kern_rwlock.c revision 1.59.2.4 1 /* $NetBSD: kern_rwlock.c,v 1.59.2.4 2020/01/22 11:40:17 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe and Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Kernel reader/writer lock implementation, modeled after those
35 * found in Solaris, a description of which can be found in:
36 *
37 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
38 * Richard McDougall.
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.59.2.4 2020/01/22 11:40:17 ad Exp $");
43
44 #include "opt_lockdebug.h"
45
46 #define __RWLOCK_PRIVATE
47
48 #include <sys/param.h>
49 #include <sys/proc.h>
50 #include <sys/rwlock.h>
51 #include <sys/sched.h>
52 #include <sys/sleepq.h>
53 #include <sys/systm.h>
54 #include <sys/lockdebug.h>
55 #include <sys/cpu.h>
56 #include <sys/atomic.h>
57 #include <sys/lock.h>
58 #include <sys/pserialize.h>
59
60 #include <dev/lockstat.h>
61
62 #include <machine/rwlock.h>
63
64 /*
65 * LOCKDEBUG
66 */
67
68 #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
69
70 #define RW_WANTLOCK(rw, op) \
71 LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
72 (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 #define RW_LOCKED(rw, op) \
74 LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
75 (uintptr_t)__builtin_return_address(0), op == RW_READER);
76 #define RW_UNLOCKED(rw, op) \
77 LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
78 (uintptr_t)__builtin_return_address(0), op == RW_READER);
79
80 /*
81 * DIAGNOSTIC
82 */
83
84 #if defined(DIAGNOSTIC)
85 #define RW_ASSERT(rw, cond) \
86 do { \
87 if (__predict_false(!(cond))) \
88 rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
89 } while (/* CONSTCOND */ 0)
90 #else
91 #define RW_ASSERT(rw, cond) /* nothing */
92 #endif /* DIAGNOSTIC */
93
94 /*
95 * Memory barriers.
96 */
97 #ifdef __HAVE_ATOMIC_AS_MEMBAR
98 #define RW_MEMBAR_ENTER()
99 #define RW_MEMBAR_EXIT()
100 #define RW_MEMBAR_PRODUCER()
101 #else
102 #define RW_MEMBAR_ENTER() membar_enter()
103 #define RW_MEMBAR_EXIT() membar_exit()
104 #define RW_MEMBAR_PRODUCER() membar_producer()
105 #endif
106
107 /*
108 * For platforms that do not provide stubs, or for the LOCKDEBUG case.
109 */
110 #ifdef LOCKDEBUG
111 #undef __HAVE_RW_STUBS
112 #endif
113
114 #ifndef __HAVE_RW_STUBS
115 __strong_alias(rw_enter,rw_vector_enter);
116 __strong_alias(rw_exit,rw_vector_exit);
117 __strong_alias(rw_tryenter,rw_vector_tryenter);
118 #endif
119
120 static void rw_abort(const char *, size_t, krwlock_t *, const char *);
121 static void rw_dump(const volatile void *, lockop_printer_t);
122 static lwp_t *rw_owner(wchan_t);
123
124 lockops_t rwlock_lockops = {
125 .lo_name = "Reader / writer lock",
126 .lo_type = LOCKOPS_SLEEP,
127 .lo_dump = rw_dump,
128 };
129
130 syncobj_t rw_syncobj = {
131 .sobj_flag = SOBJ_SLEEPQ_SORTED,
132 .sobj_unsleep = turnstile_unsleep,
133 .sobj_changepri = turnstile_changepri,
134 .sobj_lendpri = sleepq_lendpri,
135 .sobj_owner = rw_owner,
136 };
137
138 /*
139 * rw_cas:
140 *
141 * Do an atomic compare-and-swap on the lock word.
142 */
143 static inline uintptr_t
144 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
145 {
146
147 return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
148 (void *)o, (void *)n);
149 }
150
151 /*
152 * rw_swap:
153 *
154 * Do an atomic swap of the lock word. This is used only when it's
155 * known that the lock word is set up such that it can't be changed
156 * behind us (assert this), so there's no point considering the result.
157 */
158 static inline void
159 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
160 {
161
162 n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
163 (void *)n);
164
165 RW_ASSERT(rw, n == o);
166 RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
167 }
168
169 /*
170 * rw_dump:
171 *
172 * Dump the contents of a rwlock structure.
173 */
174 static void
175 rw_dump(const volatile void *cookie, lockop_printer_t pr)
176 {
177 const volatile krwlock_t *rw = cookie;
178
179 pr("owner/count : %#018lx flags : %#018x\n",
180 (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
181 }
182
183 /*
184 * rw_abort:
185 *
186 * Dump information about an error and panic the system. This
187 * generates a lot of machine code in the DIAGNOSTIC case, so
188 * we ask the compiler to not inline it.
189 */
190 static void __noinline
191 rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
192 {
193
194 if (panicstr != NULL)
195 return;
196
197 LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
198 }
199
200 /*
201 * rw_init:
202 *
203 * Initialize a rwlock for use.
204 */
205 void
206 _rw_init(krwlock_t *rw, uintptr_t return_address)
207 {
208
209 #ifdef LOCKDEBUG
210 /* XXX only because the assembly stubs can't handle RW_NODEBUG */
211 if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
212 rw->rw_owner = 0;
213 else
214 rw->rw_owner = RW_NODEBUG;
215 #else
216 rw->rw_owner = 0;
217 #endif
218 }
219
220 void
221 rw_init(krwlock_t *rw)
222 {
223
224 _rw_init(rw, (uintptr_t)__builtin_return_address(0));
225 }
226
227 /*
228 * rw_destroy:
229 *
230 * Tear down a rwlock.
231 */
232 void
233 rw_destroy(krwlock_t *rw)
234 {
235
236 RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
237 LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
238 }
239
240 /*
241 * rw_oncpu:
242 *
243 * Return true if an rwlock owner is running on a CPU in the system.
244 * If the target is waiting on the kernel big lock, then we must
245 * release it. This is necessary to avoid deadlock.
246 */
247 static bool
248 rw_oncpu(uintptr_t owner)
249 {
250 #ifdef MULTIPROCESSOR
251 struct cpu_info *ci;
252 lwp_t *l;
253
254 KASSERT(kpreempt_disabled());
255
256 if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
257 return false;
258 }
259
260 /*
261 * See lwp_dtor() why dereference of the LWP pointer is safe.
262 * We must have kernel preemption disabled for that.
263 */
264 l = (lwp_t *)(owner & RW_THREAD);
265 ci = l->l_cpu;
266
267 if (ci && ci->ci_curlwp == l) {
268 /* Target is running; do we need to block? */
269 return (ci->ci_biglock_wanted != l);
270 }
271 #endif
272 /* Not running. It may be safe to block now. */
273 return false;
274 }
275
276 /*
277 * rw_vector_enter:
278 *
279 * Acquire a rwlock.
280 */
281 void
282 rw_vector_enter(krwlock_t *rw, const krw_t op)
283 {
284 uintptr_t owner, incr, need_wait, set_wait, curthread, next;
285 turnstile_t *ts;
286 int queue;
287 lwp_t *l;
288 LOCKSTAT_TIMER(slptime);
289 LOCKSTAT_TIMER(slpcnt);
290 LOCKSTAT_TIMER(spintime);
291 LOCKSTAT_COUNTER(spincnt);
292 LOCKSTAT_FLAG(lsflag);
293
294 l = curlwp;
295 curthread = (uintptr_t)l;
296
297 RW_ASSERT(rw, !cpu_intr_p());
298 RW_ASSERT(rw, curthread != 0);
299 RW_WANTLOCK(rw, op);
300
301 if (panicstr == NULL) {
302 KDASSERT(pserialize_not_in_read_section());
303 LOCKDEBUG_BARRIER(&kernel_lock, 1);
304 }
305
306 /*
307 * We play a slight trick here. If we're a reader, we want
308 * increment the read count. If we're a writer, we want to
309 * set the owner field and the WRITE_LOCKED bit.
310 *
311 * In the latter case, we expect those bits to be zero,
312 * therefore we can use an add operation to set them, which
313 * means an add operation for both cases.
314 */
315 if (__predict_true(op == RW_READER)) {
316 incr = RW_READ_INCR;
317 set_wait = RW_HAS_WAITERS;
318 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
319 queue = TS_READER_Q;
320 } else {
321 RW_ASSERT(rw, op == RW_WRITER);
322 incr = curthread | RW_WRITE_LOCKED;
323 set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
324 need_wait = RW_WRITE_LOCKED | RW_THREAD;
325 queue = TS_WRITER_Q;
326 }
327
328 LOCKSTAT_ENTER(lsflag);
329
330 KPREEMPT_DISABLE(curlwp);
331 for (owner = rw->rw_owner;;) {
332 /*
333 * Read the lock owner field. If the need-to-wait
334 * indicator is clear, then try to acquire the lock.
335 */
336 if ((owner & need_wait) == 0) {
337 next = rw_cas(rw, owner, (owner + incr) &
338 ~RW_WRITE_WANTED);
339 if (__predict_true(next == owner)) {
340 /* Got it! */
341 RW_MEMBAR_ENTER();
342 break;
343 }
344
345 /*
346 * Didn't get it -- spin around again (we'll
347 * probably sleep on the next iteration).
348 */
349 owner = next;
350 continue;
351 }
352 if (__predict_false(RW_OWNER(rw) == curthread)) {
353 rw_abort(__func__, __LINE__, rw,
354 "locking against myself");
355 }
356 /*
357 * If the lock owner is running on another CPU, and
358 * there are no existing waiters, then spin.
359 */
360 if (rw_oncpu(owner)) {
361 LOCKSTAT_START_TIMER(lsflag, spintime);
362 u_int count = SPINLOCK_BACKOFF_MIN;
363 do {
364 KPREEMPT_ENABLE(curlwp);
365 SPINLOCK_BACKOFF(count);
366 KPREEMPT_DISABLE(curlwp);
367 owner = rw->rw_owner;
368 } while (rw_oncpu(owner));
369 LOCKSTAT_STOP_TIMER(lsflag, spintime);
370 LOCKSTAT_COUNT(spincnt, 1);
371 if ((owner & need_wait) == 0)
372 continue;
373 }
374
375 /*
376 * Grab the turnstile chain lock. Once we have that, we
377 * can adjust the waiter bits and sleep queue.
378 */
379 ts = turnstile_lookup(rw);
380
381 /*
382 * Mark the rwlock as having waiters. If the set fails,
383 * then we may not need to sleep and should spin again.
384 * Reload rw_owner because turnstile_lookup() may have
385 * spun on the turnstile chain lock.
386 */
387 owner = rw->rw_owner;
388 if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
389 turnstile_exit(rw);
390 continue;
391 }
392 next = rw_cas(rw, owner, owner | set_wait);
393 if (__predict_false(next != owner)) {
394 turnstile_exit(rw);
395 owner = next;
396 continue;
397 }
398
399 LOCKSTAT_START_TIMER(lsflag, slptime);
400 turnstile_block(ts, queue, rw, &rw_syncobj);
401 LOCKSTAT_STOP_TIMER(lsflag, slptime);
402 LOCKSTAT_COUNT(slpcnt, 1);
403
404 /*
405 * No need for a memory barrier because of context switch.
406 * If not handed the lock, then spin again.
407 */
408 if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
409 break;
410
411 owner = rw->rw_owner;
412 }
413 KPREEMPT_ENABLE(curlwp);
414
415 LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
416 (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
417 (l->l_rwcallsite != 0 ? l->l_rwcallsite :
418 (uintptr_t)__builtin_return_address(0)));
419 LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
420 (l->l_rwcallsite != 0 ? l->l_rwcallsite :
421 (uintptr_t)__builtin_return_address(0)));
422 LOCKSTAT_EXIT(lsflag);
423
424 RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
425 (op == RW_READER && RW_COUNT(rw) != 0));
426 RW_LOCKED(rw, op);
427 }
428
429 /*
430 * rw_vector_exit:
431 *
432 * Release a rwlock.
433 */
434 void
435 rw_vector_exit(krwlock_t *rw)
436 {
437 uintptr_t curthread, owner, decr, newown, next;
438 turnstile_t *ts;
439 int rcnt, wcnt;
440 lwp_t *l;
441
442 l = curlwp;
443 curthread = (uintptr_t)l;
444 RW_ASSERT(rw, curthread != 0);
445
446 /*
447 * Again, we use a trick. Since we used an add operation to
448 * set the required lock bits, we can use a subtract to clear
449 * them, which makes the read-release and write-release path
450 * the same.
451 */
452 owner = rw->rw_owner;
453 if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
454 RW_UNLOCKED(rw, RW_WRITER);
455 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
456 decr = curthread | RW_WRITE_LOCKED;
457 } else {
458 RW_UNLOCKED(rw, RW_READER);
459 RW_ASSERT(rw, RW_COUNT(rw) != 0);
460 decr = RW_READ_INCR;
461 }
462
463 /*
464 * Compute what we expect the new value of the lock to be. Only
465 * proceed to do direct handoff if there are waiters, and if the
466 * lock would become unowned.
467 */
468 RW_MEMBAR_EXIT();
469 for (;;) {
470 newown = (owner - decr);
471 if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
472 break;
473 next = rw_cas(rw, owner, newown);
474 if (__predict_true(next == owner))
475 return;
476 owner = next;
477 }
478
479 /*
480 * Grab the turnstile chain lock. This gets the interlock
481 * on the sleep queue. Once we have that, we can adjust the
482 * waiter bits.
483 */
484 ts = turnstile_lookup(rw);
485 owner = rw->rw_owner;
486 RW_ASSERT(rw, ts != NULL);
487 RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
488
489 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
490 rcnt = TS_WAITERS(ts, TS_READER_Q);
491
492 /*
493 * Give the lock away.
494 *
495 * If we are releasing a write lock, then prefer to wake all
496 * outstanding readers. Otherwise, wake one writer if there
497 * are outstanding readers, or all writers if there are no
498 * pending readers. If waking one specific writer, the writer
499 * is handed the lock here. If waking multiple writers, we
500 * set WRITE_WANTED to block out new readers, and let them
501 * do the work of acquiring the lock in rw_vector_enter().
502 */
503 if (rcnt == 0 || decr == RW_READ_INCR) {
504 RW_ASSERT(rw, wcnt != 0);
505 RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
506
507 if (rcnt != 0) {
508 /* Give the lock to the longest waiting writer. */
509 l = TS_FIRST(ts, TS_WRITER_Q);
510 newown = (uintptr_t)l | (owner & RW_NODEBUG);
511 newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
512 if (wcnt > 1)
513 newown |= RW_WRITE_WANTED;
514 rw_swap(rw, owner, newown);
515 turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
516 } else {
517 /* Wake all writers and let them fight it out. */
518 newown = owner & RW_NODEBUG;
519 newown |= RW_WRITE_WANTED;
520 rw_swap(rw, owner, newown);
521 turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
522 }
523 } else {
524 RW_ASSERT(rw, rcnt != 0);
525
526 /*
527 * Give the lock to all blocked readers. If there
528 * is a writer waiting, new readers that arrive
529 * after the release will be blocked out.
530 */
531 newown = owner & RW_NODEBUG;
532 newown += rcnt << RW_READ_COUNT_SHIFT;
533 if (wcnt != 0)
534 newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
535
536 /* Wake up all sleeping readers. */
537 rw_swap(rw, owner, newown);
538 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
539 }
540 }
541
542 /*
543 * rw_vector_tryenter:
544 *
545 * Try to acquire a rwlock.
546 */
547 int
548 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
549 {
550 uintptr_t curthread, owner, incr, need_wait, next;
551 lwp_t *l;
552
553 l = curlwp;
554 curthread = (uintptr_t)l;
555
556 RW_ASSERT(rw, curthread != 0);
557
558 if (op == RW_READER) {
559 incr = RW_READ_INCR;
560 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
561 } else {
562 RW_ASSERT(rw, op == RW_WRITER);
563 incr = curthread | RW_WRITE_LOCKED;
564 need_wait = RW_WRITE_LOCKED | RW_THREAD;
565 }
566
567 for (owner = rw->rw_owner;; owner = next) {
568 if (__predict_false((owner & need_wait) != 0))
569 return 0;
570 next = rw_cas(rw, owner, owner + incr);
571 if (__predict_true(next == owner)) {
572 /* Got it! */
573 break;
574 }
575 }
576
577 RW_WANTLOCK(rw, op);
578 RW_LOCKED(rw, op);
579 RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
580 (op == RW_READER && RW_COUNT(rw) != 0));
581
582 RW_MEMBAR_ENTER();
583 return 1;
584 }
585
586 /*
587 * rw_downgrade:
588 *
589 * Downgrade a write lock to a read lock.
590 */
591 void
592 rw_downgrade(krwlock_t *rw)
593 {
594 uintptr_t owner, curthread, newown, next;
595 turnstile_t *ts;
596 int rcnt, wcnt;
597 lwp_t *l;
598
599 l = curlwp;
600 curthread = (uintptr_t)l;
601 RW_ASSERT(rw, curthread != 0);
602 RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
603 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
604 RW_UNLOCKED(rw, RW_WRITER);
605 #if !defined(DIAGNOSTIC)
606 __USE(curthread);
607 #endif
608
609 RW_MEMBAR_PRODUCER();
610
611 for (owner = rw->rw_owner;; owner = next) {
612 /*
613 * If there are no waiters we can do this the easy way. Try
614 * swapping us down to one read hold. If it fails, the lock
615 * condition has changed and we most likely now have
616 * waiters.
617 */
618 if ((owner & RW_HAS_WAITERS) == 0) {
619 newown = (owner & RW_NODEBUG);
620 next = rw_cas(rw, owner, newown + RW_READ_INCR);
621 if (__predict_true(next == owner)) {
622 RW_LOCKED(rw, RW_READER);
623 RW_ASSERT(rw,
624 (rw->rw_owner & RW_WRITE_LOCKED) == 0);
625 RW_ASSERT(rw, RW_COUNT(rw) != 0);
626 return;
627 }
628 continue;
629 }
630
631 /*
632 * Grab the turnstile chain lock. This gets the interlock
633 * on the sleep queue. Once we have that, we can adjust the
634 * waiter bits.
635 */
636 ts = turnstile_lookup(rw);
637 RW_ASSERT(rw, ts != NULL);
638
639 rcnt = TS_WAITERS(ts, TS_READER_Q);
640 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
641
642 if (rcnt == 0) {
643 /*
644 * If there are no readers, just preserve the
645 * waiters bits, swap us down to one read hold and
646 * return.
647 */
648 RW_ASSERT(rw, wcnt != 0);
649 RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
650 RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
651
652 newown = owner & RW_NODEBUG;
653 newown |= RW_READ_INCR | RW_HAS_WAITERS |
654 RW_WRITE_WANTED;
655 next = rw_cas(rw, owner, newown);
656 turnstile_exit(rw);
657 if (__predict_true(next == owner))
658 break;
659 } else {
660 /*
661 * Give the lock to all blocked readers. We may
662 * retain one read hold if downgrading. If there is
663 * a writer waiting, new readers will be blocked
664 * out.
665 */
666 newown = owner & RW_NODEBUG;
667 newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
668 if (wcnt != 0)
669 newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
670
671 next = rw_cas(rw, owner, newown);
672 if (__predict_true(next == owner)) {
673 /* Wake up all sleeping readers. */
674 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
675 break;
676 }
677 turnstile_exit(rw);
678 }
679 }
680
681 RW_WANTLOCK(rw, RW_READER);
682 RW_LOCKED(rw, RW_READER);
683 RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
684 RW_ASSERT(rw, RW_COUNT(rw) != 0);
685 }
686
687 /*
688 * rw_tryupgrade:
689 *
690 * Try to upgrade a read lock to a write lock. We must be the only
691 * reader.
692 */
693 int
694 rw_tryupgrade(krwlock_t *rw)
695 {
696 uintptr_t owner, curthread, newown, next;
697 struct lwp *l;
698
699 l = curlwp;
700 curthread = (uintptr_t)l;
701 RW_ASSERT(rw, curthread != 0);
702 RW_ASSERT(rw, rw_read_held(rw));
703
704 for (owner = RW_READ_INCR;; owner = next) {
705 newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
706 next = rw_cas(rw, owner, newown);
707 if (__predict_true(next == owner)) {
708 RW_MEMBAR_PRODUCER();
709 break;
710 }
711 RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
712 if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
713 RW_ASSERT(rw, (next & RW_THREAD) != 0);
714 return 0;
715 }
716 }
717
718 RW_UNLOCKED(rw, RW_READER);
719 RW_WANTLOCK(rw, RW_WRITER);
720 RW_LOCKED(rw, RW_WRITER);
721 RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
722 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
723
724 return 1;
725 }
726
727 /*
728 * rw_read_held:
729 *
730 * Returns true if the rwlock is held for reading. Must only be
731 * used for diagnostic assertions, and never be used to make
732 * decisions about how to use a rwlock.
733 */
734 int
735 rw_read_held(krwlock_t *rw)
736 {
737 uintptr_t owner;
738
739 if (rw == NULL)
740 return 0;
741 owner = rw->rw_owner;
742 return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
743 }
744
745 /*
746 * rw_write_held:
747 *
748 * Returns true if the rwlock is held for writing. Must only be
749 * used for diagnostic assertions, and never be used to make
750 * decisions about how to use a rwlock.
751 */
752 int
753 rw_write_held(krwlock_t *rw)
754 {
755
756 if (rw == NULL)
757 return 0;
758 return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
759 (RW_WRITE_LOCKED | (uintptr_t)curlwp);
760 }
761
762 /*
763 * rw_lock_held:
764 *
765 * Returns true if the rwlock is held for reading or writing. Must
766 * only be used for diagnostic assertions, and never be used to make
767 * decisions about how to use a rwlock.
768 */
769 int
770 rw_lock_held(krwlock_t *rw)
771 {
772
773 if (rw == NULL)
774 return 0;
775 return (rw->rw_owner & RW_THREAD) != 0;
776 }
777
778 /*
779 * rw_owner:
780 *
781 * Return the current owner of an RW lock, but only if it is write
782 * held. Used for priority inheritance.
783 */
784 static lwp_t *
785 rw_owner(wchan_t obj)
786 {
787 krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
788 uintptr_t owner = rw->rw_owner;
789
790 if ((owner & RW_WRITE_LOCKED) == 0)
791 return NULL;
792
793 return (void *)(owner & RW_THREAD);
794 }
795
796 /*
797 * rw_owner_running:
798 *
799 * Return true if a RW lock is unheld, or write held and the owner is
800 * running on a CPU. For the pagedaemon.
801 */
802 bool
803 rw_owner_running(const krwlock_t *rw)
804 {
805 #ifdef MULTIPROCESSOR
806 uintptr_t owner;
807 bool rv;
808
809 kpreempt_disable();
810 owner = rw->rw_owner;
811 rv = (owner & RW_THREAD) == 0 || rw_oncpu(owner);
812 kpreempt_enable();
813 return rv;
814 #else
815 return rw_owner(rw) == curlwp;
816 #endif
817 }
818