Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.58
      1 /*	$NetBSD: kern_rwlock.c,v 1.58 2019/11/30 14:21:16 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel reader/writer lock implementation, modeled after those
     34  * found in Solaris, a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.58 2019/11/30 14:21:16 ad Exp $");
     42 
     43 #define	__RWLOCK_PRIVATE
     44 
     45 #include <sys/param.h>
     46 #include <sys/proc.h>
     47 #include <sys/rwlock.h>
     48 #include <sys/sched.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/systm.h>
     51 #include <sys/lockdebug.h>
     52 #include <sys/cpu.h>
     53 #include <sys/atomic.h>
     54 #include <sys/lock.h>
     55 #include <sys/pserialize.h>
     56 
     57 #include <dev/lockstat.h>
     58 
     59 #include <machine/rwlock.h>
     60 
     61 /*
     62  * LOCKDEBUG
     63  */
     64 
     65 #if defined(LOCKDEBUG)
     66 
     67 #define	RW_WANTLOCK(rw, op)						\
     68 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     69 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     70 #define	RW_LOCKED(rw, op)						\
     71 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     72 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     73 #define	RW_UNLOCKED(rw, op)						\
     74 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     75 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     76 #define	RW_DASSERT(rw, cond)						\
     77 do {									\
     78 	if (__predict_false(!(cond)))					\
     79 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     80 } while (/* CONSTCOND */ 0);
     81 
     82 #else	/* LOCKDEBUG */
     83 
     84 #define	RW_WANTLOCK(rw, op)	/* nothing */
     85 #define	RW_LOCKED(rw, op)	/* nothing */
     86 #define	RW_UNLOCKED(rw, op)	/* nothing */
     87 #define	RW_DASSERT(rw, cond)	/* nothing */
     88 
     89 #endif	/* LOCKDEBUG */
     90 
     91 /*
     92  * DIAGNOSTIC
     93  */
     94 
     95 #if defined(DIAGNOSTIC)
     96 
     97 #define	RW_ASSERT(rw, cond)						\
     98 do {									\
     99 	if (__predict_false(!(cond)))					\
    100 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
    101 } while (/* CONSTCOND */ 0)
    102 
    103 #else
    104 
    105 #define	RW_ASSERT(rw, cond)	/* nothing */
    106 
    107 #endif	/* DIAGNOSTIC */
    108 
    109 #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
    110 #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_NODEBUG) == 0)
    111 #if defined(LOCKDEBUG)
    112 #define	RW_INHERITDEBUG(n, o)		(n) |= (o) & RW_NODEBUG
    113 #else /* defined(LOCKDEBUG) */
    114 #define	RW_INHERITDEBUG(n, o)		/* nothing */
    115 #endif /* defined(LOCKDEBUG) */
    116 
    117 /*
    118  * Memory barriers.
    119  */
    120 #ifdef __HAVE_ATOMIC_AS_MEMBAR
    121 #define	RW_MEMBAR_ENTER()
    122 #define	RW_MEMBAR_EXIT()
    123 #define	RW_MEMBAR_PRODUCER()
    124 #else
    125 #define	RW_MEMBAR_ENTER()		membar_enter()
    126 #define	RW_MEMBAR_EXIT()		membar_exit()
    127 #define	RW_MEMBAR_PRODUCER()		membar_producer()
    128 #endif
    129 
    130 static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    131 static void	rw_dump(const volatile void *, lockop_printer_t);
    132 static lwp_t	*rw_owner(wchan_t);
    133 
    134 static inline uintptr_t
    135 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    136 {
    137 
    138 	RW_INHERITDEBUG(n, o);
    139 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    140 	    (void *)o, (void *)n);
    141 }
    142 
    143 static inline void
    144 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    145 {
    146 
    147 	RW_INHERITDEBUG(n, o);
    148 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    149 	    (void *)n);
    150 	RW_DASSERT(rw, n == o);
    151 }
    152 
    153 /*
    154  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    155  */
    156 #ifdef LOCKDEBUG
    157 #undef	__HAVE_RW_STUBS
    158 #endif
    159 
    160 #ifndef __HAVE_RW_STUBS
    161 __strong_alias(rw_enter,rw_vector_enter);
    162 __strong_alias(rw_exit,rw_vector_exit);
    163 __strong_alias(rw_tryenter,rw_vector_tryenter);
    164 #endif
    165 
    166 lockops_t rwlock_lockops = {
    167 	.lo_name = "Reader / writer lock",
    168 	.lo_type = LOCKOPS_SLEEP,
    169 	.lo_dump = rw_dump,
    170 };
    171 
    172 syncobj_t rw_syncobj = {
    173 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    174 	.sobj_unsleep	= turnstile_unsleep,
    175 	.sobj_changepri	= turnstile_changepri,
    176 	.sobj_lendpri	= sleepq_lendpri,
    177 	.sobj_owner	= rw_owner,
    178 };
    179 
    180 /*
    181  * rw_dump:
    182  *
    183  *	Dump the contents of a rwlock structure.
    184  */
    185 static void
    186 rw_dump(const volatile void *cookie, lockop_printer_t pr)
    187 {
    188 	const volatile krwlock_t *rw = cookie;
    189 
    190 	pr("owner/count  : %#018lx flags    : %#018x\n",
    191 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    192 }
    193 
    194 /*
    195  * rw_abort:
    196  *
    197  *	Dump information about an error and panic the system.  This
    198  *	generates a lot of machine code in the DIAGNOSTIC case, so
    199  *	we ask the compiler to not inline it.
    200  */
    201 static void __noinline
    202 rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    203 {
    204 
    205 	if (panicstr != NULL)
    206 		return;
    207 
    208 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    209 }
    210 
    211 /*
    212  * rw_init:
    213  *
    214  *	Initialize a rwlock for use.
    215  */
    216 void _rw_init(krwlock_t *, uintptr_t);
    217 void
    218 _rw_init(krwlock_t *rw, uintptr_t return_address)
    219 {
    220 	bool dodebug;
    221 
    222 	memset(rw, 0, sizeof(*rw));
    223 
    224 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address);
    225 	RW_SETDEBUG(rw, dodebug);
    226 }
    227 
    228 void
    229 rw_init(krwlock_t *rw)
    230 {
    231 
    232 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    233 }
    234 
    235 /*
    236  * rw_destroy:
    237  *
    238  *	Tear down a rwlock.
    239  */
    240 void
    241 rw_destroy(krwlock_t *rw)
    242 {
    243 
    244 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    245 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    246 }
    247 
    248 /*
    249  * rw_oncpu:
    250  *
    251  *	Return true if an rwlock owner is running on a CPU in the system.
    252  *	If the target is waiting on the kernel big lock, then we must
    253  *	release it.  This is necessary to avoid deadlock.
    254  */
    255 static bool
    256 rw_oncpu(uintptr_t owner)
    257 {
    258 #ifdef MULTIPROCESSOR
    259 	struct cpu_info *ci;
    260 	lwp_t *l;
    261 
    262 	KASSERT(kpreempt_disabled());
    263 
    264 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    265 		return false;
    266 	}
    267 
    268 	/*
    269 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    270 	 * We must have kernel preemption disabled for that.
    271 	 */
    272 	l = (lwp_t *)(owner & RW_THREAD);
    273 	ci = l->l_cpu;
    274 
    275 	if (ci && ci->ci_curlwp == l) {
    276 		/* Target is running; do we need to block? */
    277 		return (ci->ci_biglock_wanted != l);
    278 	}
    279 #endif
    280 	/* Not running.  It may be safe to block now. */
    281 	return false;
    282 }
    283 
    284 /*
    285  * rw_vector_enter:
    286  *
    287  *	Acquire a rwlock.
    288  */
    289 void
    290 rw_vector_enter(krwlock_t *rw, const krw_t op)
    291 {
    292 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    293 	turnstile_t *ts;
    294 	int queue;
    295 	lwp_t *l;
    296 	LOCKSTAT_TIMER(slptime);
    297 	LOCKSTAT_TIMER(slpcnt);
    298 	LOCKSTAT_TIMER(spintime);
    299 	LOCKSTAT_COUNTER(spincnt);
    300 	LOCKSTAT_FLAG(lsflag);
    301 
    302 	l = curlwp;
    303 	curthread = (uintptr_t)l;
    304 
    305 	RW_ASSERT(rw, !cpu_intr_p());
    306 	RW_ASSERT(rw, curthread != 0);
    307 	RW_WANTLOCK(rw, op);
    308 
    309 	if (panicstr == NULL) {
    310 		KDASSERT(pserialize_not_in_read_section());
    311 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    312 	}
    313 
    314 	/*
    315 	 * We play a slight trick here.  If we're a reader, we want
    316 	 * increment the read count.  If we're a writer, we want to
    317 	 * set the owner field and the WRITE_LOCKED bit.
    318 	 *
    319 	 * In the latter case, we expect those bits to be zero,
    320 	 * therefore we can use an add operation to set them, which
    321 	 * means an add operation for both cases.
    322 	 */
    323 	if (__predict_true(op == RW_READER)) {
    324 		incr = RW_READ_INCR;
    325 		set_wait = RW_HAS_WAITERS;
    326 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    327 		queue = TS_READER_Q;
    328 	} else {
    329 		RW_DASSERT(rw, op == RW_WRITER);
    330 		incr = curthread | RW_WRITE_LOCKED;
    331 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    332 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    333 		queue = TS_WRITER_Q;
    334 	}
    335 
    336 	LOCKSTAT_ENTER(lsflag);
    337 
    338 	KPREEMPT_DISABLE(curlwp);
    339 	for (owner = rw->rw_owner;;) {
    340 		/*
    341 		 * Read the lock owner field.  If the need-to-wait
    342 		 * indicator is clear, then try to acquire the lock.
    343 		 */
    344 		if ((owner & need_wait) == 0) {
    345 			next = rw_cas(rw, owner, (owner + incr) &
    346 			    ~RW_WRITE_WANTED);
    347 			if (__predict_true(next == owner)) {
    348 				/* Got it! */
    349 				RW_MEMBAR_ENTER();
    350 				break;
    351 			}
    352 
    353 			/*
    354 			 * Didn't get it -- spin around again (we'll
    355 			 * probably sleep on the next iteration).
    356 			 */
    357 			owner = next;
    358 			continue;
    359 		}
    360 		if (__predict_false(panicstr != NULL)) {
    361 			KPREEMPT_ENABLE(curlwp);
    362 			return;
    363 		}
    364 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    365 			rw_abort(__func__, __LINE__, rw,
    366 			    "locking against myself");
    367 		}
    368 		/*
    369 		 * If the lock owner is running on another CPU, and
    370 		 * there are no existing waiters, then spin.
    371 		 */
    372 		if (rw_oncpu(owner)) {
    373 			LOCKSTAT_START_TIMER(lsflag, spintime);
    374 			u_int count = SPINLOCK_BACKOFF_MIN;
    375 			do {
    376 				KPREEMPT_ENABLE(curlwp);
    377 				SPINLOCK_BACKOFF(count);
    378 				KPREEMPT_DISABLE(curlwp);
    379 				owner = rw->rw_owner;
    380 			} while (rw_oncpu(owner));
    381 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    382 			LOCKSTAT_COUNT(spincnt, 1);
    383 			if ((owner & need_wait) == 0)
    384 				continue;
    385 		}
    386 
    387 		/*
    388 		 * Grab the turnstile chain lock.  Once we have that, we
    389 		 * can adjust the waiter bits and sleep queue.
    390 		 */
    391 		ts = turnstile_lookup(rw);
    392 
    393 		/*
    394 		 * Mark the rwlock as having waiters.  If the set fails,
    395 		 * then we may not need to sleep and should spin again.
    396 		 * Reload rw_owner because turnstile_lookup() may have
    397 		 * spun on the turnstile chain lock.
    398 		 */
    399 		owner = rw->rw_owner;
    400 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    401 			turnstile_exit(rw);
    402 			continue;
    403 		}
    404 		next = rw_cas(rw, owner, owner | set_wait);
    405 		if (__predict_false(next != owner)) {
    406 			turnstile_exit(rw);
    407 			owner = next;
    408 			continue;
    409 		}
    410 
    411 		LOCKSTAT_START_TIMER(lsflag, slptime);
    412 		turnstile_block(ts, queue, rw, &rw_syncobj);
    413 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    414 		LOCKSTAT_COUNT(slpcnt, 1);
    415 
    416 		/*
    417 		 * No need for a memory barrier because of context switch.
    418 		 * If not handed the lock, then spin again.
    419 		 */
    420 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    421 			break;
    422 
    423 		owner = rw->rw_owner;
    424 	}
    425 	KPREEMPT_ENABLE(curlwp);
    426 
    427 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
    428 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
    429 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
    430 	LOCKSTAT_EXIT(lsflag);
    431 
    432 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    433 	    (op == RW_READER && RW_COUNT(rw) != 0));
    434 	RW_LOCKED(rw, op);
    435 }
    436 
    437 /*
    438  * rw_vector_exit:
    439  *
    440  *	Release a rwlock.
    441  */
    442 void
    443 rw_vector_exit(krwlock_t *rw)
    444 {
    445 	uintptr_t curthread, owner, decr, newown, next;
    446 	turnstile_t *ts;
    447 	int rcnt, wcnt;
    448 	lwp_t *l;
    449 
    450 	curthread = (uintptr_t)curlwp;
    451 	RW_ASSERT(rw, curthread != 0);
    452 
    453 	if (__predict_false(panicstr != NULL))
    454 		return;
    455 
    456 	/*
    457 	 * Again, we use a trick.  Since we used an add operation to
    458 	 * set the required lock bits, we can use a subtract to clear
    459 	 * them, which makes the read-release and write-release path
    460 	 * the same.
    461 	 */
    462 	owner = rw->rw_owner;
    463 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    464 		RW_UNLOCKED(rw, RW_WRITER);
    465 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    466 		decr = curthread | RW_WRITE_LOCKED;
    467 	} else {
    468 		RW_UNLOCKED(rw, RW_READER);
    469 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    470 		decr = RW_READ_INCR;
    471 	}
    472 
    473 	/*
    474 	 * Compute what we expect the new value of the lock to be. Only
    475 	 * proceed to do direct handoff if there are waiters, and if the
    476 	 * lock would become unowned.
    477 	 */
    478 	RW_MEMBAR_EXIT();
    479 	for (;;) {
    480 		newown = (owner - decr);
    481 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    482 			break;
    483 		next = rw_cas(rw, owner, newown);
    484 		if (__predict_true(next == owner))
    485 			return;
    486 		owner = next;
    487 	}
    488 
    489 	/*
    490 	 * Grab the turnstile chain lock.  This gets the interlock
    491 	 * on the sleep queue.  Once we have that, we can adjust the
    492 	 * waiter bits.
    493 	 */
    494 	ts = turnstile_lookup(rw);
    495 	owner = rw->rw_owner;
    496 	RW_DASSERT(rw, ts != NULL);
    497 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    498 
    499 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    500 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    501 
    502 	/*
    503 	 * Give the lock away.
    504 	 *
    505 	 * If we are releasing a write lock, then prefer to wake all
    506 	 * outstanding readers.  Otherwise, wake one writer if there
    507 	 * are outstanding readers, or all writers if there are no
    508 	 * pending readers.  If waking one specific writer, the writer
    509 	 * is handed the lock here.  If waking multiple writers, we
    510 	 * set WRITE_WANTED to block out new readers, and let them
    511 	 * do the work of acquiring the lock in rw_vector_enter().
    512 	 */
    513 	if (rcnt == 0 || decr == RW_READ_INCR) {
    514 		RW_DASSERT(rw, wcnt != 0);
    515 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    516 
    517 		if (rcnt != 0) {
    518 			/* Give the lock to the longest waiting writer. */
    519 			l = TS_FIRST(ts, TS_WRITER_Q);
    520 			newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    521 			if (wcnt > 1)
    522 				newown |= RW_WRITE_WANTED;
    523 			rw_swap(rw, owner, newown);
    524 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    525 		} else {
    526 			/* Wake all writers and let them fight it out. */
    527 			rw_swap(rw, owner, RW_WRITE_WANTED);
    528 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    529 		}
    530 	} else {
    531 		RW_DASSERT(rw, rcnt != 0);
    532 
    533 		/*
    534 		 * Give the lock to all blocked readers.  If there
    535 		 * is a writer waiting, new readers that arrive
    536 		 * after the release will be blocked out.
    537 		 */
    538 		newown = rcnt << RW_READ_COUNT_SHIFT;
    539 		if (wcnt != 0)
    540 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    541 
    542 		/* Wake up all sleeping readers. */
    543 		rw_swap(rw, owner, newown);
    544 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    545 	}
    546 }
    547 
    548 /*
    549  * rw_vector_tryenter:
    550  *
    551  *	Try to acquire a rwlock.
    552  */
    553 int
    554 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    555 {
    556 	uintptr_t curthread, owner, incr, need_wait, next;
    557 
    558 	curthread = (uintptr_t)curlwp;
    559 
    560 	RW_ASSERT(rw, curthread != 0);
    561 
    562 	if (op == RW_READER) {
    563 		incr = RW_READ_INCR;
    564 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    565 	} else {
    566 		RW_DASSERT(rw, op == RW_WRITER);
    567 		incr = curthread | RW_WRITE_LOCKED;
    568 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    569 	}
    570 
    571 	for (owner = rw->rw_owner;; owner = next) {
    572 		if (__predict_false((owner & need_wait) != 0))
    573 			return 0;
    574 		next = rw_cas(rw, owner, owner + incr);
    575 		if (__predict_true(next == owner)) {
    576 			/* Got it! */
    577 			RW_MEMBAR_ENTER();
    578 			break;
    579 		}
    580 	}
    581 
    582 	RW_WANTLOCK(rw, op);
    583 	RW_LOCKED(rw, op);
    584 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    585 	    (op == RW_READER && RW_COUNT(rw) != 0));
    586 
    587 	return 1;
    588 }
    589 
    590 /*
    591  * rw_downgrade:
    592  *
    593  *	Downgrade a write lock to a read lock.  Optimise memory accesses for
    594  *	the uncontended case.
    595  */
    596 void
    597 rw_downgrade(krwlock_t *rw)
    598 {
    599 	uintptr_t owner, curthread, newown, next;
    600 	turnstile_t *ts;
    601 	int rcnt, wcnt;
    602 
    603 	curthread = (uintptr_t)curlwp;
    604 	RW_ASSERT(rw, curthread != 0);
    605 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    606 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    607 	RW_UNLOCKED(rw, RW_WRITER);
    608 #if !defined(DIAGNOSTIC)
    609 	__USE(curthread);
    610 #endif
    611 
    612 	/*
    613 	 * If there are no waiters, so we can do this the easy way.
    614 	 * Try swapping us down to one read hold.  If it fails, the
    615 	 * lock condition has changed and we most likely now have
    616 	 * waiters.
    617 	 */
    618 	RW_MEMBAR_PRODUCER();
    619 	owner = curthread | RW_WRITE_LOCKED;
    620 	next = rw_cas(rw, owner, RW_READ_INCR);
    621 	if (__predict_true(next == owner)) {
    622 		RW_LOCKED(rw, RW_READER);
    623 		RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    624 		RW_DASSERT(rw, RW_COUNT(rw) != 0);
    625 		return;
    626 	}
    627 
    628 	/*
    629 	 * Grab the turnstile chain lock.  This gets the interlock
    630 	 * on the sleep queue.  Once we have that, we can adjust the
    631 	 * waiter bits.
    632 	 */
    633 	for (;;) {
    634 		owner = next;
    635 		ts = turnstile_lookup(rw);
    636 		RW_DASSERT(rw, ts != NULL);
    637 
    638 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    639 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    640 
    641 		/*
    642 		 * If there are no readers, just preserve the waiters
    643 		 * bits, swap us down to one read hold and return.
    644 		 */
    645 		if (rcnt == 0) {
    646 			RW_DASSERT(rw, wcnt != 0);
    647 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    648 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    649 
    650 			newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    651 			next = rw_cas(rw, owner, newown);
    652 			turnstile_exit(rw);
    653 			if (__predict_true(next == owner))
    654 				break;
    655 		} else {
    656 			/*
    657 			 * Give the lock to all blocked readers.  We may
    658 			 * retain one read hold if downgrading.  If there
    659 			 * is a writer waiting, new readers will be blocked
    660 			 * out.
    661 			 */
    662 			newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    663 			if (wcnt != 0)
    664 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    665 
    666 			next = rw_cas(rw, owner, newown);
    667 			if (__predict_true(next == owner)) {
    668 				/* Wake up all sleeping readers. */
    669 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    670 				break;
    671 			}
    672 			turnstile_exit(rw);
    673 		}
    674 	}
    675 
    676 	RW_WANTLOCK(rw, RW_READER);
    677 	RW_LOCKED(rw, RW_READER);
    678 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    679 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    680 }
    681 
    682 /*
    683  * rw_tryupgrade:
    684  *
    685  *	Try to upgrade a read lock to a write lock.  We must be the only
    686  *	reader.  Optimise memory accesses for the uncontended case.
    687  */
    688 int
    689 rw_tryupgrade(krwlock_t *rw)
    690 {
    691 	uintptr_t owner, curthread, newown, next;
    692 
    693 	curthread = (uintptr_t)curlwp;
    694 	RW_ASSERT(rw, curthread != 0);
    695 	RW_ASSERT(rw, rw_read_held(rw));
    696 
    697 	for (owner = RW_READ_INCR;; owner = next) {
    698 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    699 		next = rw_cas(rw, owner, newown);
    700 		if (__predict_true(next == owner)) {
    701 			RW_MEMBAR_PRODUCER();
    702 			break;
    703 		}
    704 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    705 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    706 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    707 			return 0;
    708 		}
    709 	}
    710 
    711 	RW_UNLOCKED(rw, RW_READER);
    712 	RW_WANTLOCK(rw, RW_WRITER);
    713 	RW_LOCKED(rw, RW_WRITER);
    714 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    715 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    716 
    717 	return 1;
    718 }
    719 
    720 /*
    721  * rw_read_held:
    722  *
    723  *	Returns true if the rwlock is held for reading.  Must only be
    724  *	used for diagnostic assertions, and never be used to make
    725  * 	decisions about how to use a rwlock.
    726  */
    727 int
    728 rw_read_held(krwlock_t *rw)
    729 {
    730 	uintptr_t owner;
    731 
    732 	if (panicstr != NULL)
    733 		return 1;
    734 	if (rw == NULL)
    735 		return 0;
    736 	owner = rw->rw_owner;
    737 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    738 }
    739 
    740 /*
    741  * rw_write_held:
    742  *
    743  *	Returns true if the rwlock is held for writing.  Must only be
    744  *	used for diagnostic assertions, and never be used to make
    745  *	decisions about how to use a rwlock.
    746  */
    747 int
    748 rw_write_held(krwlock_t *rw)
    749 {
    750 
    751 	if (panicstr != NULL)
    752 		return 1;
    753 	if (rw == NULL)
    754 		return 0;
    755 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    756 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    757 }
    758 
    759 /*
    760  * rw_lock_held:
    761  *
    762  *	Returns true if the rwlock is held for reading or writing.  Must
    763  *	only be used for diagnostic assertions, and never be used to make
    764  *	decisions about how to use a rwlock.
    765  */
    766 int
    767 rw_lock_held(krwlock_t *rw)
    768 {
    769 
    770 	if (panicstr != NULL)
    771 		return 1;
    772 	if (rw == NULL)
    773 		return 0;
    774 	return (rw->rw_owner & RW_THREAD) != 0;
    775 }
    776 
    777 /*
    778  * rw_owner:
    779  *
    780  *	Return the current owner of an RW lock, but only if it is write
    781  *	held.  Used for priority inheritance.
    782  */
    783 static lwp_t *
    784 rw_owner(wchan_t obj)
    785 {
    786 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    787 	uintptr_t owner = rw->rw_owner;
    788 
    789 	if ((owner & RW_WRITE_LOCKED) == 0)
    790 		return NULL;
    791 
    792 	return (void *)(owner & RW_THREAD);
    793 }
    794