kern_rwlock.c revision 1.49 1 /* $NetBSD: kern_rwlock.c,v 1.49 2018/01/30 07:52:22 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel reader/writer lock implementation, modeled after those
34 * found in Solaris, a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.49 2018/01/30 07:52:22 ozaki-r Exp $");
42
43 #define __RWLOCK_PRIVATE
44
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/sched.h>
49 #include <sys/sleepq.h>
50 #include <sys/systm.h>
51 #include <sys/lockdebug.h>
52 #include <sys/cpu.h>
53 #include <sys/atomic.h>
54 #include <sys/lock.h>
55
56 #include <dev/lockstat.h>
57
58 /*
59 * LOCKDEBUG
60 */
61
62 #if defined(LOCKDEBUG)
63
64 #define RW_WANTLOCK(rw, op) \
65 LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
66 (uintptr_t)__builtin_return_address(0), op == RW_READER);
67 #define RW_LOCKED(rw, op) \
68 LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
69 (uintptr_t)__builtin_return_address(0), op == RW_READER);
70 #define RW_UNLOCKED(rw, op) \
71 LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
72 (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 #define RW_DASSERT(rw, cond) \
74 do { \
75 if (!(cond)) \
76 rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
77 } while (/* CONSTCOND */ 0);
78
79 #else /* LOCKDEBUG */
80
81 #define RW_WANTLOCK(rw, op) /* nothing */
82 #define RW_LOCKED(rw, op) /* nothing */
83 #define RW_UNLOCKED(rw, op) /* nothing */
84 #define RW_DASSERT(rw, cond) /* nothing */
85
86 #endif /* LOCKDEBUG */
87
88 /*
89 * DIAGNOSTIC
90 */
91
92 #if defined(DIAGNOSTIC)
93
94 #define RW_ASSERT(rw, cond) \
95 do { \
96 if (!(cond)) \
97 rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
98 } while (/* CONSTCOND */ 0)
99
100 #else
101
102 #define RW_ASSERT(rw, cond) /* nothing */
103
104 #endif /* DIAGNOSTIC */
105
106 #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
107 #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
108 #if defined(LOCKDEBUG)
109 #define RW_INHERITDEBUG(n, o) (n) |= (o) & RW_NODEBUG
110 #else /* defined(LOCKDEBUG) */
111 #define RW_INHERITDEBUG(n, o) /* nothing */
112 #endif /* defined(LOCKDEBUG) */
113
114 static void rw_abort(const char *, size_t, krwlock_t *, const char *);
115 static void rw_dump(const volatile void *);
116 static lwp_t *rw_owner(wchan_t);
117
118 static inline uintptr_t
119 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
120 {
121
122 RW_INHERITDEBUG(n, o);
123 return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
124 (void *)o, (void *)n);
125 }
126
127 static inline void
128 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
129 {
130
131 RW_INHERITDEBUG(n, o);
132 n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
133 (void *)n);
134 RW_DASSERT(rw, n == o);
135 }
136
137 /*
138 * For platforms that do not provide stubs, or for the LOCKDEBUG case.
139 */
140 #ifdef LOCKDEBUG
141 #undef __HAVE_RW_STUBS
142 #endif
143
144 #ifndef __HAVE_RW_STUBS
145 __strong_alias(rw_enter,rw_vector_enter);
146 __strong_alias(rw_exit,rw_vector_exit);
147 __strong_alias(rw_tryenter,rw_vector_tryenter);
148 #endif
149
150 lockops_t rwlock_lockops = {
151 .lo_name = "Reader / writer lock",
152 .lo_type = LOCKOPS_SLEEP,
153 .lo_dump = rw_dump,
154 };
155
156 syncobj_t rw_syncobj = {
157 .sobj_flag = SOBJ_SLEEPQ_SORTED,
158 .sobj_unsleep = turnstile_unsleep,
159 .sobj_changepri = turnstile_changepri,
160 .sobj_lendpri = sleepq_lendpri,
161 .sobj_owner = rw_owner,
162 };
163
164 /*
165 * rw_dump:
166 *
167 * Dump the contents of a rwlock structure.
168 */
169 static void
170 rw_dump(const volatile void *cookie)
171 {
172 const volatile krwlock_t *rw = cookie;
173
174 printf_nolog("owner/count : %#018lx flags : %#018x\n",
175 (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
176 }
177
178 /*
179 * rw_abort:
180 *
181 * Dump information about an error and panic the system. This
182 * generates a lot of machine code in the DIAGNOSTIC case, so
183 * we ask the compiler to not inline it.
184 */
185 static void __noinline
186 rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
187 {
188
189 if (panicstr != NULL)
190 return;
191
192 LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
193 }
194
195 /*
196 * rw_init:
197 *
198 * Initialize a rwlock for use.
199 */
200 void
201 rw_init(krwlock_t *rw)
202 {
203 bool dodebug;
204
205 memset(rw, 0, sizeof(*rw));
206
207 dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
208 (uintptr_t)__builtin_return_address(0));
209 RW_SETDEBUG(rw, dodebug);
210 }
211
212 /*
213 * rw_destroy:
214 *
215 * Tear down a rwlock.
216 */
217 void
218 rw_destroy(krwlock_t *rw)
219 {
220
221 RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
222 LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
223 }
224
225 /*
226 * rw_oncpu:
227 *
228 * Return true if an rwlock owner is running on a CPU in the system.
229 * If the target is waiting on the kernel big lock, then we must
230 * release it. This is necessary to avoid deadlock.
231 */
232 static bool
233 rw_oncpu(uintptr_t owner)
234 {
235 #ifdef MULTIPROCESSOR
236 struct cpu_info *ci;
237 lwp_t *l;
238
239 KASSERT(kpreempt_disabled());
240
241 if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
242 return false;
243 }
244
245 /*
246 * See lwp_dtor() why dereference of the LWP pointer is safe.
247 * We must have kernel preemption disabled for that.
248 */
249 l = (lwp_t *)(owner & RW_THREAD);
250 ci = l->l_cpu;
251
252 if (ci && ci->ci_curlwp == l) {
253 /* Target is running; do we need to block? */
254 return (ci->ci_biglock_wanted != l);
255 }
256 #endif
257 /* Not running. It may be safe to block now. */
258 return false;
259 }
260
261 /*
262 * rw_vector_enter:
263 *
264 * Acquire a rwlock.
265 */
266 void
267 rw_vector_enter(krwlock_t *rw, const krw_t op)
268 {
269 uintptr_t owner, incr, need_wait, set_wait, curthread, next;
270 turnstile_t *ts;
271 int queue;
272 lwp_t *l;
273 LOCKSTAT_TIMER(slptime);
274 LOCKSTAT_TIMER(slpcnt);
275 LOCKSTAT_TIMER(spintime);
276 LOCKSTAT_COUNTER(spincnt);
277 LOCKSTAT_FLAG(lsflag);
278
279 l = curlwp;
280 curthread = (uintptr_t)l;
281
282 RW_ASSERT(rw, !cpu_intr_p());
283 RW_ASSERT(rw, curthread != 0);
284 RW_WANTLOCK(rw, op);
285
286 if (panicstr == NULL) {
287 LOCKDEBUG_BARRIER(&kernel_lock, 1);
288 }
289
290 /*
291 * We play a slight trick here. If we're a reader, we want
292 * increment the read count. If we're a writer, we want to
293 * set the owner field and the WRITE_LOCKED bit.
294 *
295 * In the latter case, we expect those bits to be zero,
296 * therefore we can use an add operation to set them, which
297 * means an add operation for both cases.
298 */
299 if (__predict_true(op == RW_READER)) {
300 incr = RW_READ_INCR;
301 set_wait = RW_HAS_WAITERS;
302 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
303 queue = TS_READER_Q;
304 } else {
305 RW_DASSERT(rw, op == RW_WRITER);
306 incr = curthread | RW_WRITE_LOCKED;
307 set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
308 need_wait = RW_WRITE_LOCKED | RW_THREAD;
309 queue = TS_WRITER_Q;
310 }
311
312 LOCKSTAT_ENTER(lsflag);
313
314 KPREEMPT_DISABLE(curlwp);
315 for (owner = rw->rw_owner; ;) {
316 /*
317 * Read the lock owner field. If the need-to-wait
318 * indicator is clear, then try to acquire the lock.
319 */
320 if ((owner & need_wait) == 0) {
321 next = rw_cas(rw, owner, (owner + incr) &
322 ~RW_WRITE_WANTED);
323 if (__predict_true(next == owner)) {
324 /* Got it! */
325 membar_enter();
326 break;
327 }
328
329 /*
330 * Didn't get it -- spin around again (we'll
331 * probably sleep on the next iteration).
332 */
333 owner = next;
334 continue;
335 }
336 if (__predict_false(panicstr != NULL)) {
337 KPREEMPT_ENABLE(curlwp);
338 return;
339 }
340 if (__predict_false(RW_OWNER(rw) == curthread)) {
341 rw_abort(__func__, __LINE__, rw,
342 "locking against myself");
343 }
344 /*
345 * If the lock owner is running on another CPU, and
346 * there are no existing waiters, then spin.
347 */
348 if (rw_oncpu(owner)) {
349 LOCKSTAT_START_TIMER(lsflag, spintime);
350 u_int count = SPINLOCK_BACKOFF_MIN;
351 do {
352 KPREEMPT_ENABLE(curlwp);
353 SPINLOCK_BACKOFF(count);
354 KPREEMPT_DISABLE(curlwp);
355 owner = rw->rw_owner;
356 } while (rw_oncpu(owner));
357 LOCKSTAT_STOP_TIMER(lsflag, spintime);
358 LOCKSTAT_COUNT(spincnt, 1);
359 if ((owner & need_wait) == 0)
360 continue;
361 }
362
363 /*
364 * Grab the turnstile chain lock. Once we have that, we
365 * can adjust the waiter bits and sleep queue.
366 */
367 ts = turnstile_lookup(rw);
368
369 /*
370 * Mark the rwlock as having waiters. If the set fails,
371 * then we may not need to sleep and should spin again.
372 * Reload rw_owner because turnstile_lookup() may have
373 * spun on the turnstile chain lock.
374 */
375 owner = rw->rw_owner;
376 if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
377 turnstile_exit(rw);
378 continue;
379 }
380 next = rw_cas(rw, owner, owner | set_wait);
381 if (__predict_false(next != owner)) {
382 turnstile_exit(rw);
383 owner = next;
384 continue;
385 }
386
387 LOCKSTAT_START_TIMER(lsflag, slptime);
388 turnstile_block(ts, queue, rw, &rw_syncobj);
389 LOCKSTAT_STOP_TIMER(lsflag, slptime);
390 LOCKSTAT_COUNT(slpcnt, 1);
391
392 /*
393 * No need for a memory barrier because of context switch.
394 * If not handed the lock, then spin again.
395 */
396 if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
397 break;
398
399 owner = rw->rw_owner;
400 }
401 KPREEMPT_ENABLE(curlwp);
402
403 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
404 (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
405 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
406 LOCKSTAT_EXIT(lsflag);
407
408 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
409 (op == RW_READER && RW_COUNT(rw) != 0));
410 RW_LOCKED(rw, op);
411 }
412
413 /*
414 * rw_vector_exit:
415 *
416 * Release a rwlock.
417 */
418 void
419 rw_vector_exit(krwlock_t *rw)
420 {
421 uintptr_t curthread, owner, decr, newown, next;
422 turnstile_t *ts;
423 int rcnt, wcnt;
424 lwp_t *l;
425
426 curthread = (uintptr_t)curlwp;
427 RW_ASSERT(rw, curthread != 0);
428
429 if (__predict_false(panicstr != NULL))
430 return;
431
432 /*
433 * Again, we use a trick. Since we used an add operation to
434 * set the required lock bits, we can use a subtract to clear
435 * them, which makes the read-release and write-release path
436 * the same.
437 */
438 owner = rw->rw_owner;
439 if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
440 RW_UNLOCKED(rw, RW_WRITER);
441 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
442 decr = curthread | RW_WRITE_LOCKED;
443 } else {
444 RW_UNLOCKED(rw, RW_READER);
445 RW_ASSERT(rw, RW_COUNT(rw) != 0);
446 decr = RW_READ_INCR;
447 }
448
449 /*
450 * Compute what we expect the new value of the lock to be. Only
451 * proceed to do direct handoff if there are waiters, and if the
452 * lock would become unowned.
453 */
454 membar_exit();
455 for (;;) {
456 newown = (owner - decr);
457 if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
458 break;
459 next = rw_cas(rw, owner, newown);
460 if (__predict_true(next == owner))
461 return;
462 owner = next;
463 }
464
465 /*
466 * Grab the turnstile chain lock. This gets the interlock
467 * on the sleep queue. Once we have that, we can adjust the
468 * waiter bits.
469 */
470 ts = turnstile_lookup(rw);
471 owner = rw->rw_owner;
472 RW_DASSERT(rw, ts != NULL);
473 RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
474
475 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
476 rcnt = TS_WAITERS(ts, TS_READER_Q);
477
478 /*
479 * Give the lock away.
480 *
481 * If we are releasing a write lock, then prefer to wake all
482 * outstanding readers. Otherwise, wake one writer if there
483 * are outstanding readers, or all writers if there are no
484 * pending readers. If waking one specific writer, the writer
485 * is handed the lock here. If waking multiple writers, we
486 * set WRITE_WANTED to block out new readers, and let them
487 * do the work of acquiring the lock in rw_vector_enter().
488 */
489 if (rcnt == 0 || decr == RW_READ_INCR) {
490 RW_DASSERT(rw, wcnt != 0);
491 RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
492
493 if (rcnt != 0) {
494 /* Give the lock to the longest waiting writer. */
495 l = TS_FIRST(ts, TS_WRITER_Q);
496 newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
497 if (wcnt > 1)
498 newown |= RW_WRITE_WANTED;
499 rw_swap(rw, owner, newown);
500 turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
501 } else {
502 /* Wake all writers and let them fight it out. */
503 rw_swap(rw, owner, RW_WRITE_WANTED);
504 turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
505 }
506 } else {
507 RW_DASSERT(rw, rcnt != 0);
508
509 /*
510 * Give the lock to all blocked readers. If there
511 * is a writer waiting, new readers that arrive
512 * after the release will be blocked out.
513 */
514 newown = rcnt << RW_READ_COUNT_SHIFT;
515 if (wcnt != 0)
516 newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
517
518 /* Wake up all sleeping readers. */
519 rw_swap(rw, owner, newown);
520 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
521 }
522 }
523
524 /*
525 * rw_vector_tryenter:
526 *
527 * Try to acquire a rwlock.
528 */
529 int
530 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
531 {
532 uintptr_t curthread, owner, incr, need_wait, next;
533
534 curthread = (uintptr_t)curlwp;
535
536 RW_ASSERT(rw, curthread != 0);
537
538 if (op == RW_READER) {
539 incr = RW_READ_INCR;
540 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
541 } else {
542 RW_DASSERT(rw, op == RW_WRITER);
543 incr = curthread | RW_WRITE_LOCKED;
544 need_wait = RW_WRITE_LOCKED | RW_THREAD;
545 }
546
547 for (owner = rw->rw_owner;; owner = next) {
548 owner = rw->rw_owner;
549 if (__predict_false((owner & need_wait) != 0))
550 return 0;
551 next = rw_cas(rw, owner, owner + incr);
552 if (__predict_true(next == owner)) {
553 /* Got it! */
554 membar_enter();
555 break;
556 }
557 }
558
559 RW_WANTLOCK(rw, op);
560 RW_LOCKED(rw, op);
561 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
562 (op == RW_READER && RW_COUNT(rw) != 0));
563
564 return 1;
565 }
566
567 /*
568 * rw_downgrade:
569 *
570 * Downgrade a write lock to a read lock.
571 */
572 void
573 rw_downgrade(krwlock_t *rw)
574 {
575 uintptr_t owner, curthread, newown, next;
576 turnstile_t *ts;
577 int rcnt, wcnt;
578
579 curthread = (uintptr_t)curlwp;
580 RW_ASSERT(rw, curthread != 0);
581 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
582 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
583 RW_UNLOCKED(rw, RW_WRITER);
584 #if !defined(DIAGNOSTIC)
585 __USE(curthread);
586 #endif
587
588
589 membar_producer();
590 owner = rw->rw_owner;
591 if ((owner & RW_HAS_WAITERS) == 0) {
592 /*
593 * There are no waiters, so we can do this the easy way.
594 * Try swapping us down to one read hold. If it fails, the
595 * lock condition has changed and we most likely now have
596 * waiters.
597 */
598 next = rw_cas(rw, owner, RW_READ_INCR);
599 if (__predict_true(next == owner)) {
600 RW_LOCKED(rw, RW_READER);
601 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
602 RW_DASSERT(rw, RW_COUNT(rw) != 0);
603 return;
604 }
605 owner = next;
606 }
607
608 /*
609 * Grab the turnstile chain lock. This gets the interlock
610 * on the sleep queue. Once we have that, we can adjust the
611 * waiter bits.
612 */
613 for (;; owner = next) {
614 ts = turnstile_lookup(rw);
615 RW_DASSERT(rw, ts != NULL);
616
617 rcnt = TS_WAITERS(ts, TS_READER_Q);
618 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
619
620 /*
621 * If there are no readers, just preserve the waiters
622 * bits, swap us down to one read hold and return.
623 */
624 if (rcnt == 0) {
625 RW_DASSERT(rw, wcnt != 0);
626 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
627 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
628
629 newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
630 next = rw_cas(rw, owner, newown);
631 turnstile_exit(rw);
632 if (__predict_true(next == owner))
633 break;
634 } else {
635 /*
636 * Give the lock to all blocked readers. We may
637 * retain one read hold if downgrading. If there
638 * is a writer waiting, new readers will be blocked
639 * out.
640 */
641 newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
642 if (wcnt != 0)
643 newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
644
645 next = rw_cas(rw, owner, newown);
646 if (__predict_true(next == owner)) {
647 /* Wake up all sleeping readers. */
648 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
649 break;
650 }
651 turnstile_exit(rw);
652 }
653 }
654
655 RW_WANTLOCK(rw, RW_READER);
656 RW_LOCKED(rw, RW_READER);
657 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
658 RW_DASSERT(rw, RW_COUNT(rw) != 0);
659 }
660
661 /*
662 * rw_tryupgrade:
663 *
664 * Try to upgrade a read lock to a write lock. We must be the
665 * only reader.
666 */
667 int
668 rw_tryupgrade(krwlock_t *rw)
669 {
670 uintptr_t owner, curthread, newown, next;
671
672 curthread = (uintptr_t)curlwp;
673 RW_ASSERT(rw, curthread != 0);
674 RW_ASSERT(rw, rw_read_held(rw));
675
676 for (owner = rw->rw_owner;; owner = next) {
677 RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
678 if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
679 RW_ASSERT(rw, (owner & RW_THREAD) != 0);
680 return 0;
681 }
682 newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
683 next = rw_cas(rw, owner, newown);
684 if (__predict_true(next == owner)) {
685 membar_producer();
686 break;
687 }
688 }
689
690 RW_UNLOCKED(rw, RW_READER);
691 RW_WANTLOCK(rw, RW_WRITER);
692 RW_LOCKED(rw, RW_WRITER);
693 RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
694 RW_DASSERT(rw, RW_OWNER(rw) == curthread);
695
696 return 1;
697 }
698
699 /*
700 * rw_read_held:
701 *
702 * Returns true if the rwlock is held for reading. Must only be
703 * used for diagnostic assertions, and never be used to make
704 * decisions about how to use a rwlock.
705 */
706 int
707 rw_read_held(krwlock_t *rw)
708 {
709 uintptr_t owner;
710
711 if (panicstr != NULL)
712 return 1;
713 if (rw == NULL)
714 return 0;
715 owner = rw->rw_owner;
716 return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
717 }
718
719 /*
720 * rw_write_held:
721 *
722 * Returns true if the rwlock is held for writing. Must only be
723 * used for diagnostic assertions, and never be used to make
724 * decisions about how to use a rwlock.
725 */
726 int
727 rw_write_held(krwlock_t *rw)
728 {
729
730 if (panicstr != NULL)
731 return 1;
732 if (rw == NULL)
733 return 0;
734 return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
735 (RW_WRITE_LOCKED | (uintptr_t)curlwp);
736 }
737
738 /*
739 * rw_lock_held:
740 *
741 * Returns true if the rwlock is held for reading or writing. Must
742 * only be used for diagnostic assertions, and never be used to make
743 * decisions about how to use a rwlock.
744 */
745 int
746 rw_lock_held(krwlock_t *rw)
747 {
748
749 if (panicstr != NULL)
750 return 1;
751 if (rw == NULL)
752 return 0;
753 return (rw->rw_owner & RW_THREAD) != 0;
754 }
755
756 /*
757 * rw_owner:
758 *
759 * Return the current owner of an RW lock, but only if it is write
760 * held. Used for priority inheritance.
761 */
762 static lwp_t *
763 rw_owner(wchan_t obj)
764 {
765 krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
766 uintptr_t owner = rw->rw_owner;
767
768 if ((owner & RW_WRITE_LOCKED) == 0)
769 return NULL;
770
771 return (void *)(owner & RW_THREAD);
772 }
773