Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.135
      1 /*	$NetBSD: kern_sig.c,v 1.135 2003/02/15 20:54:39 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.135 2003/02/15 20:54:39 jdolecek Exp $");
     45 
     46 #include "opt_ktrace.h"
     47 #include "opt_compat_sunos.h"
     48 #include "opt_compat_netbsd32.h"
     49 
     50 #define	SIGPROP		/* include signal properties table */
     51 #include <sys/param.h>
     52 #include <sys/signalvar.h>
     53 #include <sys/resourcevar.h>
     54 #include <sys/namei.h>
     55 #include <sys/vnode.h>
     56 #include <sys/proc.h>
     57 #include <sys/systm.h>
     58 #include <sys/timeb.h>
     59 #include <sys/times.h>
     60 #include <sys/buf.h>
     61 #include <sys/acct.h>
     62 #include <sys/file.h>
     63 #include <sys/kernel.h>
     64 #include <sys/wait.h>
     65 #include <sys/ktrace.h>
     66 #include <sys/syslog.h>
     67 #include <sys/stat.h>
     68 #include <sys/core.h>
     69 #include <sys/filedesc.h>
     70 #include <sys/malloc.h>
     71 #include <sys/pool.h>
     72 #include <sys/ucontext.h>
     73 #include <sys/sa.h>
     74 #include <sys/savar.h>
     75 #include <sys/exec.h>
     76 
     77 #include <sys/mount.h>
     78 #include <sys/syscallargs.h>
     79 
     80 #include <machine/cpu.h>
     81 
     82 #include <sys/user.h>		/* for coredump */
     83 
     84 #include <uvm/uvm_extern.h>
     85 
     86 static void	proc_stop(struct proc *p);
     87 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     88 sigset_t	contsigmask, stopsigmask, sigcantmask;
     89 
     90 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     91 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     92 
     93 /*
     94  * Can process p, with pcred pc, send the signal signum to process q?
     95  */
     96 #define	CANSIGNAL(p, pc, q, signum) \
     97 	((pc)->pc_ucred->cr_uid == 0 || \
     98 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
     99 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
    100 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
    101 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
    102 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
    103 
    104 /*
    105  * Initialize signal-related data structures.
    106  */
    107 void
    108 signal_init(void)
    109 {
    110 
    111 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    112 	    &pool_allocator_nointr);
    113 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    114 	    &pool_allocator_nointr);
    115 }
    116 
    117 /*
    118  * Create an initial sigctx structure, using the same signal state
    119  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    120  * copy it from parent.
    121  */
    122 void
    123 sigactsinit(struct proc *np, struct proc *pp, int share)
    124 {
    125 	struct sigacts *ps;
    126 
    127 	if (share) {
    128 		np->p_sigacts = pp->p_sigacts;
    129 		pp->p_sigacts->sa_refcnt++;
    130 	} else {
    131 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    132 		if (pp)
    133 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    134 		else
    135 			memset(ps, '\0', sizeof(struct sigacts));
    136 		ps->sa_refcnt = 1;
    137 		np->p_sigacts = ps;
    138 	}
    139 }
    140 
    141 /*
    142  * Make this process not share its sigctx, maintaining all
    143  * signal state.
    144  */
    145 void
    146 sigactsunshare(struct proc *p)
    147 {
    148 	struct sigacts *oldps;
    149 
    150 	if (p->p_sigacts->sa_refcnt == 1)
    151 		return;
    152 
    153 	oldps = p->p_sigacts;
    154 	sigactsinit(p, NULL, 0);
    155 
    156 	if (--oldps->sa_refcnt == 0)
    157 		pool_put(&sigacts_pool, oldps);
    158 }
    159 
    160 /*
    161  * Release a sigctx structure.
    162  */
    163 void
    164 sigactsfree(struct proc *p)
    165 {
    166 	struct sigacts *ps;
    167 
    168 	ps = p->p_sigacts;
    169 	if (--ps->sa_refcnt > 0)
    170 		return;
    171 
    172 	pool_put(&sigacts_pool, ps);
    173 }
    174 
    175 int
    176 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    177 	struct sigaction *osa, void *tramp, int vers)
    178 {
    179 	struct sigacts	*ps;
    180 	int		prop;
    181 
    182 	ps = p->p_sigacts;
    183 	if (signum <= 0 || signum >= NSIG)
    184 		return (EINVAL);
    185 
    186 	/*
    187 	 * Trampoline ABI version 0 is reserved for the legacy
    188 	 * kernel-provided on-stack trampoline.  Conversely, if
    189 	 * we are using a non-0 ABI version, we must have a
    190 	 * trampoline.
    191 	 */
    192 	if ((vers != 0 && tramp == NULL) ||
    193 	    (vers == 0 && tramp != NULL))
    194 		return (EINVAL);
    195 
    196 	if (osa)
    197 		*osa = SIGACTION_PS(ps, signum);
    198 
    199 	if (nsa) {
    200 		if (nsa->sa_flags & ~SA_ALLBITS)
    201 			return (EINVAL);
    202 
    203 		prop = sigprop[signum];
    204 		if (prop & SA_CANTMASK)
    205 			return (EINVAL);
    206 
    207 		(void) splsched();	/* XXXSMP */
    208 		SIGACTION_PS(ps, signum) = *nsa;
    209 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    210 		ps->sa_sigdesc[signum].sd_vers = vers;
    211 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    212 		if ((prop & SA_NORESET) != 0)
    213 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    214 		if (signum == SIGCHLD) {
    215 			if (nsa->sa_flags & SA_NOCLDSTOP)
    216 				p->p_flag |= P_NOCLDSTOP;
    217 			else
    218 				p->p_flag &= ~P_NOCLDSTOP;
    219 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    220 				/*
    221 				 * Paranoia: since SA_NOCLDWAIT is implemented
    222 				 * by reparenting the dying child to PID 1 (and
    223 				 * trust it to reap the zombie), PID 1 itself
    224 				 * is forbidden to set SA_NOCLDWAIT.
    225 				 */
    226 				if (p->p_pid == 1)
    227 					p->p_flag &= ~P_NOCLDWAIT;
    228 				else
    229 					p->p_flag |= P_NOCLDWAIT;
    230 			} else
    231 				p->p_flag &= ~P_NOCLDWAIT;
    232 		}
    233 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    234 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    235 		else
    236 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    237 		/*
    238 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    239 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    240 		 * to ignore. However, don't put SIGCONT in
    241 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    242 	 	 */
    243 		if (nsa->sa_handler == SIG_IGN ||
    244 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    245 						/* never to be seen again */
    246 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    247 			if (signum != SIGCONT) {
    248 						/* easier in psignal */
    249 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    250 			}
    251 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    252 		} else {
    253 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    254 			if (nsa->sa_handler == SIG_DFL)
    255 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    256 			else
    257 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    258 		}
    259 		(void) spl0();
    260 	}
    261 
    262 	return (0);
    263 }
    264 
    265 /* ARGSUSED */
    266 int
    267 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    268 {
    269 	struct sys___sigaction14_args /* {
    270 		syscallarg(int)				signum;
    271 		syscallarg(const struct sigaction *)	nsa;
    272 		syscallarg(struct sigaction *)		osa;
    273 	} */ *uap = v;
    274 	struct proc		*p;
    275 	struct sigaction	nsa, osa;
    276 	int			error;
    277 
    278 	if (SCARG(uap, nsa)) {
    279 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    280 		if (error)
    281 			return (error);
    282 	}
    283 	p = l->l_proc;
    284 	error = sigaction1(p, SCARG(uap, signum),
    285 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    286 	    NULL, 0);
    287 	if (error)
    288 		return (error);
    289 	if (SCARG(uap, osa)) {
    290 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    291 		if (error)
    292 			return (error);
    293 	}
    294 	return (0);
    295 }
    296 
    297 /* ARGSUSED */
    298 int
    299 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    300 {
    301 	struct sys___sigaction_sigtramp_args /* {
    302 		syscallarg(int)				signum;
    303 		syscallarg(const struct sigaction *)	nsa;
    304 		syscallarg(struct sigaction *)		osa;
    305 		syscallarg(void *)			tramp;
    306 		syscallarg(int)				vers;
    307 	} */ *uap = v;
    308 	struct proc *p = l->l_proc;
    309 	struct sigaction nsa, osa;
    310 	int error;
    311 
    312 	if (SCARG(uap, nsa)) {
    313 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    314 		if (error)
    315 			return (error);
    316 	}
    317 	error = sigaction1(p, SCARG(uap, signum),
    318 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    319 	    SCARG(uap, tramp), SCARG(uap, vers));
    320 	if (error)
    321 		return (error);
    322 	if (SCARG(uap, osa)) {
    323 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    324 		if (error)
    325 			return (error);
    326 	}
    327 	return (0);
    328 }
    329 
    330 /*
    331  * Initialize signal state for process 0;
    332  * set to ignore signals that are ignored by default and disable the signal
    333  * stack.
    334  */
    335 void
    336 siginit(struct proc *p)
    337 {
    338 	struct sigacts	*ps;
    339 	int		signum, prop;
    340 
    341 	ps = p->p_sigacts;
    342 	sigemptyset(&contsigmask);
    343 	sigemptyset(&stopsigmask);
    344 	sigemptyset(&sigcantmask);
    345 	for (signum = 1; signum < NSIG; signum++) {
    346 		prop = sigprop[signum];
    347 		if (prop & SA_CONT)
    348 			sigaddset(&contsigmask, signum);
    349 		if (prop & SA_STOP)
    350 			sigaddset(&stopsigmask, signum);
    351 		if (prop & SA_CANTMASK)
    352 			sigaddset(&sigcantmask, signum);
    353 		if (prop & SA_IGNORE && signum != SIGCONT)
    354 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    355 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    356 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    357 	}
    358 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    359 	p->p_sigctx.ps_sigwaited = 0;
    360 	p->p_flag &= ~P_NOCLDSTOP;
    361 
    362 	/*
    363 	 * Reset stack state to the user stack.
    364 	 */
    365 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    366 	p->p_sigctx.ps_sigstk.ss_size = 0;
    367 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    368 
    369 	/* One reference. */
    370 	ps->sa_refcnt = 1;
    371 }
    372 
    373 /*
    374  * Reset signals for an exec of the specified process.
    375  */
    376 void
    377 execsigs(struct proc *p)
    378 {
    379 	struct sigacts	*ps;
    380 	int		signum, prop;
    381 
    382 	sigactsunshare(p);
    383 
    384 	ps = p->p_sigacts;
    385 
    386 	/*
    387 	 * Reset caught signals.  Held signals remain held
    388 	 * through p_sigctx.ps_sigmask (unless they were caught,
    389 	 * and are now ignored by default).
    390 	 */
    391 	for (signum = 1; signum < NSIG; signum++) {
    392 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    393 			prop = sigprop[signum];
    394 			if (prop & SA_IGNORE) {
    395 				if ((prop & SA_CONT) == 0)
    396 					sigaddset(&p->p_sigctx.ps_sigignore,
    397 					    signum);
    398 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    399 			}
    400 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    401 		}
    402 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    403 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    404 	}
    405 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    406 	p->p_sigctx.ps_sigwaited = 0;
    407 	p->p_flag &= ~P_NOCLDSTOP;
    408 
    409 	/*
    410 	 * Reset stack state to the user stack.
    411 	 */
    412 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    413 	p->p_sigctx.ps_sigstk.ss_size = 0;
    414 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    415 }
    416 
    417 int
    418 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    419 {
    420 
    421 	if (oss)
    422 		*oss = p->p_sigctx.ps_sigmask;
    423 
    424 	if (nss) {
    425 		(void)splsched();	/* XXXSMP */
    426 		switch (how) {
    427 		case SIG_BLOCK:
    428 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    429 			break;
    430 		case SIG_UNBLOCK:
    431 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    432 			CHECKSIGS(p);
    433 			break;
    434 		case SIG_SETMASK:
    435 			p->p_sigctx.ps_sigmask = *nss;
    436 			CHECKSIGS(p);
    437 			break;
    438 		default:
    439 			(void)spl0();	/* XXXSMP */
    440 			return (EINVAL);
    441 		}
    442 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    443 		(void)spl0();		/* XXXSMP */
    444 	}
    445 
    446 	return (0);
    447 }
    448 
    449 /*
    450  * Manipulate signal mask.
    451  * Note that we receive new mask, not pointer,
    452  * and return old mask as return value;
    453  * the library stub does the rest.
    454  */
    455 int
    456 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    457 {
    458 	struct sys___sigprocmask14_args /* {
    459 		syscallarg(int)			how;
    460 		syscallarg(const sigset_t *)	set;
    461 		syscallarg(sigset_t *)		oset;
    462 	} */ *uap = v;
    463 	struct proc	*p;
    464 	sigset_t	nss, oss;
    465 	int		error;
    466 
    467 	if (SCARG(uap, set)) {
    468 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    469 		if (error)
    470 			return (error);
    471 	}
    472 	p = l->l_proc;
    473 	error = sigprocmask1(p, SCARG(uap, how),
    474 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    475 	if (error)
    476 		return (error);
    477 	if (SCARG(uap, oset)) {
    478 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    479 		if (error)
    480 			return (error);
    481 	}
    482 	return (0);
    483 }
    484 
    485 void
    486 sigpending1(struct proc *p, sigset_t *ss)
    487 {
    488 
    489 	*ss = p->p_sigctx.ps_siglist;
    490 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    491 }
    492 
    493 /* ARGSUSED */
    494 int
    495 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    496 {
    497 	struct sys___sigpending14_args /* {
    498 		syscallarg(sigset_t *)	set;
    499 	} */ *uap = v;
    500 	struct proc	*p;
    501 	sigset_t	ss;
    502 
    503 	p = l->l_proc;
    504 	sigpending1(p, &ss);
    505 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    506 }
    507 
    508 int
    509 sigsuspend1(struct proc *p, const sigset_t *ss)
    510 {
    511 	struct sigacts *ps;
    512 
    513 	ps = p->p_sigacts;
    514 	if (ss) {
    515 		/*
    516 		 * When returning from sigpause, we want
    517 		 * the old mask to be restored after the
    518 		 * signal handler has finished.  Thus, we
    519 		 * save it here and mark the sigctx structure
    520 		 * to indicate this.
    521 		 */
    522 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    523 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    524 		(void) splsched();	/* XXXSMP */
    525 		p->p_sigctx.ps_sigmask = *ss;
    526 		CHECKSIGS(p);
    527 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    528 		(void) spl0();		/* XXXSMP */
    529 	}
    530 
    531 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    532 		/* void */;
    533 	/* always return EINTR rather than ERESTART... */
    534 	return (EINTR);
    535 }
    536 
    537 /*
    538  * Suspend process until signal, providing mask to be set
    539  * in the meantime.  Note nonstandard calling convention:
    540  * libc stub passes mask, not pointer, to save a copyin.
    541  */
    542 /* ARGSUSED */
    543 int
    544 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    545 {
    546 	struct sys___sigsuspend14_args /* {
    547 		syscallarg(const sigset_t *)	set;
    548 	} */ *uap = v;
    549 	struct proc	*p;
    550 	sigset_t	ss;
    551 	int		error;
    552 
    553 	if (SCARG(uap, set)) {
    554 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    555 		if (error)
    556 			return (error);
    557 	}
    558 
    559 	p = l->l_proc;
    560 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    561 }
    562 
    563 int
    564 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    565 	struct sigaltstack *oss)
    566 {
    567 
    568 	if (oss)
    569 		*oss = p->p_sigctx.ps_sigstk;
    570 
    571 	if (nss) {
    572 		if (nss->ss_flags & ~SS_ALLBITS)
    573 			return (EINVAL);
    574 
    575 		if (nss->ss_flags & SS_DISABLE) {
    576 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    577 				return (EINVAL);
    578 		} else {
    579 			if (nss->ss_size < MINSIGSTKSZ)
    580 				return (ENOMEM);
    581 		}
    582 		p->p_sigctx.ps_sigstk = *nss;
    583 	}
    584 
    585 	return (0);
    586 }
    587 
    588 /* ARGSUSED */
    589 int
    590 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    591 {
    592 	struct sys___sigaltstack14_args /* {
    593 		syscallarg(const struct sigaltstack *)	nss;
    594 		syscallarg(struct sigaltstack *)	oss;
    595 	} */ *uap = v;
    596 	struct proc		*p;
    597 	struct sigaltstack	nss, oss;
    598 	int			error;
    599 
    600 	if (SCARG(uap, nss)) {
    601 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    602 		if (error)
    603 			return (error);
    604 	}
    605 	p = l->l_proc;
    606 	error = sigaltstack1(p,
    607 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    608 	if (error)
    609 		return (error);
    610 	if (SCARG(uap, oss)) {
    611 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    612 		if (error)
    613 			return (error);
    614 	}
    615 	return (0);
    616 }
    617 
    618 /* ARGSUSED */
    619 int
    620 sys_kill(struct lwp *l, void *v, register_t *retval)
    621 {
    622 	struct sys_kill_args /* {
    623 		syscallarg(int)	pid;
    624 		syscallarg(int)	signum;
    625 	} */ *uap = v;
    626 	struct proc	*cp, *p;
    627 	struct pcred	*pc;
    628 
    629 	cp = l->l_proc;
    630 	pc = cp->p_cred;
    631 	if ((u_int)SCARG(uap, signum) >= NSIG)
    632 		return (EINVAL);
    633 	if (SCARG(uap, pid) > 0) {
    634 		/* kill single process */
    635 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    636 			return (ESRCH);
    637 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    638 			return (EPERM);
    639 		if (SCARG(uap, signum))
    640 			psignal(p, SCARG(uap, signum));
    641 		return (0);
    642 	}
    643 	switch (SCARG(uap, pid)) {
    644 	case -1:		/* broadcast signal */
    645 		return (killpg1(cp, SCARG(uap, signum), 0, 1));
    646 	case 0:			/* signal own process group */
    647 		return (killpg1(cp, SCARG(uap, signum), 0, 0));
    648 	default:		/* negative explicit process group */
    649 		return (killpg1(cp, SCARG(uap, signum), -SCARG(uap, pid), 0));
    650 	}
    651 	/* NOTREACHED */
    652 }
    653 
    654 /*
    655  * Common code for kill process group/broadcast kill.
    656  * cp is calling process.
    657  */
    658 int
    659 killpg1(struct proc *cp, int signum, int pgid, int all)
    660 {
    661 	struct proc	*p;
    662 	struct pcred	*pc;
    663 	struct pgrp	*pgrp;
    664 	int		nfound;
    665 
    666 	pc = cp->p_cred;
    667 	nfound = 0;
    668 	if (all) {
    669 		/*
    670 		 * broadcast
    671 		 */
    672 		proclist_lock_read();
    673 		LIST_FOREACH(p, &allproc, p_list) {
    674 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    675 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    676 				continue;
    677 			nfound++;
    678 			if (signum)
    679 				psignal(p, signum);
    680 		}
    681 		proclist_unlock_read();
    682 	} else {
    683 		if (pgid == 0)
    684 			/*
    685 			 * zero pgid means send to my process group.
    686 			 */
    687 			pgrp = cp->p_pgrp;
    688 		else {
    689 			pgrp = pgfind(pgid);
    690 			if (pgrp == NULL)
    691 				return (ESRCH);
    692 		}
    693 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    694 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    695 			    !CANSIGNAL(cp, pc, p, signum))
    696 				continue;
    697 			nfound++;
    698 			if (signum && P_ZOMBIE(p) == 0)
    699 				psignal(p, signum);
    700 		}
    701 	}
    702 	return (nfound ? 0 : ESRCH);
    703 }
    704 
    705 /*
    706  * Send a signal to a process group.
    707  */
    708 void
    709 gsignal(int pgid, int signum)
    710 {
    711 	struct pgrp *pgrp;
    712 
    713 	if (pgid && (pgrp = pgfind(pgid)))
    714 		pgsignal(pgrp, signum, 0);
    715 }
    716 
    717 /*
    718  * Send a signal to a process group. If checktty is 1,
    719  * limit to members which have a controlling terminal.
    720  */
    721 void
    722 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
    723 {
    724 	struct proc *p;
    725 
    726 	if (pgrp)
    727 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    728 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    729 				psignal(p, signum);
    730 }
    731 
    732 /*
    733  * Send a signal caused by a trap to the current process.
    734  * If it will be caught immediately, deliver it with correct code.
    735  * Otherwise, post it normally.
    736  */
    737 void
    738 trapsignal(struct lwp *l, int signum, u_long code)
    739 {
    740 	struct proc	*p;
    741 	struct sigacts	*ps;
    742 
    743 	p = l->l_proc;
    744 	ps = p->p_sigacts;
    745 	if ((p->p_flag & P_TRACED) == 0 &&
    746 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    747 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    748 		p->p_stats->p_ru.ru_nsignals++;
    749 #ifdef KTRACE
    750 		if (KTRPOINT(p, KTR_PSIG))
    751 			ktrpsig(p, signum,
    752 			    SIGACTION_PS(ps, signum).sa_handler,
    753 			    &p->p_sigctx.ps_sigmask, code);
    754 #endif
    755 		psendsig(l, signum, &p->p_sigctx.ps_sigmask, code);
    756 		(void) splsched();	/* XXXSMP */
    757 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    758 		    &p->p_sigctx.ps_sigmask);
    759 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    760 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    761 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    762 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    763 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    764 		}
    765 		(void) spl0();		/* XXXSMP */
    766 	} else {
    767 		p->p_sigctx.ps_code = code;	/* XXX for core dump/debugger */
    768 		p->p_sigctx.ps_sig = signum;	/* XXX to verify code */
    769 		psignal(p, signum);
    770 	}
    771 }
    772 
    773 /*
    774  * Send the signal to the process.  If the signal has an action, the action
    775  * is usually performed by the target process rather than the caller; we add
    776  * the signal to the set of pending signals for the process.
    777  *
    778  * Exceptions:
    779  *   o When a stop signal is sent to a sleeping process that takes the
    780  *     default action, the process is stopped without awakening it.
    781  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    782  *     regardless of the signal action (eg, blocked or ignored).
    783  *
    784  * Other ignored signals are discarded immediately.
    785  *
    786  * XXXSMP: Invoked as psignal() or sched_psignal().
    787  */
    788 void
    789 psignal1(struct proc *p, int signum,
    790 	int dolock)		/* XXXSMP: works, but icky */
    791 {
    792 	struct lwp *l, *suspended;
    793 	int	s = 0, prop, allsusp;
    794 	sig_t	action;
    795 
    796 #ifdef DIAGNOSTIC
    797 	if (signum <= 0 || signum >= NSIG)
    798 		panic("psignal signal number");
    799 
    800 	/* XXXSMP: works, but icky */
    801 	if (dolock)
    802 		SCHED_ASSERT_UNLOCKED();
    803 	else
    804 		SCHED_ASSERT_LOCKED();
    805 #endif
    806 	/*
    807 	 * Notify any interested parties in the signal.
    808 	 */
    809 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
    810 
    811 	prop = sigprop[signum];
    812 
    813 	/*
    814 	 * If proc is traced, always give parent a chance.
    815 	 */
    816 	if (p->p_flag & P_TRACED)
    817 		action = SIG_DFL;
    818 	else {
    819 		/*
    820 		 * If the signal is being ignored,
    821 		 * then we forget about it immediately.
    822 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
    823 		 * and if it is set to SIG_IGN,
    824 		 * action will be SIG_DFL here.)
    825 		 */
    826 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
    827 			return;
    828 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
    829 			action = SIG_HOLD;
    830 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
    831 			action = SIG_CATCH;
    832 		else {
    833 			action = SIG_DFL;
    834 
    835 			if (prop & SA_KILL && p->p_nice > NZERO)
    836 				p->p_nice = NZERO;
    837 
    838 			/*
    839 			 * If sending a tty stop signal to a member of an
    840 			 * orphaned process group, discard the signal here if
    841 			 * the action is default; don't stop the process below
    842 			 * if sleeping, and don't clear any pending SIGCONT.
    843 			 */
    844 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
    845 				return;
    846 		}
    847 	}
    848 
    849 	if (prop & SA_CONT)
    850 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
    851 
    852 	if (prop & SA_STOP)
    853 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
    854 
    855 	sigaddset(&p->p_sigctx.ps_siglist, signum);
    856 
    857 	/* CHECKSIGS() is "inlined" here. */
    858 	p->p_sigctx.ps_sigcheck = 1;
    859 
    860 	/*
    861 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
    862 	 * please!), check if anything waits on it. If yes, clear the
    863 	 * pending signal from siglist set, save it to ps_sigwaited,
    864 	 * clear sigwait list, and wakeup any sigwaiters.
    865 	 * The signal won't be processed further here.
    866 	 */
    867 	if ((prop & SA_CANTMASK) == 0
    868 	    && p->p_sigctx.ps_sigwaited < 0
    869 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)) {
    870 		sigdelset(&p->p_sigctx.ps_siglist, signum);
    871 		p->p_sigctx.ps_sigwaited = signum;
    872 		sigemptyset(&p->p_sigctx.ps_sigwait);
    873 
    874 		if (dolock)
    875 			wakeup_one(&p->p_sigctx.ps_sigwait);
    876 		else
    877 			sched_wakeup(&p->p_sigctx.ps_sigwait);
    878 		return;
    879 	}
    880 
    881 	/*
    882 	 * Defer further processing for signals which are held,
    883 	 * except that stopped processes must be continued by SIGCONT.
    884 	 */
    885 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
    886 		return;
    887 	/* XXXSMP: works, but icky */
    888 	if (dolock)
    889 		SCHED_LOCK(s);
    890 
    891 	if (p->p_nrlwps > 0) {
    892 		/*
    893 		 * At least one LWP is running or on a run queue.
    894 		 * The signal will be noticed when one of them returns
    895 		 * to userspace.
    896 		 */
    897 		signotify(p);
    898 		/*
    899 		 * The signal will be noticed very soon.
    900 		 */
    901 		goto out;
    902 	} else {
    903 		/* Process is sleeping or stopped */
    904 		if (p->p_flag & P_SA) {
    905 			l = p->p_sa->sa_idle;
    906 		} else {
    907 			/*
    908 			 * Find out if any of the sleeps are interruptable,
    909 			 * and if all the live LWPs remaining are suspended.
    910 			 */
    911 			allsusp = 1;
    912 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    913 				if (l->l_stat == LSSLEEP &&
    914 				    l->l_flag & L_SINTR)
    915 					break;
    916 				if (l->l_stat == LSSUSPENDED)
    917 					suspended = l;
    918 				else if ((l->l_stat != LSZOMB) &&
    919 				         (l->l_stat != LSDEAD))
    920 					allsusp = 0;
    921 			}
    922 		}
    923 		if (p->p_stat == SACTIVE) {
    924 			/* All LWPs must be sleeping */
    925 			KDASSERT(((p->p_flag & P_SA) == 0) || (l != NULL));
    926 
    927 			if (l != NULL && (p->p_flag & P_TRACED))
    928 				goto run;
    929 
    930 			/*
    931 			 * If SIGCONT is default (or ignored) and process is
    932 			 * asleep, we are finished; the process should not
    933 			 * be awakened.
    934 			 */
    935 			if ((prop & SA_CONT) && action == SIG_DFL) {
    936 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    937 				goto out;
    938 			}
    939 
    940 			/*
    941 			 * When a sleeping process receives a stop
    942 			 * signal, process immediately if possible.
    943 			 */
    944 			if ((prop & SA_STOP) && action == SIG_DFL) {
    945 				/*
    946 				 * If a child holding parent blocked,
    947 				 * stopping could cause deadlock.
    948 				 */
    949 				if (p->p_flag & P_PPWAIT)
    950 					goto out;
    951 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    952 				p->p_xstat = signum;
    953 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
    954 					/*
    955 					 * XXXSMP: recursive call; don't lock
    956 					 * the second time around.
    957 					 */
    958 					sched_psignal(p->p_pptr, SIGCHLD);
    959 				}
    960 				proc_stop(p);	/* XXXSMP: recurse? */
    961 				goto out;
    962 			}
    963 
    964 			if (l == NULL) {
    965 				/*
    966 				 * Special case: SIGKILL of a process
    967 				 * which is entirely composed of
    968 				 * suspended LWPs should succeed. We
    969 				 * make this happen by unsuspending one of
    970 				 * them.
    971 				 */
    972 				if (allsusp && (signum == SIGKILL))
    973 					lwp_continue(suspended);
    974 				goto out;
    975 			}
    976 			/*
    977 			 * All other (caught or default) signals
    978 			 * cause the process to run.
    979 			 */
    980 			goto runfast;
    981 			/*NOTREACHED*/
    982 		} else if (p->p_stat == SSTOP) {
    983 			/* Process is stopped */
    984 			/*
    985 			 * If traced process is already stopped,
    986 			 * then no further action is necessary.
    987 			 */
    988 			if (p->p_flag & P_TRACED)
    989 				goto out;
    990 
    991 			/*
    992 			 * Kill signal always sets processes running,
    993 			 * if possible.
    994 			 */
    995 			if (signum == SIGKILL) {
    996 				l = proc_unstop(p);
    997 				if (l)
    998 					goto runfast;
    999 				goto out;
   1000 			}
   1001 
   1002 			if (prop & SA_CONT) {
   1003 				/*
   1004 				 * If SIGCONT is default (or ignored),
   1005 				 * we continue the process but don't
   1006 				 * leave the signal in ps_siglist, as
   1007 				 * it has no further action.  If
   1008 				 * SIGCONT is held, we continue the
   1009 				 * process and leave the signal in
   1010 				 * ps_siglist.  If the process catches
   1011 				 * SIGCONT, let it handle the signal
   1012 				 * itself.  If it isn't waiting on an
   1013 				 * event, then it goes back to run
   1014 				 * state.  Otherwise, process goes
   1015 				 * back to sleep state.
   1016 				 */
   1017 				if (action == SIG_DFL)
   1018 					sigdelset(&p->p_sigctx.ps_siglist,
   1019 					signum);
   1020 				l = proc_unstop(p);
   1021 				if (l && (action == SIG_CATCH))
   1022 					goto runfast;
   1023 				goto out;
   1024 			}
   1025 
   1026 			if (prop & SA_STOP) {
   1027 				/*
   1028 				 * Already stopped, don't need to stop again.
   1029 				 * (If we did the shell could get confused.)
   1030 				 */
   1031 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1032 				goto out;
   1033 			}
   1034 
   1035 			/*
   1036 			 * If a lwp is sleeping interruptibly, then
   1037 			 * wake it up; it will run until the kernel
   1038 			 * boundary, where it will stop in issignal(),
   1039 			 * since p->p_stat is still SSTOP. When the
   1040 			 * process is continued, it will be made
   1041 			 * runnable and can look at the signal.
   1042 			 */
   1043 			if (l)
   1044 				goto run;
   1045 			goto out;
   1046 		} else {
   1047 			/* Else what? */
   1048 			panic("psignal: Invalid process state %d.",
   1049 				p->p_stat);
   1050 		}
   1051 	}
   1052 	/*NOTREACHED*/
   1053 
   1054  runfast:
   1055 	/*
   1056 	 * Raise priority to at least PUSER.
   1057 	 */
   1058 	if (l->l_priority > PUSER)
   1059 		l->l_priority = PUSER;
   1060  run:
   1061 	setrunnable(l);		/* XXXSMP: recurse? */
   1062  out:
   1063 	/* XXXSMP: works, but icky */
   1064 	if (dolock)
   1065 		SCHED_UNLOCK(s);
   1066 }
   1067 
   1068 void
   1069 psendsig(struct lwp *l, int sig, sigset_t *mask, u_long code)
   1070 {
   1071 	struct proc *p = l->l_proc;
   1072 	struct lwp *le, *li;
   1073 	siginfo_t *si;
   1074 
   1075 	if (p->p_flag & P_SA) {
   1076 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1077 		si->si_signo = sig;
   1078 		si->si_errno = 0;
   1079 		si->si_code = code;
   1080 		le = li = NULL;
   1081 		if (code)
   1082 			le = l;
   1083 		else
   1084 			li = l;
   1085 
   1086 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1087 			    sizeof(siginfo_t), si);
   1088 		return;
   1089 	}
   1090 
   1091 	(*p->p_emul->e_sendsig)(sig, mask, code);
   1092 }
   1093 
   1094 static __inline int firstsig(const sigset_t *);
   1095 
   1096 static __inline int
   1097 firstsig(const sigset_t *ss)
   1098 {
   1099 	int sig;
   1100 
   1101 	sig = ffs(ss->__bits[0]);
   1102 	if (sig != 0)
   1103 		return (sig);
   1104 #if NSIG > 33
   1105 	sig = ffs(ss->__bits[1]);
   1106 	if (sig != 0)
   1107 		return (sig + 32);
   1108 #endif
   1109 #if NSIG > 65
   1110 	sig = ffs(ss->__bits[2]);
   1111 	if (sig != 0)
   1112 		return (sig + 64);
   1113 #endif
   1114 #if NSIG > 97
   1115 	sig = ffs(ss->__bits[3]);
   1116 	if (sig != 0)
   1117 		return (sig + 96);
   1118 #endif
   1119 	return (0);
   1120 }
   1121 
   1122 /*
   1123  * If the current process has received a signal (should be caught or cause
   1124  * termination, should interrupt current syscall), return the signal number.
   1125  * Stop signals with default action are processed immediately, then cleared;
   1126  * they aren't returned.  This is checked after each entry to the system for
   1127  * a syscall or trap (though this can usually be done without calling issignal
   1128  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1129  * sequence is
   1130  *
   1131  *	while (signum = CURSIG(curlwp))
   1132  *		postsig(signum);
   1133  */
   1134 int
   1135 issignal(struct lwp *l)
   1136 {
   1137 	struct proc	*p = l->l_proc;
   1138 	int		s = 0, signum, prop;
   1139 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1140 	sigset_t	ss;
   1141 
   1142 	if (p->p_stat == SSTOP) {
   1143 		/*
   1144 		 * The process is stopped/stopping. Stop ourselves now that
   1145 		 * we're on the kernel/userspace boundary.
   1146 		 */
   1147 		if (dolock)
   1148 			SCHED_LOCK(s);
   1149 		l->l_stat = LSSTOP;
   1150 		p->p_nrlwps--;
   1151 		if (p->p_flag & P_TRACED)
   1152 			goto sigtraceswitch;
   1153 		else
   1154 			goto sigswitch;
   1155 	}
   1156 	for (;;) {
   1157 		sigpending1(p, &ss);
   1158 		if (p->p_flag & P_PPWAIT)
   1159 			sigminusset(&stopsigmask, &ss);
   1160 		signum = firstsig(&ss);
   1161 		if (signum == 0) {		 	/* no signal to send */
   1162 			p->p_sigctx.ps_sigcheck = 0;
   1163 			if (locked && dolock)
   1164 				SCHED_LOCK(s);
   1165 			return (0);
   1166 		}
   1167 							/* take the signal! */
   1168 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1169 
   1170 		/*
   1171 		 * We should see pending but ignored signals
   1172 		 * only if P_TRACED was on when they were posted.
   1173 		 */
   1174 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1175 		    (p->p_flag & P_TRACED) == 0)
   1176 			continue;
   1177 
   1178 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1179 			/*
   1180 			 * If traced, always stop, and stay
   1181 			 * stopped until released by the debugger.
   1182 			 */
   1183 			p->p_xstat = signum;
   1184 			if ((p->p_flag & P_FSTRACE) == 0)
   1185 				psignal1(p->p_pptr, SIGCHLD, dolock);
   1186 			if (dolock)
   1187 				SCHED_LOCK(s);
   1188 			proc_stop(p);
   1189 		sigtraceswitch:
   1190 			mi_switch(l, NULL);
   1191 			SCHED_ASSERT_UNLOCKED();
   1192 			if (dolock)
   1193 				splx(s);
   1194 			else
   1195 				dolock = 1;
   1196 
   1197 			/*
   1198 			 * If we are no longer being traced, or the parent
   1199 			 * didn't give us a signal, look for more signals.
   1200 			 */
   1201 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1202 				continue;
   1203 
   1204 			/*
   1205 			 * If the new signal is being masked, look for other
   1206 			 * signals.
   1207 			 */
   1208 			signum = p->p_xstat;
   1209 			p->p_xstat = 0;
   1210 			/*
   1211 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1212 			 * in setrunnable().
   1213 			 */
   1214 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1215 				continue;
   1216 							/* take the signal! */
   1217 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1218 		}
   1219 
   1220 		prop = sigprop[signum];
   1221 
   1222 		/*
   1223 		 * Decide whether the signal should be returned.
   1224 		 * Return the signal's number, or fall through
   1225 		 * to clear it from the pending mask.
   1226 		 */
   1227 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1228 
   1229 		case (long)SIG_DFL:
   1230 			/*
   1231 			 * Don't take default actions on system processes.
   1232 			 */
   1233 			if (p->p_pid <= 1) {
   1234 #ifdef DIAGNOSTIC
   1235 				/*
   1236 				 * Are you sure you want to ignore SIGSEGV
   1237 				 * in init? XXX
   1238 				 */
   1239 				printf("Process (pid %d) got signal %d\n",
   1240 				    p->p_pid, signum);
   1241 #endif
   1242 				break;		/* == ignore */
   1243 			}
   1244 			/*
   1245 			 * If there is a pending stop signal to process
   1246 			 * with default action, stop here,
   1247 			 * then clear the signal.  However,
   1248 			 * if process is member of an orphaned
   1249 			 * process group, ignore tty stop signals.
   1250 			 */
   1251 			if (prop & SA_STOP) {
   1252 				if (p->p_flag & P_TRACED ||
   1253 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1254 				    prop & SA_TTYSTOP))
   1255 					break;	/* == ignore */
   1256 				p->p_xstat = signum;
   1257 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1258 					psignal1(p->p_pptr, SIGCHLD, dolock);
   1259 				if (dolock)
   1260 					SCHED_LOCK(s);
   1261 				proc_stop(p);
   1262 			sigswitch:
   1263 				mi_switch(l, NULL);
   1264 				SCHED_ASSERT_UNLOCKED();
   1265 				if (dolock)
   1266 					splx(s);
   1267 				else
   1268 					dolock = 1;
   1269 				break;
   1270 			} else if (prop & SA_IGNORE) {
   1271 				/*
   1272 				 * Except for SIGCONT, shouldn't get here.
   1273 				 * Default action is to ignore; drop it.
   1274 				 */
   1275 				break;		/* == ignore */
   1276 			} else
   1277 				goto keep;
   1278 			/*NOTREACHED*/
   1279 
   1280 		case (long)SIG_IGN:
   1281 			/*
   1282 			 * Masking above should prevent us ever trying
   1283 			 * to take action on an ignored signal other
   1284 			 * than SIGCONT, unless process is traced.
   1285 			 */
   1286 #ifdef DEBUG_ISSIGNAL
   1287 			if ((prop & SA_CONT) == 0 &&
   1288 			    (p->p_flag & P_TRACED) == 0)
   1289 				printf("issignal\n");
   1290 #endif
   1291 			break;		/* == ignore */
   1292 
   1293 		default:
   1294 			/*
   1295 			 * This signal has an action, let
   1296 			 * postsig() process it.
   1297 			 */
   1298 			goto keep;
   1299 		}
   1300 	}
   1301 	/* NOTREACHED */
   1302 
   1303  keep:
   1304 						/* leave the signal for later */
   1305 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1306 	CHECKSIGS(p);
   1307 	if (locked && dolock)
   1308 		SCHED_LOCK(s);
   1309 	return (signum);
   1310 }
   1311 
   1312 /*
   1313  * Put the argument process into the stopped state and notify the parent
   1314  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1315  * on the run queue.
   1316  */
   1317 static void
   1318 proc_stop(struct proc *p)
   1319 {
   1320 	struct lwp *l;
   1321 
   1322 	SCHED_ASSERT_LOCKED();
   1323 
   1324 	/* XXX lock process LWP state */
   1325 	p->p_stat = SSTOP;
   1326 	p->p_flag &= ~P_WAITED;
   1327 
   1328 	/*
   1329 	 * Put as many LWP's as possible in stopped state.
   1330 	 * Sleeping ones will notice the stopped state as they try to
   1331 	 * return to userspace.
   1332 	 */
   1333 
   1334 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1335 		if (l->l_stat == LSONPROC) {
   1336 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1337 			 * is curlwp and hence is about to be mi_switched
   1338 			 * away; the only callers of proc_stop() are:
   1339 			 * - psignal
   1340 			 * - issignal()
   1341 			 * For the former, proc_stop() is only called when
   1342 			 * no processes are running, so we don't worry.
   1343 			 * For the latter, proc_stop() is called right
   1344 			 * before mi_switch().
   1345 			 */
   1346 			l->l_stat = LSSTOP;
   1347 			p->p_nrlwps--;
   1348 		} else if (l->l_stat == LSRUN) {
   1349 			/* Remove LWP from the run queue */
   1350 			remrunqueue(l);
   1351 			l->l_stat = LSSTOP;
   1352 			p->p_nrlwps--;
   1353 		} else if ((l->l_stat == LSSLEEP) ||
   1354 		    (l->l_stat == LSSUSPENDED) ||
   1355 		    (l->l_stat == LSZOMB) ||
   1356 		    (l->l_stat == LSDEAD)) {
   1357 			/*
   1358 			 * Don't do anything; let sleeping LWPs
   1359 			 * discover the stopped state of the process
   1360 			 * on their way out of the kernel; otherwise,
   1361 			 * things like NFS threads that sleep with
   1362 			 * locks will block the rest of the system
   1363 			 * from getting any work done.
   1364 			 *
   1365 			 * Suspended/dead/zombie LWPs aren't going
   1366 			 * anywhere, so we don't need to touch them.
   1367 			 */
   1368 		}
   1369 #ifdef DIAGNOSTIC
   1370 		else {
   1371 			panic("proc_stop: process %d lwp %d "
   1372 			      "in unstoppable state %d.\n",
   1373 			    p->p_pid, l->l_lid, l->l_stat);
   1374 		}
   1375 #endif
   1376 	}
   1377 	/* XXX unlock process LWP state */
   1378 
   1379 	sched_wakeup((caddr_t)p->p_pptr);
   1380 }
   1381 
   1382 /*
   1383  * Given a process in state SSTOP, set the state back to SACTIVE and
   1384  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1385  *
   1386  * If no LWPs ended up runnable (and therefore able to take a signal),
   1387  * return a LWP that is sleeping interruptably. The caller can wake
   1388  * that LWP up to take a signal.
   1389  */
   1390 struct lwp *
   1391 proc_unstop(p)
   1392 	struct proc *p;
   1393 {
   1394 	struct lwp *l, *lr = NULL;
   1395 	int cantake = 0;
   1396 
   1397 	SCHED_ASSERT_LOCKED();
   1398 
   1399 	/*
   1400 	 * Our caller will want to invoke setrunnable() on whatever we return,
   1401 	 * provided that it isn't NULL.
   1402 	 */
   1403 
   1404 	p->p_stat = SACTIVE;
   1405 	if (p->p_flag & P_SA) {
   1406 		lr = p->p_sa->sa_idle; /* OK if this is NULL. */
   1407 		cantake = 1;
   1408 	}
   1409 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1410 		if (l->l_stat == LSRUN)
   1411 			cantake = 1;
   1412 		if (l->l_stat != LSSTOP)
   1413 			continue;
   1414 
   1415 		if (l->l_wchan != NULL) {
   1416 			l->l_stat = LSSLEEP;
   1417 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1418 				lr = l;
   1419 				cantake = 1;
   1420 			}
   1421 		} else {
   1422 			setrunnable(l);
   1423 			cantake = 1;
   1424 		}
   1425 	}
   1426 
   1427 	return lr;
   1428 }
   1429 
   1430 /*
   1431  * Take the action for the specified signal
   1432  * from the current set of pending signals.
   1433  */
   1434 void
   1435 postsig(int signum)
   1436 {
   1437 	struct lwp *l;
   1438 	struct proc	*p;
   1439 	struct sigacts	*ps;
   1440 	sig_t		action;
   1441 	u_long		code;
   1442 	sigset_t	*returnmask;
   1443 
   1444 	l = curlwp;
   1445 	p = l->l_proc;
   1446 	ps = p->p_sigacts;
   1447 #ifdef DIAGNOSTIC
   1448 	if (signum == 0)
   1449 		panic("postsig");
   1450 #endif
   1451 
   1452 	KERNEL_PROC_LOCK(l);
   1453 
   1454 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1455 	action = SIGACTION_PS(ps, signum).sa_handler;
   1456 #ifdef KTRACE
   1457 	if (KTRPOINT(p, KTR_PSIG))
   1458 		ktrpsig(p,
   1459 		    signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1460 		    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
   1461 #endif
   1462 	if (action == SIG_DFL) {
   1463 		/*
   1464 		 * Default action, where the default is to kill
   1465 		 * the process.  (Other cases were ignored above.)
   1466 		 */
   1467 		sigexit(l, signum);
   1468 		/* NOTREACHED */
   1469 	} else {
   1470 		/*
   1471 		 * If we get here, the signal must be caught.
   1472 		 */
   1473 #ifdef DIAGNOSTIC
   1474 		if (action == SIG_IGN ||
   1475 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1476 			panic("postsig action");
   1477 #endif
   1478 		/*
   1479 		 * Set the new mask value and also defer further
   1480 		 * occurences of this signal.
   1481 		 *
   1482 		 * Special case: user has done a sigpause.  Here the
   1483 		 * current mask is not of interest, but rather the
   1484 		 * mask from before the sigpause is what we want
   1485 		 * restored after the signal processing is completed.
   1486 		 */
   1487 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1488 			returnmask = &p->p_sigctx.ps_oldmask;
   1489 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1490 		} else
   1491 			returnmask = &p->p_sigctx.ps_sigmask;
   1492 		p->p_stats->p_ru.ru_nsignals++;
   1493 		if (p->p_sigctx.ps_sig != signum) {
   1494 			code = 0;
   1495 		} else {
   1496 			code = p->p_sigctx.ps_code;
   1497 			p->p_sigctx.ps_code = 0;
   1498 			p->p_sigctx.ps_sig = 0;
   1499 		}
   1500 		psendsig(l, signum, returnmask, code);
   1501 		(void) splsched();	/* XXXSMP */
   1502 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1503 		    &p->p_sigctx.ps_sigmask);
   1504 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1505 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1506 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1507 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1508 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1509 		}
   1510 		(void) spl0();		/* XXXSMP */
   1511 	}
   1512 
   1513 	KERNEL_PROC_UNLOCK(l);
   1514 }
   1515 
   1516 /*
   1517  * Kill the current process for stated reason.
   1518  */
   1519 void
   1520 killproc(struct proc *p, const char *why)
   1521 {
   1522 
   1523 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1524 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1525 	psignal(p, SIGKILL);
   1526 }
   1527 
   1528 /*
   1529  * Force the current process to exit with the specified signal, dumping core
   1530  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1531  * allowing unrecoverable failures to terminate the process without changing
   1532  * signal state.  Mark the accounting record with the signal termination.
   1533  * If dumping core, save the signal number for the debugger.  Calls exit and
   1534  * does not return.
   1535  */
   1536 
   1537 #if defined(DEBUG)
   1538 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1539 #else
   1540 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1541 #endif
   1542 
   1543 static	const char logcoredump[] =
   1544 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1545 static	const char lognocoredump[] =
   1546 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1547 
   1548 /* Wrapper function for use in p_userret */
   1549 static void
   1550 lwp_coredump_hook(struct lwp *l, void *arg)
   1551 {
   1552 	int s;
   1553 
   1554 	/*
   1555 	 * Suspend ourselves, so that the kernel stack and therefore
   1556 	 * the userland registers saved in the trapframe are around
   1557 	 * for coredump() to write them out.
   1558 	 */
   1559 	KERNEL_PROC_LOCK(l);
   1560 	l->l_flag &= ~L_DETACHED;
   1561 	SCHED_LOCK(s);
   1562 	l->l_stat = LSSUSPENDED;
   1563 	l->l_proc->p_nrlwps--;
   1564 	/* XXX NJWLWP check if this makes sense here: */
   1565 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1566 	mi_switch(l, NULL);
   1567 	SCHED_ASSERT_UNLOCKED();
   1568 	splx(s);
   1569 
   1570 	lwp_exit(l);
   1571 }
   1572 
   1573 void
   1574 sigexit(struct lwp *l, int signum)
   1575 {
   1576 	struct proc	*p;
   1577 	int		error, exitsig;
   1578 
   1579 	p = l->l_proc;
   1580 
   1581 	/*
   1582 	 * Don't permit coredump() or exit1() multiple times
   1583 	 * in the same process.
   1584 	 */
   1585 	if (p->p_flag & P_WEXIT)
   1586 		(*p->p_userret)(l, p->p_userret_arg);
   1587 	p->p_flag |= P_WEXIT;
   1588 	/* We don't want to switch away from exiting. */
   1589 	/* XXX multiprocessor: stop LWPs on other processors. */
   1590 	if (l->l_flag & L_SA) {
   1591 		l->l_flag &= ~L_SA;
   1592 		p->p_flag &= ~P_SA;
   1593 	}
   1594 
   1595 	/* Make other LWPs stick around long enough to be dumped */
   1596 	p->p_userret = lwp_coredump_hook;
   1597 	p->p_userret_arg = NULL;
   1598 
   1599 	exitsig = signum;
   1600 	p->p_acflag |= AXSIG;
   1601 	if (sigprop[signum] & SA_CORE) {
   1602 		p->p_sigctx.ps_sig = signum;
   1603 		if ((error = coredump(l)) == 0)
   1604 			exitsig |= WCOREFLAG;
   1605 
   1606 		if (kern_logsigexit) {
   1607 			/* XXX What if we ever have really large UIDs? */
   1608 			int uid = p->p_cred && p->p_ucred ?
   1609 				(int) p->p_ucred->cr_uid : -1;
   1610 
   1611 			if (error)
   1612 				log(LOG_INFO, lognocoredump, p->p_pid,
   1613 				    p->p_comm, uid, signum, error);
   1614 			else
   1615 				log(LOG_INFO, logcoredump, p->p_pid,
   1616 				    p->p_comm, uid, signum);
   1617 		}
   1618 
   1619 	}
   1620 
   1621 	exit1(l, W_EXITCODE(0, exitsig));
   1622 	/* NOTREACHED */
   1623 }
   1624 
   1625 /*
   1626  * Dump core, into a file named "progname.core" or "core" (depending on the
   1627  * value of shortcorename), unless the process was setuid/setgid.
   1628  */
   1629 int
   1630 coredump(struct lwp *l)
   1631 {
   1632 	struct vnode		*vp;
   1633 	struct proc		*p;
   1634 	struct vmspace		*vm;
   1635 	struct ucred		*cred;
   1636 	struct nameidata	nd;
   1637 	struct vattr		vattr;
   1638 	int			error, error1;
   1639 	char			name[MAXPATHLEN];
   1640 
   1641 	p = l->l_proc;
   1642 	vm = p->p_vmspace;
   1643 	cred = p->p_cred->pc_ucred;
   1644 
   1645 	/*
   1646 	 * Make sure the process has not set-id, to prevent data leaks.
   1647 	 */
   1648 	if (p->p_flag & P_SUGID)
   1649 		return (EPERM);
   1650 
   1651 	/*
   1652 	 * Refuse to core if the data + stack + user size is larger than
   1653 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   1654 	 * data.
   1655 	 */
   1656 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   1657 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   1658 		return (EFBIG);		/* better error code? */
   1659 
   1660 	/*
   1661 	 * The core dump will go in the current working directory.  Make
   1662 	 * sure that the directory is still there and that the mount flags
   1663 	 * allow us to write core dumps there.
   1664 	 */
   1665 	vp = p->p_cwdi->cwdi_cdir;
   1666 	if (vp->v_mount == NULL ||
   1667 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   1668 		return (EPERM);
   1669 
   1670 	error = build_corename(p, name);
   1671 	if (error)
   1672 		return error;
   1673 
   1674 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   1675 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   1676 	if (error)
   1677 		return (error);
   1678 	vp = nd.ni_vp;
   1679 
   1680 	/* Don't dump to non-regular files or files with links. */
   1681 	if (vp->v_type != VREG ||
   1682 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   1683 		error = EINVAL;
   1684 		goto out;
   1685 	}
   1686 	VATTR_NULL(&vattr);
   1687 	vattr.va_size = 0;
   1688 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   1689 	VOP_SETATTR(vp, &vattr, cred, p);
   1690 	p->p_acflag |= ACORE;
   1691 
   1692 	/* Now dump the actual core file. */
   1693 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   1694  out:
   1695 	VOP_UNLOCK(vp, 0);
   1696 	error1 = vn_close(vp, FWRITE, cred, p);
   1697 	if (error == 0)
   1698 		error = error1;
   1699 	return (error);
   1700 }
   1701 
   1702 /*
   1703  * Nonexistent system call-- signal process (may want to handle it).
   1704  * Flag error in case process won't see signal immediately (blocked or ignored).
   1705  */
   1706 /* ARGSUSED */
   1707 int
   1708 sys_nosys(struct lwp *l, void *v, register_t *retval)
   1709 {
   1710 	struct proc 	*p;
   1711 
   1712 	p = l->l_proc;
   1713 	psignal(p, SIGSYS);
   1714 	return (ENOSYS);
   1715 }
   1716 
   1717 static int
   1718 build_corename(struct proc *p, char dst[MAXPATHLEN])
   1719 {
   1720 	const char	*s;
   1721 	char		*d, *end;
   1722 	int		i;
   1723 
   1724 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   1725 	    *s != '\0'; s++) {
   1726 		if (*s == '%') {
   1727 			switch (*(s + 1)) {
   1728 			case 'n':
   1729 				i = snprintf(d, end - d, "%s", p->p_comm);
   1730 				break;
   1731 			case 'p':
   1732 				i = snprintf(d, end - d, "%d", p->p_pid);
   1733 				break;
   1734 			case 'u':
   1735 				i = snprintf(d, end - d, "%.*s",
   1736 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   1737 				    p->p_pgrp->pg_session->s_login);
   1738 				break;
   1739 			case 't':
   1740 				i = snprintf(d, end - d, "%ld",
   1741 				    p->p_stats->p_start.tv_sec);
   1742 				break;
   1743 			default:
   1744 				goto copy;
   1745 			}
   1746 			d += i;
   1747 			s++;
   1748 		} else {
   1749  copy:			*d = *s;
   1750 			d++;
   1751 		}
   1752 		if (d >= end)
   1753 			return (ENAMETOOLONG);
   1754 	}
   1755 	*d = '\0';
   1756 	return 0;
   1757 }
   1758 
   1759 void
   1760 getucontext(struct lwp *l, ucontext_t *ucp)
   1761 {
   1762 	struct proc	*p;
   1763 
   1764 	p = l->l_proc;
   1765 
   1766 	ucp->uc_flags = 0;
   1767 	ucp->uc_link = l->l_ctxlink;
   1768 
   1769 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   1770 	ucp->uc_flags |= _UC_SIGMASK;
   1771 
   1772 	/*
   1773 	 * The (unsupplied) definition of the `current execution stack'
   1774 	 * in the System V Interface Definition appears to allow returning
   1775 	 * the main context stack.
   1776 	 */
   1777 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   1778 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   1779 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   1780 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   1781 	} else {
   1782 		/* Simply copy alternate signal execution stack. */
   1783 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   1784 	}
   1785 	ucp->uc_flags |= _UC_STACK;
   1786 
   1787 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   1788 }
   1789 
   1790 /* ARGSUSED */
   1791 int
   1792 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   1793 {
   1794 	struct sys_getcontext_args /* {
   1795 		syscallarg(struct __ucontext *) ucp;
   1796 	} */ *uap = v;
   1797 	ucontext_t uc;
   1798 
   1799 	getucontext(l, &uc);
   1800 
   1801 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   1802 }
   1803 
   1804 int
   1805 setucontext(struct lwp *l, const ucontext_t *ucp)
   1806 {
   1807 	struct proc	*p;
   1808 	int		error;
   1809 
   1810 	p = l->l_proc;
   1811 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   1812 		return (error);
   1813 	l->l_ctxlink = ucp->uc_link;
   1814 	/*
   1815 	 * We might want to take care of the stack portion here but currently
   1816 	 * don't; see the comment in getucontext().
   1817 	 */
   1818 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   1819 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   1820 
   1821 	return 0;
   1822 }
   1823 
   1824 /* ARGSUSED */
   1825 int
   1826 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   1827 {
   1828 	struct sys_setcontext_args /* {
   1829 		syscallarg(const ucontext_t *) ucp;
   1830 	} */ *uap = v;
   1831 	ucontext_t uc;
   1832 	int error;
   1833 
   1834 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   1835 		exit1(l, W_EXITCODE(0, 0));
   1836 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   1837 	    (error = setucontext(l, &uc)) != 0)
   1838 		return (error);
   1839 
   1840 	return (EJUSTRETURN);
   1841 }
   1842 
   1843 /*
   1844  * sigtimedwait(2) system call, used also for implementation
   1845  * of sigwaitinfo() and sigwait().
   1846  *
   1847  * This only handles single LWP in signal wait. libpthread provides
   1848  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   1849  *
   1850  * XXX no support for queued signals, si_code is always SI_USER.
   1851  */
   1852 int
   1853 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   1854 {
   1855 	struct sys___sigtimedwait_args /* {
   1856 		syscallarg(const sigset_t *) set;
   1857 		syscallarg(siginfo_t *) info;
   1858 		syscallarg(struct timespec *) timeout;
   1859 	} */ *uap = v;
   1860 	sigset_t waitset, twaitset;
   1861 	struct proc *p = l->l_proc;
   1862 	int error, signum, s;
   1863 	int timo = 0;
   1864 	struct timeval tvstart;
   1865 	struct timespec ts;
   1866 
   1867 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
   1868 		return (error);
   1869 
   1870 	/*
   1871 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   1872 	 * ignore SA_CANTMASK signals in waitset, we do this
   1873 	 * only for the below siglist check.
   1874 	 */
   1875 	sigminusset(&sigcantmask, &waitset);
   1876 
   1877 	/*
   1878 	 * First scan siglist and check if there is signal from
   1879 	 * our waitset already pending.
   1880 	 */
   1881 	twaitset = waitset;
   1882 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   1883 	if ((signum = firstsig(&twaitset))) {
   1884 		/* found pending signal */
   1885 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1886 		goto sig;
   1887 	}
   1888 
   1889 	/*
   1890 	 * Calculate timeout, if it was specified.
   1891 	 */
   1892 	if (SCARG(uap, timeout)) {
   1893 		uint64_t ms;
   1894 
   1895 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   1896 			return (error);
   1897 
   1898 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   1899 		timo = mstohz(ms);
   1900 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   1901 			timo = 1;
   1902 		if (timo <= 0)
   1903 			return (EAGAIN);
   1904 
   1905 		/*
   1906 		 * Remember current mono_time, it would be used in
   1907 		 * ECANCELED/ERESTART case.
   1908 		 */
   1909 		s = splclock();
   1910 		tvstart = mono_time;
   1911 		splx(s);
   1912 	}
   1913 
   1914 	/*
   1915 	 * Setup ps_sigwait list.
   1916 	 */
   1917 	p->p_sigctx.ps_sigwaited = -1;
   1918 	p->p_sigctx.ps_sigwait = waitset;
   1919 
   1920 	/*
   1921 	 * Wait for signal to arrive. We can either be woken up or
   1922 	 * time out.
   1923 	 */
   1924 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   1925 
   1926 	/*
   1927 	 * Check if a signal from our wait set has arrived, or if it
   1928 	 * was mere wakeup.
   1929 	 */
   1930 	if (!error) {
   1931 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
   1932 			/* wakeup via _lwp_wakeup() */
   1933 			error = ECANCELED;
   1934 		}
   1935 	}
   1936 
   1937 	/*
   1938 	 * On error, clear sigwait indication. psignal1() sets it
   1939 	 * in !error case.
   1940 	 */
   1941 	if (error) {
   1942 		p->p_sigctx.ps_sigwaited = 0;
   1943 
   1944 		/*
   1945 		 * If the sleep was interrupted (either by signal or wakeup),
   1946 		 * update the timeout and copyout new value back.
   1947 		 * It would be used when the syscall would be restarted
   1948 		 * or called again.
   1949 		 */
   1950 		if (timo && (error == ERESTART || error == ECANCELED)) {
   1951 			struct timeval tvnow, tvtimo;
   1952 			int err;
   1953 
   1954 			s = splclock();
   1955 			tvnow = mono_time;
   1956 			splx(s);
   1957 
   1958 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   1959 
   1960 			/* compute how much time has passed since start */
   1961 			timersub(&tvnow, &tvstart, &tvnow);
   1962 			/* substract passed time from timeout */
   1963 			timersub(&tvtimo, &tvnow, &tvtimo);
   1964 
   1965 			if (tvtimo.tv_sec < 0)
   1966 				return (EAGAIN);
   1967 
   1968 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   1969 
   1970 			/* copy updated timeout to userland */
   1971 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
   1972 				return (err);
   1973 		}
   1974 
   1975 		return (error);
   1976 	}
   1977 
   1978 	/*
   1979 	 * If a signal from the wait set arrived, copy it to userland.
   1980 	 * XXX no queued signals for now
   1981 	 */
   1982 	if (signum > 0) {
   1983 		siginfo_t si;
   1984 
   1985  sig:
   1986 		memset(&si, 0, sizeof(si));
   1987 		si.si_signo = signum;
   1988 		si.si_code = SI_USER;
   1989 
   1990 		error = copyout(&si, SCARG(uap, info), sizeof(si));
   1991 		if (error)
   1992 			return (error);
   1993 	}
   1994 
   1995 	return (0);
   1996 }
   1997 
   1998 /*
   1999  * Returns true if signal is ignored or masked for passed process.
   2000  */
   2001 int
   2002 sigismasked(struct proc *p, int sig)
   2003 {
   2004 
   2005 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2006 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2007 }
   2008 
   2009 static int
   2010 filt_sigattach(struct knote *kn)
   2011 {
   2012 	struct proc *p = curproc;
   2013 
   2014 	kn->kn_ptr.p_proc = p;
   2015 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2016 
   2017 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2018 
   2019 	return (0);
   2020 }
   2021 
   2022 static void
   2023 filt_sigdetach(struct knote *kn)
   2024 {
   2025 	struct proc *p = kn->kn_ptr.p_proc;
   2026 
   2027 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2028 }
   2029 
   2030 /*
   2031  * signal knotes are shared with proc knotes, so we apply a mask to
   2032  * the hint in order to differentiate them from process hints.  This
   2033  * could be avoided by using a signal-specific knote list, but probably
   2034  * isn't worth the trouble.
   2035  */
   2036 static int
   2037 filt_signal(struct knote *kn, long hint)
   2038 {
   2039 
   2040 	if (hint & NOTE_SIGNAL) {
   2041 		hint &= ~NOTE_SIGNAL;
   2042 
   2043 		if (kn->kn_id == hint)
   2044 			kn->kn_data++;
   2045 	}
   2046 	return (kn->kn_data != 0);
   2047 }
   2048 
   2049 const struct filterops sig_filtops = {
   2050 	0, filt_sigattach, filt_sigdetach, filt_signal
   2051 };
   2052