Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.50.2.1
      1 /*	$NetBSD: kern_rwlock.c,v 1.50.2.1 2018/09/06 06:56:42 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel reader/writer lock implementation, modeled after those
     34  * found in Solaris, a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.50.2.1 2018/09/06 06:56:42 pgoyette Exp $");
     42 
     43 #define	__RWLOCK_PRIVATE
     44 
     45 #include <sys/param.h>
     46 #include <sys/proc.h>
     47 #include <sys/rwlock.h>
     48 #include <sys/sched.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/systm.h>
     51 #include <sys/lockdebug.h>
     52 #include <sys/cpu.h>
     53 #include <sys/atomic.h>
     54 #include <sys/lock.h>
     55 #include <sys/pserialize.h>
     56 
     57 #include <dev/lockstat.h>
     58 
     59 /*
     60  * LOCKDEBUG
     61  */
     62 
     63 #if defined(LOCKDEBUG)
     64 
     65 #define	RW_WANTLOCK(rw, op)						\
     66 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     67 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     68 #define	RW_LOCKED(rw, op)						\
     69 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     70 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     71 #define	RW_UNLOCKED(rw, op)						\
     72 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     73 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     74 #define	RW_DASSERT(rw, cond)						\
     75 do {									\
     76 	if (__predict_false(!(cond)))					\
     77 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     78 } while (/* CONSTCOND */ 0);
     79 
     80 #else	/* LOCKDEBUG */
     81 
     82 #define	RW_WANTLOCK(rw, op)	/* nothing */
     83 #define	RW_LOCKED(rw, op)	/* nothing */
     84 #define	RW_UNLOCKED(rw, op)	/* nothing */
     85 #define	RW_DASSERT(rw, cond)	/* nothing */
     86 
     87 #endif	/* LOCKDEBUG */
     88 
     89 /*
     90  * DIAGNOSTIC
     91  */
     92 
     93 #if defined(DIAGNOSTIC)
     94 
     95 #define	RW_ASSERT(rw, cond)						\
     96 do {									\
     97 	if (__predict_false(!(cond)))					\
     98 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     99 } while (/* CONSTCOND */ 0)
    100 
    101 #else
    102 
    103 #define	RW_ASSERT(rw, cond)	/* nothing */
    104 
    105 #endif	/* DIAGNOSTIC */
    106 
    107 #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
    108 #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_NODEBUG) == 0)
    109 #if defined(LOCKDEBUG)
    110 #define	RW_INHERITDEBUG(n, o)		(n) |= (o) & RW_NODEBUG
    111 #else /* defined(LOCKDEBUG) */
    112 #define	RW_INHERITDEBUG(n, o)		/* nothing */
    113 #endif /* defined(LOCKDEBUG) */
    114 
    115 static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    116 static void	rw_dump(const volatile void *);
    117 static lwp_t	*rw_owner(wchan_t);
    118 
    119 static inline uintptr_t
    120 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    121 {
    122 
    123 	RW_INHERITDEBUG(n, o);
    124 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    125 	    (void *)o, (void *)n);
    126 }
    127 
    128 static inline void
    129 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    130 {
    131 
    132 	RW_INHERITDEBUG(n, o);
    133 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    134 	    (void *)n);
    135 	RW_DASSERT(rw, n == o);
    136 }
    137 
    138 /*
    139  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    140  */
    141 #ifdef LOCKDEBUG
    142 #undef	__HAVE_RW_STUBS
    143 #endif
    144 
    145 #ifndef __HAVE_RW_STUBS
    146 __strong_alias(rw_enter,rw_vector_enter);
    147 __strong_alias(rw_exit,rw_vector_exit);
    148 __strong_alias(rw_tryenter,rw_vector_tryenter);
    149 #endif
    150 
    151 lockops_t rwlock_lockops = {
    152 	.lo_name = "Reader / writer lock",
    153 	.lo_type = LOCKOPS_SLEEP,
    154 	.lo_dump = rw_dump,
    155 };
    156 
    157 syncobj_t rw_syncobj = {
    158 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    159 	.sobj_unsleep	= turnstile_unsleep,
    160 	.sobj_changepri	= turnstile_changepri,
    161 	.sobj_lendpri	= sleepq_lendpri,
    162 	.sobj_owner	= rw_owner,
    163 };
    164 
    165 /*
    166  * rw_dump:
    167  *
    168  *	Dump the contents of a rwlock structure.
    169  */
    170 static void
    171 rw_dump(const volatile void *cookie)
    172 {
    173 	const volatile krwlock_t *rw = cookie;
    174 
    175 	printf_nolog("owner/count  : %#018lx flags    : %#018x\n",
    176 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    177 }
    178 
    179 /*
    180  * rw_abort:
    181  *
    182  *	Dump information about an error and panic the system.  This
    183  *	generates a lot of machine code in the DIAGNOSTIC case, so
    184  *	we ask the compiler to not inline it.
    185  */
    186 static void __noinline
    187 rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    188 {
    189 
    190 	if (panicstr != NULL)
    191 		return;
    192 
    193 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    194 }
    195 
    196 /*
    197  * rw_init:
    198  *
    199  *	Initialize a rwlock for use.
    200  */
    201 void _rw_init(krwlock_t *, uintptr_t);
    202 void
    203 _rw_init(krwlock_t *rw, uintptr_t return_address)
    204 {
    205 	bool dodebug;
    206 
    207 	memset(rw, 0, sizeof(*rw));
    208 
    209 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address);
    210 	RW_SETDEBUG(rw, dodebug);
    211 }
    212 
    213 void
    214 rw_init(krwlock_t *rw)
    215 {
    216 
    217 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    218 }
    219 
    220 /*
    221  * rw_destroy:
    222  *
    223  *	Tear down a rwlock.
    224  */
    225 void
    226 rw_destroy(krwlock_t *rw)
    227 {
    228 
    229 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    230 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    231 }
    232 
    233 /*
    234  * rw_oncpu:
    235  *
    236  *	Return true if an rwlock owner is running on a CPU in the system.
    237  *	If the target is waiting on the kernel big lock, then we must
    238  *	release it.  This is necessary to avoid deadlock.
    239  */
    240 static bool
    241 rw_oncpu(uintptr_t owner)
    242 {
    243 #ifdef MULTIPROCESSOR
    244 	struct cpu_info *ci;
    245 	lwp_t *l;
    246 
    247 	KASSERT(kpreempt_disabled());
    248 
    249 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    250 		return false;
    251 	}
    252 
    253 	/*
    254 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    255 	 * We must have kernel preemption disabled for that.
    256 	 */
    257 	l = (lwp_t *)(owner & RW_THREAD);
    258 	ci = l->l_cpu;
    259 
    260 	if (ci && ci->ci_curlwp == l) {
    261 		/* Target is running; do we need to block? */
    262 		return (ci->ci_biglock_wanted != l);
    263 	}
    264 #endif
    265 	/* Not running.  It may be safe to block now. */
    266 	return false;
    267 }
    268 
    269 /*
    270  * rw_vector_enter:
    271  *
    272  *	Acquire a rwlock.
    273  */
    274 void
    275 rw_vector_enter(krwlock_t *rw, const krw_t op)
    276 {
    277 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    278 	turnstile_t *ts;
    279 	int queue;
    280 	lwp_t *l;
    281 	LOCKSTAT_TIMER(slptime);
    282 	LOCKSTAT_TIMER(slpcnt);
    283 	LOCKSTAT_TIMER(spintime);
    284 	LOCKSTAT_COUNTER(spincnt);
    285 	LOCKSTAT_FLAG(lsflag);
    286 
    287 	l = curlwp;
    288 	curthread = (uintptr_t)l;
    289 
    290 	RW_ASSERT(rw, !cpu_intr_p());
    291 	RW_ASSERT(rw, curthread != 0);
    292 	RW_WANTLOCK(rw, op);
    293 	KDASSERT(pserialize_not_in_read_section());
    294 
    295 	if (panicstr == NULL) {
    296 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    297 	}
    298 
    299 	/*
    300 	 * We play a slight trick here.  If we're a reader, we want
    301 	 * increment the read count.  If we're a writer, we want to
    302 	 * set the owner field and the WRITE_LOCKED bit.
    303 	 *
    304 	 * In the latter case, we expect those bits to be zero,
    305 	 * therefore we can use an add operation to set them, which
    306 	 * means an add operation for both cases.
    307 	 */
    308 	if (__predict_true(op == RW_READER)) {
    309 		incr = RW_READ_INCR;
    310 		set_wait = RW_HAS_WAITERS;
    311 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    312 		queue = TS_READER_Q;
    313 	} else {
    314 		RW_DASSERT(rw, op == RW_WRITER);
    315 		incr = curthread | RW_WRITE_LOCKED;
    316 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    317 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    318 		queue = TS_WRITER_Q;
    319 	}
    320 
    321 	LOCKSTAT_ENTER(lsflag);
    322 
    323 	KPREEMPT_DISABLE(curlwp);
    324 	for (owner = rw->rw_owner; ;) {
    325 		/*
    326 		 * Read the lock owner field.  If the need-to-wait
    327 		 * indicator is clear, then try to acquire the lock.
    328 		 */
    329 		if ((owner & need_wait) == 0) {
    330 			next = rw_cas(rw, owner, (owner + incr) &
    331 			    ~RW_WRITE_WANTED);
    332 			if (__predict_true(next == owner)) {
    333 				/* Got it! */
    334 				membar_enter();
    335 				break;
    336 			}
    337 
    338 			/*
    339 			 * Didn't get it -- spin around again (we'll
    340 			 * probably sleep on the next iteration).
    341 			 */
    342 			owner = next;
    343 			continue;
    344 		}
    345 		if (__predict_false(panicstr != NULL)) {
    346 			KPREEMPT_ENABLE(curlwp);
    347 			return;
    348 		}
    349 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    350 			rw_abort(__func__, __LINE__, rw,
    351 			    "locking against myself");
    352 		}
    353 		/*
    354 		 * If the lock owner is running on another CPU, and
    355 		 * there are no existing waiters, then spin.
    356 		 */
    357 		if (rw_oncpu(owner)) {
    358 			LOCKSTAT_START_TIMER(lsflag, spintime);
    359 			u_int count = SPINLOCK_BACKOFF_MIN;
    360 			do {
    361 				KPREEMPT_ENABLE(curlwp);
    362 				SPINLOCK_BACKOFF(count);
    363 				KPREEMPT_DISABLE(curlwp);
    364 				owner = rw->rw_owner;
    365 			} while (rw_oncpu(owner));
    366 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    367 			LOCKSTAT_COUNT(spincnt, 1);
    368 			if ((owner & need_wait) == 0)
    369 				continue;
    370 		}
    371 
    372 		/*
    373 		 * Grab the turnstile chain lock.  Once we have that, we
    374 		 * can adjust the waiter bits and sleep queue.
    375 		 */
    376 		ts = turnstile_lookup(rw);
    377 
    378 		/*
    379 		 * Mark the rwlock as having waiters.  If the set fails,
    380 		 * then we may not need to sleep and should spin again.
    381 		 * Reload rw_owner because turnstile_lookup() may have
    382 		 * spun on the turnstile chain lock.
    383 		 */
    384 		owner = rw->rw_owner;
    385 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    386 			turnstile_exit(rw);
    387 			continue;
    388 		}
    389 		next = rw_cas(rw, owner, owner | set_wait);
    390 		if (__predict_false(next != owner)) {
    391 			turnstile_exit(rw);
    392 			owner = next;
    393 			continue;
    394 		}
    395 
    396 		LOCKSTAT_START_TIMER(lsflag, slptime);
    397 		turnstile_block(ts, queue, rw, &rw_syncobj);
    398 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    399 		LOCKSTAT_COUNT(slpcnt, 1);
    400 
    401 		/*
    402 		 * No need for a memory barrier because of context switch.
    403 		 * If not handed the lock, then spin again.
    404 		 */
    405 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    406 			break;
    407 
    408 		owner = rw->rw_owner;
    409 	}
    410 	KPREEMPT_ENABLE(curlwp);
    411 
    412 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    413 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    414 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    415 	LOCKSTAT_EXIT(lsflag);
    416 
    417 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    418 	    (op == RW_READER && RW_COUNT(rw) != 0));
    419 	RW_LOCKED(rw, op);
    420 }
    421 
    422 /*
    423  * rw_vector_exit:
    424  *
    425  *	Release a rwlock.
    426  */
    427 void
    428 rw_vector_exit(krwlock_t *rw)
    429 {
    430 	uintptr_t curthread, owner, decr, newown, next;
    431 	turnstile_t *ts;
    432 	int rcnt, wcnt;
    433 	lwp_t *l;
    434 
    435 	curthread = (uintptr_t)curlwp;
    436 	RW_ASSERT(rw, curthread != 0);
    437 
    438 	if (__predict_false(panicstr != NULL))
    439 		return;
    440 
    441 	/*
    442 	 * Again, we use a trick.  Since we used an add operation to
    443 	 * set the required lock bits, we can use a subtract to clear
    444 	 * them, which makes the read-release and write-release path
    445 	 * the same.
    446 	 */
    447 	owner = rw->rw_owner;
    448 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    449 		RW_UNLOCKED(rw, RW_WRITER);
    450 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    451 		decr = curthread | RW_WRITE_LOCKED;
    452 	} else {
    453 		RW_UNLOCKED(rw, RW_READER);
    454 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    455 		decr = RW_READ_INCR;
    456 	}
    457 
    458 	/*
    459 	 * Compute what we expect the new value of the lock to be. Only
    460 	 * proceed to do direct handoff if there are waiters, and if the
    461 	 * lock would become unowned.
    462 	 */
    463 	membar_exit();
    464 	for (;;) {
    465 		newown = (owner - decr);
    466 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    467 			break;
    468 		next = rw_cas(rw, owner, newown);
    469 		if (__predict_true(next == owner))
    470 			return;
    471 		owner = next;
    472 	}
    473 
    474 	/*
    475 	 * Grab the turnstile chain lock.  This gets the interlock
    476 	 * on the sleep queue.  Once we have that, we can adjust the
    477 	 * waiter bits.
    478 	 */
    479 	ts = turnstile_lookup(rw);
    480 	owner = rw->rw_owner;
    481 	RW_DASSERT(rw, ts != NULL);
    482 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    483 
    484 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    485 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    486 
    487 	/*
    488 	 * Give the lock away.
    489 	 *
    490 	 * If we are releasing a write lock, then prefer to wake all
    491 	 * outstanding readers.  Otherwise, wake one writer if there
    492 	 * are outstanding readers, or all writers if there are no
    493 	 * pending readers.  If waking one specific writer, the writer
    494 	 * is handed the lock here.  If waking multiple writers, we
    495 	 * set WRITE_WANTED to block out new readers, and let them
    496 	 * do the work of acquiring the lock in rw_vector_enter().
    497 	 */
    498 	if (rcnt == 0 || decr == RW_READ_INCR) {
    499 		RW_DASSERT(rw, wcnt != 0);
    500 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    501 
    502 		if (rcnt != 0) {
    503 			/* Give the lock to the longest waiting writer. */
    504 			l = TS_FIRST(ts, TS_WRITER_Q);
    505 			newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    506 			if (wcnt > 1)
    507 				newown |= RW_WRITE_WANTED;
    508 			rw_swap(rw, owner, newown);
    509 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    510 		} else {
    511 			/* Wake all writers and let them fight it out. */
    512 			rw_swap(rw, owner, RW_WRITE_WANTED);
    513 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    514 		}
    515 	} else {
    516 		RW_DASSERT(rw, rcnt != 0);
    517 
    518 		/*
    519 		 * Give the lock to all blocked readers.  If there
    520 		 * is a writer waiting, new readers that arrive
    521 		 * after the release will be blocked out.
    522 		 */
    523 		newown = rcnt << RW_READ_COUNT_SHIFT;
    524 		if (wcnt != 0)
    525 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    526 
    527 		/* Wake up all sleeping readers. */
    528 		rw_swap(rw, owner, newown);
    529 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    530 	}
    531 }
    532 
    533 /*
    534  * rw_vector_tryenter:
    535  *
    536  *	Try to acquire a rwlock.
    537  */
    538 int
    539 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    540 {
    541 	uintptr_t curthread, owner, incr, need_wait, next;
    542 
    543 	curthread = (uintptr_t)curlwp;
    544 
    545 	RW_ASSERT(rw, curthread != 0);
    546 
    547 	if (op == RW_READER) {
    548 		incr = RW_READ_INCR;
    549 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    550 	} else {
    551 		RW_DASSERT(rw, op == RW_WRITER);
    552 		incr = curthread | RW_WRITE_LOCKED;
    553 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    554 	}
    555 
    556 	for (owner = rw->rw_owner;; owner = next) {
    557 		owner = rw->rw_owner;
    558 		if (__predict_false((owner & need_wait) != 0))
    559 			return 0;
    560 		next = rw_cas(rw, owner, owner + incr);
    561 		if (__predict_true(next == owner)) {
    562 			/* Got it! */
    563 			membar_enter();
    564 			break;
    565 		}
    566 	}
    567 
    568 	RW_WANTLOCK(rw, op);
    569 	RW_LOCKED(rw, op);
    570 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    571 	    (op == RW_READER && RW_COUNT(rw) != 0));
    572 
    573 	return 1;
    574 }
    575 
    576 /*
    577  * rw_downgrade:
    578  *
    579  *	Downgrade a write lock to a read lock.
    580  */
    581 void
    582 rw_downgrade(krwlock_t *rw)
    583 {
    584 	uintptr_t owner, curthread, newown, next;
    585 	turnstile_t *ts;
    586 	int rcnt, wcnt;
    587 
    588 	curthread = (uintptr_t)curlwp;
    589 	RW_ASSERT(rw, curthread != 0);
    590 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    591 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    592 	RW_UNLOCKED(rw, RW_WRITER);
    593 #if !defined(DIAGNOSTIC)
    594 	__USE(curthread);
    595 #endif
    596 
    597 
    598 	membar_producer();
    599 	owner = rw->rw_owner;
    600 	if ((owner & RW_HAS_WAITERS) == 0) {
    601 		/*
    602 		 * There are no waiters, so we can do this the easy way.
    603 		 * Try swapping us down to one read hold.  If it fails, the
    604 		 * lock condition has changed and we most likely now have
    605 		 * waiters.
    606 		 */
    607 		next = rw_cas(rw, owner, RW_READ_INCR);
    608 		if (__predict_true(next == owner)) {
    609 			RW_LOCKED(rw, RW_READER);
    610 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    611 			RW_DASSERT(rw, RW_COUNT(rw) != 0);
    612 			return;
    613 		}
    614 		owner = next;
    615 	}
    616 
    617 	/*
    618 	 * Grab the turnstile chain lock.  This gets the interlock
    619 	 * on the sleep queue.  Once we have that, we can adjust the
    620 	 * waiter bits.
    621 	 */
    622 	for (;; owner = next) {
    623 		ts = turnstile_lookup(rw);
    624 		RW_DASSERT(rw, ts != NULL);
    625 
    626 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    627 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    628 
    629 		/*
    630 		 * If there are no readers, just preserve the waiters
    631 		 * bits, swap us down to one read hold and return.
    632 		 */
    633 		if (rcnt == 0) {
    634 			RW_DASSERT(rw, wcnt != 0);
    635 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    636 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    637 
    638 			newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    639 			next = rw_cas(rw, owner, newown);
    640 			turnstile_exit(rw);
    641 			if (__predict_true(next == owner))
    642 				break;
    643 		} else {
    644 			/*
    645 			 * Give the lock to all blocked readers.  We may
    646 			 * retain one read hold if downgrading.  If there
    647 			 * is a writer waiting, new readers will be blocked
    648 			 * out.
    649 			 */
    650 			newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    651 			if (wcnt != 0)
    652 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    653 
    654 			next = rw_cas(rw, owner, newown);
    655 			if (__predict_true(next == owner)) {
    656 				/* Wake up all sleeping readers. */
    657 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    658 				break;
    659 			}
    660 			turnstile_exit(rw);
    661 		}
    662 	}
    663 
    664 	RW_WANTLOCK(rw, RW_READER);
    665 	RW_LOCKED(rw, RW_READER);
    666 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    667 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    668 }
    669 
    670 /*
    671  * rw_tryupgrade:
    672  *
    673  *	Try to upgrade a read lock to a write lock.  We must be the
    674  *	only reader.
    675  */
    676 int
    677 rw_tryupgrade(krwlock_t *rw)
    678 {
    679 	uintptr_t owner, curthread, newown, next;
    680 
    681 	curthread = (uintptr_t)curlwp;
    682 	RW_ASSERT(rw, curthread != 0);
    683 	RW_ASSERT(rw, rw_read_held(rw));
    684 
    685 	for (owner = rw->rw_owner;; owner = next) {
    686 		RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
    687 		if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
    688 			RW_ASSERT(rw, (owner & RW_THREAD) != 0);
    689 			return 0;
    690 		}
    691 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    692 		next = rw_cas(rw, owner, newown);
    693 		if (__predict_true(next == owner)) {
    694 			membar_producer();
    695 			break;
    696 		}
    697 	}
    698 
    699 	RW_UNLOCKED(rw, RW_READER);
    700 	RW_WANTLOCK(rw, RW_WRITER);
    701 	RW_LOCKED(rw, RW_WRITER);
    702 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    703 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    704 
    705 	return 1;
    706 }
    707 
    708 /*
    709  * rw_read_held:
    710  *
    711  *	Returns true if the rwlock is held for reading.  Must only be
    712  *	used for diagnostic assertions, and never be used to make
    713  * 	decisions about how to use a rwlock.
    714  */
    715 int
    716 rw_read_held(krwlock_t *rw)
    717 {
    718 	uintptr_t owner;
    719 
    720 	if (panicstr != NULL)
    721 		return 1;
    722 	if (rw == NULL)
    723 		return 0;
    724 	owner = rw->rw_owner;
    725 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    726 }
    727 
    728 /*
    729  * rw_write_held:
    730  *
    731  *	Returns true if the rwlock is held for writing.  Must only be
    732  *	used for diagnostic assertions, and never be used to make
    733  *	decisions about how to use a rwlock.
    734  */
    735 int
    736 rw_write_held(krwlock_t *rw)
    737 {
    738 
    739 	if (panicstr != NULL)
    740 		return 1;
    741 	if (rw == NULL)
    742 		return 0;
    743 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    744 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    745 }
    746 
    747 /*
    748  * rw_lock_held:
    749  *
    750  *	Returns true if the rwlock is held for reading or writing.  Must
    751  *	only be used for diagnostic assertions, and never be used to make
    752  *	decisions about how to use a rwlock.
    753  */
    754 int
    755 rw_lock_held(krwlock_t *rw)
    756 {
    757 
    758 	if (panicstr != NULL)
    759 		return 1;
    760 	if (rw == NULL)
    761 		return 0;
    762 	return (rw->rw_owner & RW_THREAD) != 0;
    763 }
    764 
    765 /*
    766  * rw_owner:
    767  *
    768  *	Return the current owner of an RW lock, but only if it is write
    769  *	held.  Used for priority inheritance.
    770  */
    771 static lwp_t *
    772 rw_owner(wchan_t obj)
    773 {
    774 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    775 	uintptr_t owner = rw->rw_owner;
    776 
    777 	if ((owner & RW_WRITE_LOCKED) == 0)
    778 		return NULL;
    779 
    780 	return (void *)(owner & RW_THREAD);
    781 }
    782