
650 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
651 RW_DASSERT(rw, RW_COUNT(rw) != 0);
652 }
653
654 /*
655 * rw_tryupgrade:
656 *
657 * Try to upgrade a read lock to a write lock. We must be the
658 * only reader.
659 */
660 int
661 rw_tryupgrade(krwlock_t *rw)
662 {
663 uintptr_t owner, curthread, new, next;
664
665 curthread = (uintptr_t)curlwp;
666 RW_ASSERT(rw, curthread != 0);
667 RW_ASSERT(rw, rw_read_held(rw));
668
669 for (owner = rw->rw_owner;; owner = next) {
670 RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
671 if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
672 RW_ASSERT(rw, (owner & RW_THREAD) != 0);
673 return 0;
674 }
675 new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
676 next = rw_cas(rw, owner, new);
677 if (__predict_true(next == owner)) {
678 membar_producer();
679 break;
680 }
681 }
682
683 RW_UNLOCKED(rw, RW_READER);
684 RW_WANTLOCK(rw, RW_WRITER, true);
685 RW_LOCKED(rw, RW_WRITER);
686 RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
687 RW_DASSERT(rw, RW_OWNER(rw) == curthread);
688
689 return 1;
690 }
691
692 /*
693 * rw_read_held:
694 *
695 * Returns true if the rwlock is held for reading. Must only be
696 * used for diagnostic assertions, and never be used to make
697 * decisions about how to use a rwlock.
698 */
699 int
700 rw_read_held(krwlock_t *rw)
701 {
702 uintptr_t owner;
703
704 if (panicstr != NULL)
705 return 1;
706 if (rw == NULL)
707 return 0;
708 owner = rw->rw_owner;
709 return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
710 }
711
712 /*
713 * rw_write_held:
714 *
715 * Returns true if the rwlock is held for writing. Must only be
716 * used for diagnostic assertions, and never be used to make
717 * decisions about how to use a rwlock.
718 */
719 int
720 rw_write_held(krwlock_t *rw)
721 {
722
723 if (panicstr != NULL)
724 return 1;
725 if (rw == NULL)
726 return 0;
727 return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
728 (RW_WRITE_LOCKED | (uintptr_t)curlwp);
729 }
730
731 /*
732 * rw_lock_held:
733 *
734 * Returns true if the rwlock is held for reading or writing. Must
735 * only be used for diagnostic assertions, and never be used to make
736 * decisions about how to use a rwlock.
737 */
738 int
739 rw_lock_held(krwlock_t *rw)
740 {
741
742 if (panicstr != NULL)
743 return 1;
744 if (rw == NULL)
745 return 0;
746 return (rw->rw_owner & RW_THREAD) != 0;
747 }
748
749 /*
750 * rw_owner:
751 *
752 * Return the current owner of an RW lock, but only if it is write
753 * held. Used for priority inheritance.
754 */
755 static lwp_t *
756 rw_owner(wchan_t obj)
757 {
758 krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
759 uintptr_t owner = rw->rw_owner;
760
761 if ((owner & RW_WRITE_LOCKED) == 0)
762 return NULL;
763
764 return (void *)(owner & RW_THREAD);
765 }
766