Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.59.2.1
      1 /*	$NetBSD: kern_rwlock.c,v 1.59.2.1 2020/01/17 21:47:35 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe and Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Kernel reader/writer lock implementation, modeled after those
     35  * found in Solaris, a description of which can be found in:
     36  *
     37  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38  *	    Richard McDougall.
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.59.2.1 2020/01/17 21:47:35 ad Exp $");
     43 
     44 #define	__RWLOCK_PRIVATE
     45 
     46 #include <sys/param.h>
     47 #include <sys/proc.h>
     48 #include <sys/rwlock.h>
     49 #include <sys/sched.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/systm.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/cpu.h>
     54 #include <sys/atomic.h>
     55 #include <sys/lock.h>
     56 #include <sys/pserialize.h>
     57 
     58 #include <dev/lockstat.h>
     59 
     60 #include <machine/rwlock.h>
     61 
     62 /*
     63  * LOCKDEBUG
     64  */
     65 
     66 #if defined(LOCKDEBUG)
     67 
     68 #define	RW_WANTLOCK(rw, op)						\
     69 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
     70 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     71 #define	RW_LOCKED(rw, op)						\
     72 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
     73 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     74 #define	RW_UNLOCKED(rw, op)						\
     75 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
     76 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
     77 #define	RW_DASSERT(rw, cond)						\
     78 do {									\
     79 	if (__predict_false(!(cond)))					\
     80 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     81 } while (/* CONSTCOND */ 0);
     82 
     83 #else	/* LOCKDEBUG */
     84 
     85 #define	RW_WANTLOCK(rw, op)	/* nothing */
     86 #define	RW_LOCKED(rw, op)	/* nothing */
     87 #define	RW_UNLOCKED(rw, op)	/* nothing */
     88 #define	RW_DASSERT(rw, cond)	/* nothing */
     89 
     90 #endif	/* LOCKDEBUG */
     91 
     92 /*
     93  * DIAGNOSTIC
     94  */
     95 
     96 #if defined(DIAGNOSTIC)
     97 
     98 #define	RW_ASSERT(rw, cond)						\
     99 do {									\
    100 	if (__predict_false(!(cond)))					\
    101 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
    102 } while (/* CONSTCOND */ 0)
    103 
    104 #else
    105 
    106 #define	RW_ASSERT(rw, cond)	/* nothing */
    107 
    108 #endif	/* DIAGNOSTIC */
    109 
    110 #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
    111 #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_NODEBUG) == 0)
    112 #if defined(LOCKDEBUG)
    113 #define	RW_INHERITDEBUG(n, o)		(n) |= (o) & RW_NODEBUG
    114 #else /* defined(LOCKDEBUG) */
    115 #define	RW_INHERITDEBUG(n, o)		/* nothing */
    116 #endif /* defined(LOCKDEBUG) */
    117 
    118 /*
    119  * Memory barriers.
    120  */
    121 #ifdef __HAVE_ATOMIC_AS_MEMBAR
    122 #define	RW_MEMBAR_ENTER()
    123 #define	RW_MEMBAR_EXIT()
    124 #define	RW_MEMBAR_PRODUCER()
    125 #else
    126 #define	RW_MEMBAR_ENTER()		membar_enter()
    127 #define	RW_MEMBAR_EXIT()		membar_exit()
    128 #define	RW_MEMBAR_PRODUCER()		membar_producer()
    129 #endif
    130 
    131 static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    132 static void	rw_dump(const volatile void *, lockop_printer_t);
    133 static lwp_t	*rw_owner(wchan_t);
    134 
    135 static inline uintptr_t
    136 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    137 {
    138 
    139 	RW_INHERITDEBUG(n, o);
    140 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    141 	    (void *)o, (void *)n);
    142 }
    143 
    144 static inline void
    145 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    146 {
    147 
    148 	RW_INHERITDEBUG(n, o);
    149 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    150 	    (void *)n);
    151 	RW_DASSERT(rw, n == o);
    152 }
    153 
    154 /*
    155  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    156  */
    157 #ifdef LOCKDEBUG
    158 #undef	__HAVE_RW_STUBS
    159 #endif
    160 
    161 #ifndef __HAVE_RW_STUBS
    162 __strong_alias(rw_enter,rw_vector_enter);
    163 __strong_alias(rw_exit,rw_vector_exit);
    164 __strong_alias(rw_tryenter,rw_vector_tryenter);
    165 #endif
    166 
    167 lockops_t rwlock_lockops = {
    168 	.lo_name = "Reader / writer lock",
    169 	.lo_type = LOCKOPS_SLEEP,
    170 	.lo_dump = rw_dump,
    171 };
    172 
    173 syncobj_t rw_syncobj = {
    174 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    175 	.sobj_unsleep	= turnstile_unsleep,
    176 	.sobj_changepri	= turnstile_changepri,
    177 	.sobj_lendpri	= sleepq_lendpri,
    178 	.sobj_owner	= rw_owner,
    179 };
    180 
    181 /*
    182  * rw_dump:
    183  *
    184  *	Dump the contents of a rwlock structure.
    185  */
    186 static void
    187 rw_dump(const volatile void *cookie, lockop_printer_t pr)
    188 {
    189 	const volatile krwlock_t *rw = cookie;
    190 
    191 	pr("owner/count  : %#018lx flags    : %#018x\n",
    192 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    193 }
    194 
    195 /*
    196  * rw_abort:
    197  *
    198  *	Dump information about an error and panic the system.  This
    199  *	generates a lot of machine code in the DIAGNOSTIC case, so
    200  *	we ask the compiler to not inline it.
    201  */
    202 static void __noinline
    203 rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    204 {
    205 
    206 	if (panicstr != NULL)
    207 		return;
    208 
    209 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    210 }
    211 
    212 /*
    213  * rw_init:
    214  *
    215  *	Initialize a rwlock for use.
    216  */
    217 void _rw_init(krwlock_t *, uintptr_t);
    218 void
    219 _rw_init(krwlock_t *rw, uintptr_t return_address)
    220 {
    221 	bool dodebug;
    222 
    223 	memset(rw, 0, sizeof(*rw));
    224 
    225 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address);
    226 	RW_SETDEBUG(rw, dodebug);
    227 }
    228 
    229 void
    230 rw_init(krwlock_t *rw)
    231 {
    232 
    233 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    234 }
    235 
    236 /*
    237  * rw_destroy:
    238  *
    239  *	Tear down a rwlock.
    240  */
    241 void
    242 rw_destroy(krwlock_t *rw)
    243 {
    244 
    245 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    246 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
    247 }
    248 
    249 /*
    250  * rw_oncpu:
    251  *
    252  *	Return true if an rwlock owner is running on a CPU in the system.
    253  *	If the target is waiting on the kernel big lock, then we must
    254  *	release it.  This is necessary to avoid deadlock.
    255  */
    256 static bool
    257 rw_oncpu(uintptr_t owner)
    258 {
    259 #ifdef MULTIPROCESSOR
    260 	struct cpu_info *ci;
    261 	lwp_t *l;
    262 
    263 	KASSERT(kpreempt_disabled());
    264 
    265 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    266 		return false;
    267 	}
    268 
    269 	/*
    270 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    271 	 * We must have kernel preemption disabled for that.
    272 	 */
    273 	l = (lwp_t *)(owner & RW_THREAD);
    274 	ci = l->l_cpu;
    275 
    276 	if (ci && ci->ci_curlwp == l) {
    277 		/* Target is running; do we need to block? */
    278 		return (ci->ci_biglock_wanted != l);
    279 	}
    280 #endif
    281 	/* Not running.  It may be safe to block now. */
    282 	return false;
    283 }
    284 
    285 /*
    286  * rw_vector_enter:
    287  *
    288  *	Acquire a rwlock.
    289  */
    290 void
    291 rw_vector_enter(krwlock_t *rw, const krw_t op)
    292 {
    293 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    294 	turnstile_t *ts;
    295 	int queue;
    296 	lwp_t *l;
    297 	LOCKSTAT_TIMER(slptime);
    298 	LOCKSTAT_TIMER(slpcnt);
    299 	LOCKSTAT_TIMER(spintime);
    300 	LOCKSTAT_COUNTER(spincnt);
    301 	LOCKSTAT_FLAG(lsflag);
    302 
    303 	l = curlwp;
    304 	curthread = (uintptr_t)l;
    305 
    306 	RW_ASSERT(rw, !cpu_intr_p());
    307 	RW_ASSERT(rw, curthread != 0);
    308 	RW_WANTLOCK(rw, op);
    309 
    310 	if (panicstr == NULL) {
    311 		KDASSERT(pserialize_not_in_read_section());
    312 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    313 	}
    314 
    315 	/*
    316 	 * We play a slight trick here.  If we're a reader, we want
    317 	 * increment the read count.  If we're a writer, we want to
    318 	 * set the owner field and the WRITE_LOCKED bit.
    319 	 *
    320 	 * In the latter case, we expect those bits to be zero,
    321 	 * therefore we can use an add operation to set them, which
    322 	 * means an add operation for both cases.
    323 	 */
    324 	if (__predict_true(op == RW_READER)) {
    325 		incr = RW_READ_INCR;
    326 		set_wait = RW_HAS_WAITERS;
    327 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    328 		queue = TS_READER_Q;
    329 	} else {
    330 		RW_DASSERT(rw, op == RW_WRITER);
    331 		incr = curthread | RW_WRITE_LOCKED;
    332 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    333 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    334 		queue = TS_WRITER_Q;
    335 	}
    336 
    337 	LOCKSTAT_ENTER(lsflag);
    338 
    339 	KPREEMPT_DISABLE(curlwp);
    340 	for (owner = rw->rw_owner;;) {
    341 		/*
    342 		 * Read the lock owner field.  If the need-to-wait
    343 		 * indicator is clear, then try to acquire the lock.
    344 		 */
    345 		if ((owner & need_wait) == 0) {
    346 			next = rw_cas(rw, owner, (owner + incr) &
    347 			    ~RW_WRITE_WANTED);
    348 			if (__predict_true(next == owner)) {
    349 				/* Got it! */
    350 				RW_MEMBAR_ENTER();
    351 				break;
    352 			}
    353 
    354 			/*
    355 			 * Didn't get it -- spin around again (we'll
    356 			 * probably sleep on the next iteration).
    357 			 */
    358 			owner = next;
    359 			continue;
    360 		}
    361 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    362 			rw_abort(__func__, __LINE__, rw,
    363 			    "locking against myself");
    364 		}
    365 		/*
    366 		 * If the lock owner is running on another CPU, and
    367 		 * there are no existing waiters, then spin.
    368 		 */
    369 		if (rw_oncpu(owner)) {
    370 			LOCKSTAT_START_TIMER(lsflag, spintime);
    371 			u_int count = SPINLOCK_BACKOFF_MIN;
    372 			do {
    373 				KPREEMPT_ENABLE(curlwp);
    374 				SPINLOCK_BACKOFF(count);
    375 				KPREEMPT_DISABLE(curlwp);
    376 				owner = rw->rw_owner;
    377 			} while (rw_oncpu(owner));
    378 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    379 			LOCKSTAT_COUNT(spincnt, 1);
    380 			if ((owner & need_wait) == 0)
    381 				continue;
    382 		}
    383 
    384 		/*
    385 		 * Grab the turnstile chain lock.  Once we have that, we
    386 		 * can adjust the waiter bits and sleep queue.
    387 		 */
    388 		ts = turnstile_lookup(rw);
    389 
    390 		/*
    391 		 * Mark the rwlock as having waiters.  If the set fails,
    392 		 * then we may not need to sleep and should spin again.
    393 		 * Reload rw_owner because turnstile_lookup() may have
    394 		 * spun on the turnstile chain lock.
    395 		 */
    396 		owner = rw->rw_owner;
    397 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    398 			turnstile_exit(rw);
    399 			continue;
    400 		}
    401 		next = rw_cas(rw, owner, owner | set_wait);
    402 		if (__predict_false(next != owner)) {
    403 			turnstile_exit(rw);
    404 			owner = next;
    405 			continue;
    406 		}
    407 
    408 		LOCKSTAT_START_TIMER(lsflag, slptime);
    409 		turnstile_block(ts, queue, rw, &rw_syncobj);
    410 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    411 		LOCKSTAT_COUNT(slpcnt, 1);
    412 
    413 		/*
    414 		 * No need for a memory barrier because of context switch.
    415 		 * If not handed the lock, then spin again.
    416 		 */
    417 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    418 			break;
    419 
    420 		owner = rw->rw_owner;
    421 	}
    422 	KPREEMPT_ENABLE(curlwp);
    423 
    424 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
    425 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
    426 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    427 	      (uintptr_t)__builtin_return_address(0)));
    428 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
    429 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    430 	      (uintptr_t)__builtin_return_address(0)));
    431 	LOCKSTAT_EXIT(lsflag);
    432 
    433 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    434 	    (op == RW_READER && RW_COUNT(rw) != 0));
    435 	RW_LOCKED(rw, op);
    436 }
    437 
    438 /*
    439  * rw_vector_exit:
    440  *
    441  *	Release a rwlock.
    442  */
    443 void
    444 rw_vector_exit(krwlock_t *rw)
    445 {
    446 	uintptr_t curthread, owner, decr, newown, next;
    447 	turnstile_t *ts;
    448 	int rcnt, wcnt;
    449 	lwp_t *l;
    450 
    451 	curthread = (uintptr_t)curlwp;
    452 	RW_ASSERT(rw, curthread != 0);
    453 
    454 	/*
    455 	 * Again, we use a trick.  Since we used an add operation to
    456 	 * set the required lock bits, we can use a subtract to clear
    457 	 * them, which makes the read-release and write-release path
    458 	 * the same.
    459 	 */
    460 	owner = rw->rw_owner;
    461 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    462 		RW_UNLOCKED(rw, RW_WRITER);
    463 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    464 		decr = curthread | RW_WRITE_LOCKED;
    465 	} else {
    466 		RW_UNLOCKED(rw, RW_READER);
    467 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    468 		decr = RW_READ_INCR;
    469 	}
    470 
    471 	/*
    472 	 * Compute what we expect the new value of the lock to be. Only
    473 	 * proceed to do direct handoff if there are waiters, and if the
    474 	 * lock would become unowned.
    475 	 */
    476 	RW_MEMBAR_EXIT();
    477 	for (;;) {
    478 		newown = (owner - decr);
    479 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    480 			break;
    481 		next = rw_cas(rw, owner, newown);
    482 		if (__predict_true(next == owner))
    483 			return;
    484 		owner = next;
    485 	}
    486 
    487 	/*
    488 	 * Grab the turnstile chain lock.  This gets the interlock
    489 	 * on the sleep queue.  Once we have that, we can adjust the
    490 	 * waiter bits.
    491 	 */
    492 	ts = turnstile_lookup(rw);
    493 	owner = rw->rw_owner;
    494 	RW_DASSERT(rw, ts != NULL);
    495 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    496 
    497 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    498 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    499 
    500 	/*
    501 	 * Give the lock away.
    502 	 *
    503 	 * If we are releasing a write lock, then prefer to wake all
    504 	 * outstanding readers.  Otherwise, wake one writer if there
    505 	 * are outstanding readers, or all writers if there are no
    506 	 * pending readers.  If waking one specific writer, the writer
    507 	 * is handed the lock here.  If waking multiple writers, we
    508 	 * set WRITE_WANTED to block out new readers, and let them
    509 	 * do the work of acquiring the lock in rw_vector_enter().
    510 	 */
    511 	if (rcnt == 0 || decr == RW_READ_INCR) {
    512 		RW_DASSERT(rw, wcnt != 0);
    513 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    514 
    515 		if (rcnt != 0) {
    516 			/* Give the lock to the longest waiting writer. */
    517 			l = TS_FIRST(ts, TS_WRITER_Q);
    518 			newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
    519 			if (wcnt > 1)
    520 				newown |= RW_WRITE_WANTED;
    521 			rw_swap(rw, owner, newown);
    522 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    523 		} else {
    524 			/* Wake all writers and let them fight it out. */
    525 			rw_swap(rw, owner, RW_WRITE_WANTED);
    526 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    527 		}
    528 	} else {
    529 		RW_DASSERT(rw, rcnt != 0);
    530 
    531 		/*
    532 		 * Give the lock to all blocked readers.  If there
    533 		 * is a writer waiting, new readers that arrive
    534 		 * after the release will be blocked out.
    535 		 */
    536 		newown = rcnt << RW_READ_COUNT_SHIFT;
    537 		if (wcnt != 0)
    538 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    539 
    540 		/* Wake up all sleeping readers. */
    541 		rw_swap(rw, owner, newown);
    542 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    543 	}
    544 }
    545 
    546 /*
    547  * rw_vector_tryenter:
    548  *
    549  *	Try to acquire a rwlock.
    550  */
    551 int
    552 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    553 {
    554 	uintptr_t curthread, owner, incr, need_wait, next;
    555 
    556 	curthread = (uintptr_t)curlwp;
    557 
    558 	RW_ASSERT(rw, curthread != 0);
    559 
    560 	if (op == RW_READER) {
    561 		incr = RW_READ_INCR;
    562 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    563 	} else {
    564 		RW_DASSERT(rw, op == RW_WRITER);
    565 		incr = curthread | RW_WRITE_LOCKED;
    566 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    567 	}
    568 
    569 	for (owner = rw->rw_owner;; owner = next) {
    570 		if (__predict_false((owner & need_wait) != 0))
    571 			return 0;
    572 		next = rw_cas(rw, owner, owner + incr);
    573 		if (__predict_true(next == owner)) {
    574 			/* Got it! */
    575 			RW_MEMBAR_ENTER();
    576 			break;
    577 		}
    578 	}
    579 
    580 	RW_WANTLOCK(rw, op);
    581 	RW_LOCKED(rw, op);
    582 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    583 	    (op == RW_READER && RW_COUNT(rw) != 0));
    584 
    585 	return 1;
    586 }
    587 
    588 /*
    589  * rw_downgrade:
    590  *
    591  *	Downgrade a write lock to a read lock.  Optimise memory accesses for
    592  *	the uncontended case.
    593  */
    594 void
    595 rw_downgrade(krwlock_t *rw)
    596 {
    597 	uintptr_t owner, curthread, newown, next;
    598 	turnstile_t *ts;
    599 	int rcnt, wcnt;
    600 
    601 	curthread = (uintptr_t)curlwp;
    602 	RW_ASSERT(rw, curthread != 0);
    603 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    604 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    605 	RW_UNLOCKED(rw, RW_WRITER);
    606 #if !defined(DIAGNOSTIC)
    607 	__USE(curthread);
    608 #endif
    609 
    610 	/*
    611 	 * If there are no waiters, so we can do this the easy way.
    612 	 * Try swapping us down to one read hold.  If it fails, the
    613 	 * lock condition has changed and we most likely now have
    614 	 * waiters.
    615 	 */
    616 	RW_MEMBAR_PRODUCER();
    617 	owner = curthread | RW_WRITE_LOCKED;
    618 	next = rw_cas(rw, owner, RW_READ_INCR);
    619 	if (__predict_true(next == owner)) {
    620 		RW_LOCKED(rw, RW_READER);
    621 		RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    622 		RW_DASSERT(rw, RW_COUNT(rw) != 0);
    623 		return;
    624 	}
    625 
    626 	/*
    627 	 * Grab the turnstile chain lock.  This gets the interlock
    628 	 * on the sleep queue.  Once we have that, we can adjust the
    629 	 * waiter bits.
    630 	 */
    631 	for (;;) {
    632 		owner = next;
    633 		ts = turnstile_lookup(rw);
    634 		RW_DASSERT(rw, ts != NULL);
    635 
    636 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    637 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    638 
    639 		/*
    640 		 * If there are no readers, just preserve the waiters
    641 		 * bits, swap us down to one read hold and return.
    642 		 */
    643 		if (rcnt == 0) {
    644 			RW_DASSERT(rw, wcnt != 0);
    645 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    646 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    647 
    648 			newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
    649 			next = rw_cas(rw, owner, newown);
    650 			turnstile_exit(rw);
    651 			if (__predict_true(next == owner))
    652 				break;
    653 		} else {
    654 			/*
    655 			 * Give the lock to all blocked readers.  We may
    656 			 * retain one read hold if downgrading.  If there
    657 			 * is a writer waiting, new readers will be blocked
    658 			 * out.
    659 			 */
    660 			newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    661 			if (wcnt != 0)
    662 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    663 
    664 			next = rw_cas(rw, owner, newown);
    665 			if (__predict_true(next == owner)) {
    666 				/* Wake up all sleeping readers. */
    667 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    668 				break;
    669 			}
    670 			turnstile_exit(rw);
    671 		}
    672 	}
    673 
    674 	RW_WANTLOCK(rw, RW_READER);
    675 	RW_LOCKED(rw, RW_READER);
    676 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    677 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
    678 }
    679 
    680 /*
    681  * rw_tryupgrade:
    682  *
    683  *	Try to upgrade a read lock to a write lock.  We must be the only
    684  *	reader.  Optimise memory accesses for the uncontended case.
    685  */
    686 int
    687 rw_tryupgrade(krwlock_t *rw)
    688 {
    689 	uintptr_t owner, curthread, newown, next;
    690 
    691 	curthread = (uintptr_t)curlwp;
    692 	RW_ASSERT(rw, curthread != 0);
    693 	RW_ASSERT(rw, rw_read_held(rw));
    694 
    695 	for (owner = RW_READ_INCR;; owner = next) {
    696 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    697 		next = rw_cas(rw, owner, newown);
    698 		if (__predict_true(next == owner)) {
    699 			RW_MEMBAR_PRODUCER();
    700 			break;
    701 		}
    702 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    703 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    704 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    705 			return 0;
    706 		}
    707 	}
    708 
    709 	RW_UNLOCKED(rw, RW_READER);
    710 	RW_WANTLOCK(rw, RW_WRITER);
    711 	RW_LOCKED(rw, RW_WRITER);
    712 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    713 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
    714 
    715 	return 1;
    716 }
    717 
    718 /*
    719  * rw_read_held:
    720  *
    721  *	Returns true if the rwlock is held for reading.  Must only be
    722  *	used for diagnostic assertions, and never be used to make
    723  * 	decisions about how to use a rwlock.
    724  */
    725 int
    726 rw_read_held(krwlock_t *rw)
    727 {
    728 	uintptr_t owner;
    729 
    730 	if (rw == NULL)
    731 		return 0;
    732 	owner = rw->rw_owner;
    733 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    734 }
    735 
    736 /*
    737  * rw_write_held:
    738  *
    739  *	Returns true if the rwlock is held for writing.  Must only be
    740  *	used for diagnostic assertions, and never be used to make
    741  *	decisions about how to use a rwlock.
    742  */
    743 int
    744 rw_write_held(krwlock_t *rw)
    745 {
    746 
    747 	if (rw == NULL)
    748 		return 0;
    749 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    750 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    751 }
    752 
    753 /*
    754  * rw_lock_held:
    755  *
    756  *	Returns true if the rwlock is held for reading or writing.  Must
    757  *	only be used for diagnostic assertions, and never be used to make
    758  *	decisions about how to use a rwlock.
    759  */
    760 int
    761 rw_lock_held(krwlock_t *rw)
    762 {
    763 
    764 	if (rw == NULL)
    765 		return 0;
    766 	return (rw->rw_owner & RW_THREAD) != 0;
    767 }
    768 
    769 /*
    770  * rw_owner:
    771  *
    772  *	Return the current owner of an RW lock, but only if it is write
    773  *	held.  Used for priority inheritance.
    774  */
    775 static lwp_t *
    776 rw_owner(wchan_t obj)
    777 {
    778 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    779 	uintptr_t owner = rw->rw_owner;
    780 
    781 	if ((owner & RW_WRITE_LOCKED) == 0)
    782 		return NULL;
    783 
    784 	return (void *)(owner & RW_THREAD);
    785 }
    786