Home | History | Annotate | Line # | Download | only in kern
kern_rwlock.c revision 1.65
      1 /*	$NetBSD: kern_rwlock.c,v 1.65 2020/02/22 21:24:45 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2019, 2020
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe and Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Kernel reader/writer lock implementation, modeled after those
     35  * found in Solaris, a description of which can be found in:
     36  *
     37  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38  *	    Richard McDougall.
     39  *
     40  * The NetBSD implementation differs from that described in the book, in
     41  * that the locks are partially adaptive.  Lock waiters spin wait while a
     42  * lock is write held and the holder is still running on a CPU.  The method
     43  * of choosing which threads to awaken when a lock is released also differs,
     44  * mainly to take account of the partially adaptive behaviour.
     45  */
     46 
     47 #include <sys/cdefs.h>
     48 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.65 2020/02/22 21:24:45 ad Exp $");
     49 
     50 #include "opt_lockdebug.h"
     51 
     52 #define	__RWLOCK_PRIVATE
     53 
     54 #include <sys/param.h>
     55 #include <sys/proc.h>
     56 #include <sys/rwlock.h>
     57 #include <sys/sched.h>
     58 #include <sys/sleepq.h>
     59 #include <sys/systm.h>
     60 #include <sys/lockdebug.h>
     61 #include <sys/cpu.h>
     62 #include <sys/atomic.h>
     63 #include <sys/lock.h>
     64 #include <sys/pserialize.h>
     65 
     66 #include <dev/lockstat.h>
     67 
     68 #include <machine/rwlock.h>
     69 
     70 /*
     71  * LOCKDEBUG
     72  */
     73 
     74 #define	RW_DEBUG_P(rw)		(((rw)->rw_owner & RW_NODEBUG) == 0)
     75 
     76 #define	RW_WANTLOCK(rw, op) \
     77     LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
     78         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     79 #define	RW_LOCKED(rw, op) \
     80     LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
     81         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     82 #define	RW_UNLOCKED(rw, op) \
     83     LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
     84         (uintptr_t)__builtin_return_address(0), op == RW_READER);
     85 
     86 /*
     87  * DIAGNOSTIC
     88  */
     89 
     90 #if defined(DIAGNOSTIC)
     91 #define	RW_ASSERT(rw, cond) \
     92 do { \
     93 	if (__predict_false(!(cond))) \
     94 		rw_abort(__func__, __LINE__, rw, "assertion failed: " #cond);\
     95 } while (/* CONSTCOND */ 0)
     96 #else
     97 #define	RW_ASSERT(rw, cond)	/* nothing */
     98 #endif	/* DIAGNOSTIC */
     99 
    100 /*
    101  * Memory barriers.
    102  */
    103 #ifdef __HAVE_ATOMIC_AS_MEMBAR
    104 #define	RW_MEMBAR_ENTER()
    105 #define	RW_MEMBAR_EXIT()
    106 #define	RW_MEMBAR_PRODUCER()
    107 #else
    108 #define	RW_MEMBAR_ENTER()		membar_enter()
    109 #define	RW_MEMBAR_EXIT()		membar_exit()
    110 #define	RW_MEMBAR_PRODUCER()		membar_producer()
    111 #endif
    112 
    113 /*
    114  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
    115  */
    116 #ifdef LOCKDEBUG
    117 #undef	__HAVE_RW_STUBS
    118 #endif
    119 
    120 #ifndef __HAVE_RW_STUBS
    121 __strong_alias(rw_enter,rw_vector_enter);
    122 __strong_alias(rw_exit,rw_vector_exit);
    123 __strong_alias(rw_tryenter,rw_vector_tryenter);
    124 #endif
    125 
    126 static void	rw_abort(const char *, size_t, krwlock_t *, const char *);
    127 static void	rw_dump(const volatile void *, lockop_printer_t);
    128 static lwp_t	*rw_owner(wchan_t);
    129 
    130 lockops_t rwlock_lockops = {
    131 	.lo_name = "Reader / writer lock",
    132 	.lo_type = LOCKOPS_SLEEP,
    133 	.lo_dump = rw_dump,
    134 };
    135 
    136 syncobj_t rw_syncobj = {
    137 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    138 	.sobj_unsleep	= turnstile_unsleep,
    139 	.sobj_changepri	= turnstile_changepri,
    140 	.sobj_lendpri	= sleepq_lendpri,
    141 	.sobj_owner	= rw_owner,
    142 };
    143 
    144 /*
    145  * rw_cas:
    146  *
    147  *	Do an atomic compare-and-swap on the lock word.
    148  */
    149 static inline uintptr_t
    150 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
    151 {
    152 
    153 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
    154 	    (void *)o, (void *)n);
    155 }
    156 
    157 /*
    158  * rw_swap:
    159  *
    160  *	Do an atomic swap of the lock word.  This is used only when it's
    161  *	known that the lock word is set up such that it can't be changed
    162  *	behind us (assert this), so there's no point considering the result.
    163  */
    164 static inline void
    165 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
    166 {
    167 
    168 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
    169 	    (void *)n);
    170 
    171 	RW_ASSERT(rw, n == o);
    172 	RW_ASSERT(rw, (o & RW_HAS_WAITERS) != 0);
    173 }
    174 
    175 /*
    176  * rw_dump:
    177  *
    178  *	Dump the contents of a rwlock structure.
    179  */
    180 static void
    181 rw_dump(const volatile void *cookie, lockop_printer_t pr)
    182 {
    183 	const volatile krwlock_t *rw = cookie;
    184 
    185 	pr("owner/count  : %#018lx flags    : %#018x\n",
    186 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
    187 }
    188 
    189 /*
    190  * rw_abort:
    191  *
    192  *	Dump information about an error and panic the system.  This
    193  *	generates a lot of machine code in the DIAGNOSTIC case, so
    194  *	we ask the compiler to not inline it.
    195  */
    196 static void __noinline
    197 rw_abort(const char *func, size_t line, krwlock_t *rw, const char *msg)
    198 {
    199 
    200 	if (panicstr != NULL)
    201 		return;
    202 
    203 	LOCKDEBUG_ABORT(func, line, rw, &rwlock_lockops, msg);
    204 }
    205 
    206 /*
    207  * rw_init:
    208  *
    209  *	Initialize a rwlock for use.
    210  */
    211 void
    212 _rw_init(krwlock_t *rw, uintptr_t return_address)
    213 {
    214 
    215 #ifdef LOCKDEBUG
    216 	/* XXX only because the assembly stubs can't handle RW_NODEBUG */
    217 	if (LOCKDEBUG_ALLOC(rw, &rwlock_lockops, return_address))
    218 		rw->rw_owner = 0;
    219 	else
    220 		rw->rw_owner = RW_NODEBUG;
    221 #else
    222 	rw->rw_owner = 0;
    223 #endif
    224 }
    225 
    226 void
    227 rw_init(krwlock_t *rw)
    228 {
    229 
    230 	_rw_init(rw, (uintptr_t)__builtin_return_address(0));
    231 }
    232 
    233 /*
    234  * rw_destroy:
    235  *
    236  *	Tear down a rwlock.
    237  */
    238 void
    239 rw_destroy(krwlock_t *rw)
    240 {
    241 
    242 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
    243 	LOCKDEBUG_FREE((rw->rw_owner & RW_NODEBUG) == 0, rw);
    244 }
    245 
    246 /*
    247  * rw_oncpu:
    248  *
    249  *	Return true if an rwlock owner is running on a CPU in the system.
    250  *	If the target is waiting on the kernel big lock, then we must
    251  *	release it.  This is necessary to avoid deadlock.
    252  */
    253 static bool
    254 rw_oncpu(uintptr_t owner)
    255 {
    256 #ifdef MULTIPROCESSOR
    257 	struct cpu_info *ci;
    258 	lwp_t *l;
    259 
    260 	KASSERT(kpreempt_disabled());
    261 
    262 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
    263 		return false;
    264 	}
    265 
    266 	/*
    267 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    268 	 * We must have kernel preemption disabled for that.
    269 	 */
    270 	l = (lwp_t *)(owner & RW_THREAD);
    271 	ci = l->l_cpu;
    272 
    273 	if (ci && ci->ci_curlwp == l) {
    274 		/* Target is running; do we need to block? */
    275 		return (ci->ci_biglock_wanted != l);
    276 	}
    277 #endif
    278 	/* Not running.  It may be safe to block now. */
    279 	return false;
    280 }
    281 
    282 /*
    283  * rw_vector_enter:
    284  *
    285  *	Acquire a rwlock.
    286  */
    287 void
    288 rw_vector_enter(krwlock_t *rw, const krw_t op)
    289 {
    290 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
    291 	turnstile_t *ts;
    292 	int queue;
    293 	lwp_t *l;
    294 	LOCKSTAT_TIMER(slptime);
    295 	LOCKSTAT_TIMER(slpcnt);
    296 	LOCKSTAT_TIMER(spintime);
    297 	LOCKSTAT_COUNTER(spincnt);
    298 	LOCKSTAT_FLAG(lsflag);
    299 
    300 	l = curlwp;
    301 	curthread = (uintptr_t)l;
    302 
    303 	RW_ASSERT(rw, !cpu_intr_p());
    304 	RW_ASSERT(rw, curthread != 0);
    305 	RW_WANTLOCK(rw, op);
    306 
    307 	if (panicstr == NULL) {
    308 		KDASSERT(pserialize_not_in_read_section());
    309 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    310 	}
    311 
    312 	/*
    313 	 * We play a slight trick here.  If we're a reader, we want
    314 	 * increment the read count.  If we're a writer, we want to
    315 	 * set the owner field and the WRITE_LOCKED bit.
    316 	 *
    317 	 * In the latter case, we expect those bits to be zero,
    318 	 * therefore we can use an add operation to set them, which
    319 	 * means an add operation for both cases.
    320 	 */
    321 	if (__predict_true(op == RW_READER)) {
    322 		incr = RW_READ_INCR;
    323 		set_wait = RW_HAS_WAITERS;
    324 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    325 		queue = TS_READER_Q;
    326 	} else {
    327 		RW_ASSERT(rw, op == RW_WRITER);
    328 		incr = curthread | RW_WRITE_LOCKED;
    329 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
    330 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    331 		queue = TS_WRITER_Q;
    332 	}
    333 
    334 	LOCKSTAT_ENTER(lsflag);
    335 
    336 	KPREEMPT_DISABLE(curlwp);
    337 	for (owner = rw->rw_owner;;) {
    338 		/*
    339 		 * Read the lock owner field.  If the need-to-wait
    340 		 * indicator is clear, then try to acquire the lock.
    341 		 */
    342 		if ((owner & need_wait) == 0) {
    343 			next = rw_cas(rw, owner, (owner + incr) &
    344 			    ~RW_WRITE_WANTED);
    345 			if (__predict_true(next == owner)) {
    346 				/* Got it! */
    347 				RW_MEMBAR_ENTER();
    348 				break;
    349 			}
    350 
    351 			/*
    352 			 * Didn't get it -- spin around again (we'll
    353 			 * probably sleep on the next iteration).
    354 			 */
    355 			owner = next;
    356 			continue;
    357 		}
    358 		if (__predict_false(RW_OWNER(rw) == curthread)) {
    359 			rw_abort(__func__, __LINE__, rw,
    360 			    "locking against myself");
    361 		}
    362 		/*
    363 		 * If the lock owner is running on another CPU, and
    364 		 * there are no existing waiters, then spin.
    365 		 */
    366 		if (rw_oncpu(owner)) {
    367 			LOCKSTAT_START_TIMER(lsflag, spintime);
    368 			u_int count = SPINLOCK_BACKOFF_MIN;
    369 			do {
    370 				KPREEMPT_ENABLE(curlwp);
    371 				SPINLOCK_BACKOFF(count);
    372 				KPREEMPT_DISABLE(curlwp);
    373 				owner = rw->rw_owner;
    374 			} while (rw_oncpu(owner));
    375 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    376 			LOCKSTAT_COUNT(spincnt, 1);
    377 			if ((owner & need_wait) == 0)
    378 				continue;
    379 		}
    380 
    381 		/*
    382 		 * Grab the turnstile chain lock.  Once we have that, we
    383 		 * can adjust the waiter bits and sleep queue.
    384 		 */
    385 		ts = turnstile_lookup(rw);
    386 
    387 		/*
    388 		 * Mark the rwlock as having waiters.  If the set fails,
    389 		 * then we may not need to sleep and should spin again.
    390 		 * Reload rw_owner because turnstile_lookup() may have
    391 		 * spun on the turnstile chain lock.
    392 		 */
    393 		owner = rw->rw_owner;
    394 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
    395 			turnstile_exit(rw);
    396 			continue;
    397 		}
    398 		next = rw_cas(rw, owner, owner | set_wait);
    399 		if (__predict_false(next != owner)) {
    400 			turnstile_exit(rw);
    401 			owner = next;
    402 			continue;
    403 		}
    404 
    405 		LOCKSTAT_START_TIMER(lsflag, slptime);
    406 		turnstile_block(ts, queue, rw, &rw_syncobj);
    407 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    408 		LOCKSTAT_COUNT(slpcnt, 1);
    409 
    410 		/*
    411 		 * No need for a memory barrier because of context switch.
    412 		 * If not handed the lock, then spin again.
    413 		 */
    414 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
    415 			break;
    416 
    417 		owner = rw->rw_owner;
    418 	}
    419 	KPREEMPT_ENABLE(curlwp);
    420 
    421 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK |
    422 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime,
    423 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    424 	      (uintptr_t)__builtin_return_address(0)));
    425 	LOCKSTAT_EVENT_RA(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime,
    426 	    (l->l_rwcallsite != 0 ? l->l_rwcallsite :
    427 	      (uintptr_t)__builtin_return_address(0)));
    428 	LOCKSTAT_EXIT(lsflag);
    429 
    430 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    431 	    (op == RW_READER && RW_COUNT(rw) != 0));
    432 	RW_LOCKED(rw, op);
    433 }
    434 
    435 /*
    436  * rw_vector_exit:
    437  *
    438  *	Release a rwlock.
    439  */
    440 void
    441 rw_vector_exit(krwlock_t *rw)
    442 {
    443 	uintptr_t curthread, owner, decr, newown, next;
    444 	turnstile_t *ts;
    445 	int rcnt, wcnt;
    446 	lwp_t *l;
    447 
    448 	l = curlwp;
    449 	curthread = (uintptr_t)l;
    450 	RW_ASSERT(rw, curthread != 0);
    451 
    452 	/*
    453 	 * Again, we use a trick.  Since we used an add operation to
    454 	 * set the required lock bits, we can use a subtract to clear
    455 	 * them, which makes the read-release and write-release path
    456 	 * the same.
    457 	 */
    458 	owner = rw->rw_owner;
    459 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
    460 		RW_UNLOCKED(rw, RW_WRITER);
    461 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    462 		decr = curthread | RW_WRITE_LOCKED;
    463 	} else {
    464 		RW_UNLOCKED(rw, RW_READER);
    465 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
    466 		decr = RW_READ_INCR;
    467 	}
    468 
    469 	/*
    470 	 * Compute what we expect the new value of the lock to be. Only
    471 	 * proceed to do direct handoff if there are waiters, and if the
    472 	 * lock would become unowned.
    473 	 */
    474 	RW_MEMBAR_EXIT();
    475 	for (;;) {
    476 		newown = (owner - decr);
    477 		if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
    478 			break;
    479 		next = rw_cas(rw, owner, newown);
    480 		if (__predict_true(next == owner))
    481 			return;
    482 		owner = next;
    483 	}
    484 
    485 	/*
    486 	 * Grab the turnstile chain lock.  This gets the interlock
    487 	 * on the sleep queue.  Once we have that, we can adjust the
    488 	 * waiter bits.
    489 	 */
    490 	ts = turnstile_lookup(rw);
    491 	owner = rw->rw_owner;
    492 	RW_ASSERT(rw, ts != NULL);
    493 	RW_ASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
    494 
    495 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    496 	rcnt = TS_WAITERS(ts, TS_READER_Q);
    497 
    498 	/*
    499 	 * Give the lock away.
    500 	 *
    501 	 * If we are releasing a write lock, then prefer to wake all
    502 	 * outstanding readers.  Otherwise, wake one writer if there
    503 	 * are outstanding readers, or all writers if there are no
    504 	 * pending readers.  If waking one specific writer, the writer
    505 	 * is handed the lock here.  If waking multiple writers, we
    506 	 * set WRITE_WANTED to block out new readers, and let them
    507 	 * do the work of acquiring the lock in rw_vector_enter().
    508 	 */
    509 	if (rcnt == 0 || decr == RW_READ_INCR) {
    510 		RW_ASSERT(rw, wcnt != 0);
    511 		RW_ASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
    512 
    513 		if (rcnt != 0) {
    514 			/* Give the lock to the longest waiting writer. */
    515 			l = TS_FIRST(ts, TS_WRITER_Q);
    516 			newown = (uintptr_t)l | (owner & RW_NODEBUG);
    517 			newown |= RW_WRITE_LOCKED | RW_HAS_WAITERS;
    518 			if (wcnt > 1)
    519 				newown |= RW_WRITE_WANTED;
    520 			rw_swap(rw, owner, newown);
    521 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
    522 		} else {
    523 			/* Wake all writers and let them fight it out. */
    524 			newown = owner & RW_NODEBUG;
    525 			newown |= RW_WRITE_WANTED;
    526 			rw_swap(rw, owner, newown);
    527 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
    528 		}
    529 	} else {
    530 		RW_ASSERT(rw, rcnt != 0);
    531 
    532 		/*
    533 		 * Give the lock to all blocked readers.  If there
    534 		 * is a writer waiting, new readers that arrive
    535 		 * after the release will be blocked out.
    536 		 */
    537 		newown = owner & RW_NODEBUG;
    538 		newown += rcnt << RW_READ_COUNT_SHIFT;
    539 		if (wcnt != 0)
    540 			newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    541 
    542 		/* Wake up all sleeping readers. */
    543 		rw_swap(rw, owner, newown);
    544 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    545 	}
    546 }
    547 
    548 /*
    549  * rw_vector_tryenter:
    550  *
    551  *	Try to acquire a rwlock.
    552  */
    553 int
    554 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
    555 {
    556 	uintptr_t curthread, owner, incr, need_wait, next;
    557 	lwp_t *l;
    558 
    559 	l = curlwp;
    560 	curthread = (uintptr_t)l;
    561 
    562 	RW_ASSERT(rw, curthread != 0);
    563 
    564 	if (op == RW_READER) {
    565 		incr = RW_READ_INCR;
    566 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
    567 	} else {
    568 		RW_ASSERT(rw, op == RW_WRITER);
    569 		incr = curthread | RW_WRITE_LOCKED;
    570 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
    571 	}
    572 
    573 	for (owner = rw->rw_owner;; owner = next) {
    574 		if (__predict_false((owner & need_wait) != 0))
    575 			return 0;
    576 		next = rw_cas(rw, owner, owner + incr);
    577 		if (__predict_true(next == owner)) {
    578 			/* Got it! */
    579 			break;
    580 		}
    581 	}
    582 
    583 	RW_WANTLOCK(rw, op);
    584 	RW_LOCKED(rw, op);
    585 	RW_ASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
    586 	    (op == RW_READER && RW_COUNT(rw) != 0));
    587 
    588 	RW_MEMBAR_ENTER();
    589 	return 1;
    590 }
    591 
    592 /*
    593  * rw_downgrade:
    594  *
    595  *	Downgrade a write lock to a read lock.
    596  */
    597 void
    598 rw_downgrade(krwlock_t *rw)
    599 {
    600 	uintptr_t owner, curthread, newown, next;
    601 	turnstile_t *ts;
    602 	int rcnt, wcnt;
    603 	lwp_t *l;
    604 
    605 	l = curlwp;
    606 	curthread = (uintptr_t)l;
    607 	RW_ASSERT(rw, curthread != 0);
    608 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
    609 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    610 	RW_UNLOCKED(rw, RW_WRITER);
    611 #if !defined(DIAGNOSTIC)
    612 	__USE(curthread);
    613 #endif
    614 
    615 	RW_MEMBAR_PRODUCER();
    616 
    617 	for (owner = rw->rw_owner;; owner = next) {
    618 		/*
    619 		 * If there are no waiters we can do this the easy way.  Try
    620 		 * swapping us down to one read hold.  If it fails, the lock
    621 		 * condition has changed and we most likely now have
    622 		 * waiters.
    623 		 */
    624 		if ((owner & RW_HAS_WAITERS) == 0) {
    625 			newown = (owner & RW_NODEBUG);
    626 			next = rw_cas(rw, owner, newown + RW_READ_INCR);
    627 			if (__predict_true(next == owner)) {
    628 				RW_LOCKED(rw, RW_READER);
    629 				RW_ASSERT(rw,
    630 				    (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    631 				RW_ASSERT(rw, RW_COUNT(rw) != 0);
    632 				return;
    633 			}
    634 			continue;
    635 		}
    636 
    637 		/*
    638 		 * Grab the turnstile chain lock.  This gets the interlock
    639 		 * on the sleep queue.  Once we have that, we can adjust the
    640 		 * waiter bits.
    641 		 */
    642 		ts = turnstile_lookup(rw);
    643 		RW_ASSERT(rw, ts != NULL);
    644 
    645 		rcnt = TS_WAITERS(ts, TS_READER_Q);
    646 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
    647 
    648 		if (rcnt == 0) {
    649 			/*
    650 			 * If there are no readers, just preserve the
    651 			 * waiters bits, swap us down to one read hold and
    652 			 * return.
    653 			 */
    654 			RW_ASSERT(rw, wcnt != 0);
    655 			RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
    656 			RW_ASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
    657 
    658 			newown = owner & RW_NODEBUG;
    659 			newown |= RW_READ_INCR | RW_HAS_WAITERS |
    660 			    RW_WRITE_WANTED;
    661 			next = rw_cas(rw, owner, newown);
    662 			turnstile_exit(rw);
    663 			if (__predict_true(next == owner))
    664 				break;
    665 		} else {
    666 			/*
    667 			 * Give the lock to all blocked readers.  We may
    668 			 * retain one read hold if downgrading.  If there is
    669 			 * a writer waiting, new readers will be blocked
    670 			 * out.
    671 			 */
    672 			newown = owner & RW_NODEBUG;
    673 			newown += (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
    674 			if (wcnt != 0)
    675 				newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
    676 
    677 			next = rw_cas(rw, owner, newown);
    678 			if (__predict_true(next == owner)) {
    679 				/* Wake up all sleeping readers. */
    680 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
    681 				break;
    682 			}
    683 			turnstile_exit(rw);
    684 		}
    685 	}
    686 
    687 	RW_WANTLOCK(rw, RW_READER);
    688 	RW_LOCKED(rw, RW_READER);
    689 	RW_ASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
    690 	RW_ASSERT(rw, RW_COUNT(rw) != 0);
    691 }
    692 
    693 /*
    694  * rw_tryupgrade:
    695  *
    696  *	Try to upgrade a read lock to a write lock.  We must be the only
    697  *	reader.
    698  */
    699 int
    700 rw_tryupgrade(krwlock_t *rw)
    701 {
    702 	uintptr_t owner, curthread, newown, next;
    703 	struct lwp *l;
    704 
    705 	l = curlwp;
    706 	curthread = (uintptr_t)l;
    707 	RW_ASSERT(rw, curthread != 0);
    708 	RW_ASSERT(rw, rw_read_held(rw));
    709 
    710 	for (owner = RW_READ_INCR;; owner = next) {
    711 		newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
    712 		next = rw_cas(rw, owner, newown);
    713 		if (__predict_true(next == owner)) {
    714 			RW_MEMBAR_PRODUCER();
    715 			break;
    716 		}
    717 		RW_ASSERT(rw, (next & RW_WRITE_LOCKED) == 0);
    718 		if (__predict_false((next & RW_THREAD) != RW_READ_INCR)) {
    719 			RW_ASSERT(rw, (next & RW_THREAD) != 0);
    720 			return 0;
    721 		}
    722 	}
    723 
    724 	RW_UNLOCKED(rw, RW_READER);
    725 	RW_WANTLOCK(rw, RW_WRITER);
    726 	RW_LOCKED(rw, RW_WRITER);
    727 	RW_ASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
    728 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
    729 
    730 	return 1;
    731 }
    732 
    733 /*
    734  * rw_read_held:
    735  *
    736  *	Returns true if the rwlock is held for reading.  Must only be
    737  *	used for diagnostic assertions, and never be used to make
    738  * 	decisions about how to use a rwlock.
    739  */
    740 int
    741 rw_read_held(krwlock_t *rw)
    742 {
    743 	uintptr_t owner;
    744 
    745 	if (rw == NULL)
    746 		return 0;
    747 	owner = rw->rw_owner;
    748 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
    749 }
    750 
    751 /*
    752  * rw_write_held:
    753  *
    754  *	Returns true if the rwlock is held for writing.  Must only be
    755  *	used for diagnostic assertions, and never be used to make
    756  *	decisions about how to use a rwlock.
    757  */
    758 int
    759 rw_write_held(krwlock_t *rw)
    760 {
    761 
    762 	if (rw == NULL)
    763 		return 0;
    764 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
    765 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
    766 }
    767 
    768 /*
    769  * rw_lock_held:
    770  *
    771  *	Returns true if the rwlock is held for reading or writing.  Must
    772  *	only be used for diagnostic assertions, and never be used to make
    773  *	decisions about how to use a rwlock.
    774  */
    775 int
    776 rw_lock_held(krwlock_t *rw)
    777 {
    778 
    779 	if (rw == NULL)
    780 		return 0;
    781 	return (rw->rw_owner & RW_THREAD) != 0;
    782 }
    783 
    784 /*
    785  * rw_lock_op:
    786  *
    787  *	For a rwlock that is known to be held by the caller, return
    788  *	RW_READER or RW_WRITER to describe the hold type.
    789  */
    790 krw_t
    791 rw_lock_op(krwlock_t *rw)
    792 {
    793 
    794 	RW_ASSERT(rw, rw_lock_held(rw));
    795 
    796 	return (rw->rw_owner & RW_WRITE_LOCKED) != 0 ? RW_WRITER : RW_READER;
    797 }
    798 
    799 /*
    800  * rw_owner:
    801  *
    802  *	Return the current owner of an RW lock, but only if it is write
    803  *	held.  Used for priority inheritance.
    804  */
    805 static lwp_t *
    806 rw_owner(wchan_t obj)
    807 {
    808 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
    809 	uintptr_t owner = rw->rw_owner;
    810 
    811 	if ((owner & RW_WRITE_LOCKED) == 0)
    812 		return NULL;
    813 
    814 	return (void *)(owner & RW_THREAD);
    815 }
    816 
    817 /*
    818  * rw_owner_running:
    819  *
    820  *	Return true if a RW lock is unheld, or write held and the owner is
    821  *	running on a CPU.  For the pagedaemon.
    822  */
    823 bool
    824 rw_owner_running(const krwlock_t *rw)
    825 {
    826 #ifdef MULTIPROCESSOR
    827 	uintptr_t owner;
    828 	bool rv;
    829 
    830 	kpreempt_disable();
    831 	owner = rw->rw_owner;
    832 	rv = (owner & RW_THREAD) == 0 || rw_oncpu(owner);
    833 	kpreempt_enable();
    834 	return rv;
    835 #else
    836 	return rw_owner(rw) == curlwp;
    837 #endif
    838 }
    839