Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.142
      1 /*	$NetBSD: kern_sig.c,v 1.142 2003/06/28 14:21:54 darrenr Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.142 2003/06/28 14:21:54 darrenr Exp $");
     45 
     46 #include "opt_ktrace.h"
     47 #include "opt_compat_sunos.h"
     48 #include "opt_compat_netbsd32.h"
     49 
     50 #define	SIGPROP		/* include signal properties table */
     51 #include <sys/param.h>
     52 #include <sys/signalvar.h>
     53 #include <sys/resourcevar.h>
     54 #include <sys/namei.h>
     55 #include <sys/vnode.h>
     56 #include <sys/proc.h>
     57 #include <sys/systm.h>
     58 #include <sys/timeb.h>
     59 #include <sys/times.h>
     60 #include <sys/buf.h>
     61 #include <sys/acct.h>
     62 #include <sys/file.h>
     63 #include <sys/kernel.h>
     64 #include <sys/wait.h>
     65 #include <sys/ktrace.h>
     66 #include <sys/syslog.h>
     67 #include <sys/stat.h>
     68 #include <sys/core.h>
     69 #include <sys/filedesc.h>
     70 #include <sys/malloc.h>
     71 #include <sys/pool.h>
     72 #include <sys/ucontext.h>
     73 #include <sys/sa.h>
     74 #include <sys/savar.h>
     75 #include <sys/exec.h>
     76 
     77 #include <sys/mount.h>
     78 #include <sys/syscallargs.h>
     79 
     80 #include <machine/cpu.h>
     81 
     82 #include <sys/user.h>		/* for coredump */
     83 
     84 #include <uvm/uvm_extern.h>
     85 
     86 static void	proc_stop(struct proc *p);
     87 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     88 sigset_t	contsigmask, stopsigmask, sigcantmask;
     89 
     90 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     91 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     92 
     93 /*
     94  * Can process p, with pcred pc, send the signal signum to process q?
     95  */
     96 #define	CANSIGNAL(p, pc, q, signum) \
     97 	((pc)->pc_ucred->cr_uid == 0 || \
     98 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
     99 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
    100 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
    101 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
    102 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
    103 
    104 /*
    105  * Initialize signal-related data structures.
    106  */
    107 void
    108 signal_init(void)
    109 {
    110 
    111 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    112 	    &pool_allocator_nointr);
    113 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    114 	    &pool_allocator_nointr);
    115 }
    116 
    117 /*
    118  * Create an initial sigctx structure, using the same signal state
    119  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    120  * copy it from parent.
    121  */
    122 void
    123 sigactsinit(struct proc *np, struct proc *pp, int share)
    124 {
    125 	struct sigacts *ps;
    126 
    127 	if (share) {
    128 		np->p_sigacts = pp->p_sigacts;
    129 		pp->p_sigacts->sa_refcnt++;
    130 	} else {
    131 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    132 		if (pp)
    133 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    134 		else
    135 			memset(ps, '\0', sizeof(struct sigacts));
    136 		ps->sa_refcnt = 1;
    137 		np->p_sigacts = ps;
    138 	}
    139 }
    140 
    141 /*
    142  * Make this process not share its sigctx, maintaining all
    143  * signal state.
    144  */
    145 void
    146 sigactsunshare(struct proc *p)
    147 {
    148 	struct sigacts *oldps;
    149 
    150 	if (p->p_sigacts->sa_refcnt == 1)
    151 		return;
    152 
    153 	oldps = p->p_sigacts;
    154 	sigactsinit(p, NULL, 0);
    155 
    156 	if (--oldps->sa_refcnt == 0)
    157 		pool_put(&sigacts_pool, oldps);
    158 }
    159 
    160 /*
    161  * Release a sigctx structure.
    162  */
    163 void
    164 sigactsfree(struct proc *p)
    165 {
    166 	struct sigacts *ps;
    167 
    168 	ps = p->p_sigacts;
    169 	if (--ps->sa_refcnt > 0)
    170 		return;
    171 
    172 	pool_put(&sigacts_pool, ps);
    173 }
    174 
    175 int
    176 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    177 	struct sigaction *osa, void *tramp, int vers)
    178 {
    179 	struct sigacts	*ps;
    180 	int		prop;
    181 
    182 	ps = p->p_sigacts;
    183 	if (signum <= 0 || signum >= NSIG)
    184 		return (EINVAL);
    185 
    186 	/*
    187 	 * Trampoline ABI version 0 is reserved for the legacy
    188 	 * kernel-provided on-stack trampoline.  Conversely, if
    189 	 * we are using a non-0 ABI version, we must have a
    190 	 * trampoline.
    191 	 */
    192 	if ((vers != 0 && tramp == NULL) ||
    193 	    (vers == 0 && tramp != NULL))
    194 		return (EINVAL);
    195 
    196 	if (osa)
    197 		*osa = SIGACTION_PS(ps, signum);
    198 
    199 	if (nsa) {
    200 		if (nsa->sa_flags & ~SA_ALLBITS)
    201 			return (EINVAL);
    202 
    203 		prop = sigprop[signum];
    204 		if (prop & SA_CANTMASK)
    205 			return (EINVAL);
    206 
    207 		(void) splsched();	/* XXXSMP */
    208 		SIGACTION_PS(ps, signum) = *nsa;
    209 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    210 		ps->sa_sigdesc[signum].sd_vers = vers;
    211 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    212 		if ((prop & SA_NORESET) != 0)
    213 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    214 		if (signum == SIGCHLD) {
    215 			if (nsa->sa_flags & SA_NOCLDSTOP)
    216 				p->p_flag |= P_NOCLDSTOP;
    217 			else
    218 				p->p_flag &= ~P_NOCLDSTOP;
    219 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    220 				/*
    221 				 * Paranoia: since SA_NOCLDWAIT is implemented
    222 				 * by reparenting the dying child to PID 1 (and
    223 				 * trust it to reap the zombie), PID 1 itself
    224 				 * is forbidden to set SA_NOCLDWAIT.
    225 				 */
    226 				if (p->p_pid == 1)
    227 					p->p_flag &= ~P_NOCLDWAIT;
    228 				else
    229 					p->p_flag |= P_NOCLDWAIT;
    230 			} else
    231 				p->p_flag &= ~P_NOCLDWAIT;
    232 		}
    233 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    234 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    235 		else
    236 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    237 		/*
    238 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    239 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    240 		 * to ignore. However, don't put SIGCONT in
    241 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    242 	 	 */
    243 		if (nsa->sa_handler == SIG_IGN ||
    244 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    245 						/* never to be seen again */
    246 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    247 			if (signum != SIGCONT) {
    248 						/* easier in psignal */
    249 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    250 			}
    251 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    252 		} else {
    253 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    254 			if (nsa->sa_handler == SIG_DFL)
    255 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    256 			else
    257 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    258 		}
    259 		(void) spl0();
    260 	}
    261 
    262 	return (0);
    263 }
    264 
    265 /* ARGSUSED */
    266 int
    267 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    268 {
    269 	struct sys___sigaction14_args /* {
    270 		syscallarg(int)				signum;
    271 		syscallarg(const struct sigaction *)	nsa;
    272 		syscallarg(struct sigaction *)		osa;
    273 	} */ *uap = v;
    274 	struct proc		*p;
    275 	struct sigaction	nsa, osa;
    276 	int			error;
    277 
    278 	if (SCARG(uap, nsa)) {
    279 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    280 		if (error)
    281 			return (error);
    282 	}
    283 	p = l->l_proc;
    284 	error = sigaction1(p, SCARG(uap, signum),
    285 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    286 	    NULL, 0);
    287 	if (error)
    288 		return (error);
    289 	if (SCARG(uap, osa)) {
    290 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    291 		if (error)
    292 			return (error);
    293 	}
    294 	return (0);
    295 }
    296 
    297 /* ARGSUSED */
    298 int
    299 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    300 {
    301 	struct sys___sigaction_sigtramp_args /* {
    302 		syscallarg(int)				signum;
    303 		syscallarg(const struct sigaction *)	nsa;
    304 		syscallarg(struct sigaction *)		osa;
    305 		syscallarg(void *)			tramp;
    306 		syscallarg(int)				vers;
    307 	} */ *uap = v;
    308 	struct proc *p = l->l_proc;
    309 	struct sigaction nsa, osa;
    310 	int error;
    311 
    312 	if (SCARG(uap, nsa)) {
    313 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    314 		if (error)
    315 			return (error);
    316 	}
    317 	error = sigaction1(p, SCARG(uap, signum),
    318 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    319 	    SCARG(uap, tramp), SCARG(uap, vers));
    320 	if (error)
    321 		return (error);
    322 	if (SCARG(uap, osa)) {
    323 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    324 		if (error)
    325 			return (error);
    326 	}
    327 	return (0);
    328 }
    329 
    330 /*
    331  * Initialize signal state for process 0;
    332  * set to ignore signals that are ignored by default and disable the signal
    333  * stack.
    334  */
    335 void
    336 siginit(struct proc *p)
    337 {
    338 	struct sigacts	*ps;
    339 	int		signum, prop;
    340 
    341 	ps = p->p_sigacts;
    342 	sigemptyset(&contsigmask);
    343 	sigemptyset(&stopsigmask);
    344 	sigemptyset(&sigcantmask);
    345 	for (signum = 1; signum < NSIG; signum++) {
    346 		prop = sigprop[signum];
    347 		if (prop & SA_CONT)
    348 			sigaddset(&contsigmask, signum);
    349 		if (prop & SA_STOP)
    350 			sigaddset(&stopsigmask, signum);
    351 		if (prop & SA_CANTMASK)
    352 			sigaddset(&sigcantmask, signum);
    353 		if (prop & SA_IGNORE && signum != SIGCONT)
    354 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    355 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    356 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    357 	}
    358 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    359 	p->p_sigctx.ps_sigwaited = 0;
    360 	p->p_flag &= ~P_NOCLDSTOP;
    361 
    362 	/*
    363 	 * Reset stack state to the user stack.
    364 	 */
    365 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    366 	p->p_sigctx.ps_sigstk.ss_size = 0;
    367 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    368 
    369 	/* One reference. */
    370 	ps->sa_refcnt = 1;
    371 }
    372 
    373 /*
    374  * Reset signals for an exec of the specified process.
    375  */
    376 void
    377 execsigs(struct proc *p)
    378 {
    379 	struct sigacts	*ps;
    380 	int		signum, prop;
    381 
    382 	sigactsunshare(p);
    383 
    384 	ps = p->p_sigacts;
    385 
    386 	/*
    387 	 * Reset caught signals.  Held signals remain held
    388 	 * through p_sigctx.ps_sigmask (unless they were caught,
    389 	 * and are now ignored by default).
    390 	 */
    391 	for (signum = 1; signum < NSIG; signum++) {
    392 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    393 			prop = sigprop[signum];
    394 			if (prop & SA_IGNORE) {
    395 				if ((prop & SA_CONT) == 0)
    396 					sigaddset(&p->p_sigctx.ps_sigignore,
    397 					    signum);
    398 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    399 			}
    400 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    401 		}
    402 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    403 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    404 	}
    405 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    406 	p->p_sigctx.ps_sigwaited = 0;
    407 	p->p_flag &= ~P_NOCLDSTOP;
    408 
    409 	/*
    410 	 * Reset stack state to the user stack.
    411 	 */
    412 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    413 	p->p_sigctx.ps_sigstk.ss_size = 0;
    414 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    415 }
    416 
    417 int
    418 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    419 {
    420 
    421 	if (oss)
    422 		*oss = p->p_sigctx.ps_sigmask;
    423 
    424 	if (nss) {
    425 		(void)splsched();	/* XXXSMP */
    426 		switch (how) {
    427 		case SIG_BLOCK:
    428 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    429 			break;
    430 		case SIG_UNBLOCK:
    431 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    432 			CHECKSIGS(p);
    433 			break;
    434 		case SIG_SETMASK:
    435 			p->p_sigctx.ps_sigmask = *nss;
    436 			CHECKSIGS(p);
    437 			break;
    438 		default:
    439 			(void)spl0();	/* XXXSMP */
    440 			return (EINVAL);
    441 		}
    442 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    443 		(void)spl0();		/* XXXSMP */
    444 	}
    445 
    446 	return (0);
    447 }
    448 
    449 /*
    450  * Manipulate signal mask.
    451  * Note that we receive new mask, not pointer,
    452  * and return old mask as return value;
    453  * the library stub does the rest.
    454  */
    455 int
    456 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    457 {
    458 	struct sys___sigprocmask14_args /* {
    459 		syscallarg(int)			how;
    460 		syscallarg(const sigset_t *)	set;
    461 		syscallarg(sigset_t *)		oset;
    462 	} */ *uap = v;
    463 	struct proc	*p;
    464 	sigset_t	nss, oss;
    465 	int		error;
    466 
    467 	if (SCARG(uap, set)) {
    468 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    469 		if (error)
    470 			return (error);
    471 	}
    472 	p = l->l_proc;
    473 	error = sigprocmask1(p, SCARG(uap, how),
    474 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    475 	if (error)
    476 		return (error);
    477 	if (SCARG(uap, oset)) {
    478 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    479 		if (error)
    480 			return (error);
    481 	}
    482 	return (0);
    483 }
    484 
    485 void
    486 sigpending1(struct proc *p, sigset_t *ss)
    487 {
    488 
    489 	*ss = p->p_sigctx.ps_siglist;
    490 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    491 }
    492 
    493 /* ARGSUSED */
    494 int
    495 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    496 {
    497 	struct sys___sigpending14_args /* {
    498 		syscallarg(sigset_t *)	set;
    499 	} */ *uap = v;
    500 	struct proc	*p;
    501 	sigset_t	ss;
    502 
    503 	p = l->l_proc;
    504 	sigpending1(p, &ss);
    505 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    506 }
    507 
    508 int
    509 sigsuspend1(struct proc *p, const sigset_t *ss)
    510 {
    511 	struct sigacts *ps;
    512 
    513 	ps = p->p_sigacts;
    514 	if (ss) {
    515 		/*
    516 		 * When returning from sigpause, we want
    517 		 * the old mask to be restored after the
    518 		 * signal handler has finished.  Thus, we
    519 		 * save it here and mark the sigctx structure
    520 		 * to indicate this.
    521 		 */
    522 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    523 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    524 		(void) splsched();	/* XXXSMP */
    525 		p->p_sigctx.ps_sigmask = *ss;
    526 		CHECKSIGS(p);
    527 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    528 		(void) spl0();		/* XXXSMP */
    529 	}
    530 
    531 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    532 		/* void */;
    533 	/* always return EINTR rather than ERESTART... */
    534 	return (EINTR);
    535 }
    536 
    537 /*
    538  * Suspend process until signal, providing mask to be set
    539  * in the meantime.  Note nonstandard calling convention:
    540  * libc stub passes mask, not pointer, to save a copyin.
    541  */
    542 /* ARGSUSED */
    543 int
    544 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    545 {
    546 	struct sys___sigsuspend14_args /* {
    547 		syscallarg(const sigset_t *)	set;
    548 	} */ *uap = v;
    549 	struct proc	*p;
    550 	sigset_t	ss;
    551 	int		error;
    552 
    553 	if (SCARG(uap, set)) {
    554 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    555 		if (error)
    556 			return (error);
    557 	}
    558 
    559 	p = l->l_proc;
    560 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    561 }
    562 
    563 int
    564 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    565 	struct sigaltstack *oss)
    566 {
    567 
    568 	if (oss)
    569 		*oss = p->p_sigctx.ps_sigstk;
    570 
    571 	if (nss) {
    572 		if (nss->ss_flags & ~SS_ALLBITS)
    573 			return (EINVAL);
    574 
    575 		if (nss->ss_flags & SS_DISABLE) {
    576 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    577 				return (EINVAL);
    578 		} else {
    579 			if (nss->ss_size < MINSIGSTKSZ)
    580 				return (ENOMEM);
    581 		}
    582 		p->p_sigctx.ps_sigstk = *nss;
    583 	}
    584 
    585 	return (0);
    586 }
    587 
    588 /* ARGSUSED */
    589 int
    590 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    591 {
    592 	struct sys___sigaltstack14_args /* {
    593 		syscallarg(const struct sigaltstack *)	nss;
    594 		syscallarg(struct sigaltstack *)	oss;
    595 	} */ *uap = v;
    596 	struct proc		*p;
    597 	struct sigaltstack	nss, oss;
    598 	int			error;
    599 
    600 	if (SCARG(uap, nss)) {
    601 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    602 		if (error)
    603 			return (error);
    604 	}
    605 	p = l->l_proc;
    606 	error = sigaltstack1(p,
    607 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    608 	if (error)
    609 		return (error);
    610 	if (SCARG(uap, oss)) {
    611 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    612 		if (error)
    613 			return (error);
    614 	}
    615 	return (0);
    616 }
    617 
    618 /* ARGSUSED */
    619 int
    620 sys_kill(struct lwp *l, void *v, register_t *retval)
    621 {
    622 	struct sys_kill_args /* {
    623 		syscallarg(int)	pid;
    624 		syscallarg(int)	signum;
    625 	} */ *uap = v;
    626 	struct proc	*cp, *p;
    627 	struct pcred	*pc;
    628 
    629 	cp = l->l_proc;
    630 	pc = cp->p_cred;
    631 	if ((u_int)SCARG(uap, signum) >= NSIG)
    632 		return (EINVAL);
    633 	if (SCARG(uap, pid) > 0) {
    634 		/* kill single process */
    635 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    636 			return (ESRCH);
    637 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    638 			return (EPERM);
    639 		if (SCARG(uap, signum))
    640 			psignal(p, SCARG(uap, signum));
    641 		return (0);
    642 	}
    643 	switch (SCARG(uap, pid)) {
    644 	case -1:		/* broadcast signal */
    645 		return (killpg1(cp, SCARG(uap, signum), 0, 1));
    646 	case 0:			/* signal own process group */
    647 		return (killpg1(cp, SCARG(uap, signum), 0, 0));
    648 	default:		/* negative explicit process group */
    649 		return (killpg1(cp, SCARG(uap, signum), -SCARG(uap, pid), 0));
    650 	}
    651 	/* NOTREACHED */
    652 }
    653 
    654 /*
    655  * Common code for kill process group/broadcast kill.
    656  * cp is calling process.
    657  */
    658 int
    659 killpg1(struct proc *cp, int signum, int pgid, int all)
    660 {
    661 	struct proc	*p;
    662 	struct pcred	*pc;
    663 	struct pgrp	*pgrp;
    664 	int		nfound;
    665 
    666 	pc = cp->p_cred;
    667 	nfound = 0;
    668 	if (all) {
    669 		/*
    670 		 * broadcast
    671 		 */
    672 		proclist_lock_read();
    673 		LIST_FOREACH(p, &allproc, p_list) {
    674 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    675 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    676 				continue;
    677 			nfound++;
    678 			if (signum)
    679 				psignal(p, signum);
    680 		}
    681 		proclist_unlock_read();
    682 	} else {
    683 		if (pgid == 0)
    684 			/*
    685 			 * zero pgid means send to my process group.
    686 			 */
    687 			pgrp = cp->p_pgrp;
    688 		else {
    689 			pgrp = pgfind(pgid);
    690 			if (pgrp == NULL)
    691 				return (ESRCH);
    692 		}
    693 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    694 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    695 			    !CANSIGNAL(cp, pc, p, signum))
    696 				continue;
    697 			nfound++;
    698 			if (signum && P_ZOMBIE(p) == 0)
    699 				psignal(p, signum);
    700 		}
    701 	}
    702 	return (nfound ? 0 : ESRCH);
    703 }
    704 
    705 /*
    706  * Send a signal to a process group.
    707  */
    708 void
    709 gsignal(int pgid, int signum)
    710 {
    711 	struct pgrp *pgrp;
    712 
    713 	if (pgid && (pgrp = pgfind(pgid)))
    714 		pgsignal(pgrp, signum, 0);
    715 }
    716 
    717 /*
    718  * Send a signal to a process group. If checktty is 1,
    719  * limit to members which have a controlling terminal.
    720  */
    721 void
    722 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
    723 {
    724 	struct proc *p;
    725 
    726 	if (pgrp)
    727 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    728 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    729 				psignal(p, signum);
    730 }
    731 
    732 /*
    733  * Send a signal caused by a trap to the current process.
    734  * If it will be caught immediately, deliver it with correct code.
    735  * Otherwise, post it normally.
    736  */
    737 void
    738 trapsignal(struct lwp *l, int signum, u_long code)
    739 {
    740 	struct proc	*p;
    741 	struct sigacts	*ps;
    742 
    743 	p = l->l_proc;
    744 	ps = p->p_sigacts;
    745 	if ((p->p_flag & P_TRACED) == 0 &&
    746 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    747 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    748 		p->p_stats->p_ru.ru_nsignals++;
    749 #ifdef KTRACE
    750 		if (KTRPOINT(p, KTR_PSIG))
    751 			ktrpsig(l, signum,
    752 			    SIGACTION_PS(ps, signum).sa_handler,
    753 			    &p->p_sigctx.ps_sigmask, code);
    754 #endif
    755 		psendsig(l, signum, &p->p_sigctx.ps_sigmask, code);
    756 		(void) splsched();	/* XXXSMP */
    757 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    758 		    &p->p_sigctx.ps_sigmask);
    759 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    760 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    761 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    762 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    763 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    764 		}
    765 		(void) spl0();		/* XXXSMP */
    766 	} else {
    767 		p->p_sigctx.ps_code = code;	/* XXX for core dump/debugger */
    768 		p->p_sigctx.ps_sig = signum;	/* XXX to verify code */
    769 		p->p_sigctx.ps_lwp = l->l_lid;
    770 		psignal(p, signum);
    771 	}
    772 }
    773 
    774 /*
    775  * Send the signal to the process.  If the signal has an action, the action
    776  * is usually performed by the target process rather than the caller; we add
    777  * the signal to the set of pending signals for the process.
    778  *
    779  * Exceptions:
    780  *   o When a stop signal is sent to a sleeping process that takes the
    781  *     default action, the process is stopped without awakening it.
    782  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    783  *     regardless of the signal action (eg, blocked or ignored).
    784  *
    785  * Other ignored signals are discarded immediately.
    786  *
    787  * XXXSMP: Invoked as psignal() or sched_psignal().
    788  */
    789 void
    790 psignal1(struct proc *p, int signum,
    791 	int dolock)		/* XXXSMP: works, but icky */
    792 {
    793 	struct lwp *l, *suspended;
    794 	int	s = 0, prop, allsusp;
    795 	sig_t	action;
    796 
    797 #ifdef DIAGNOSTIC
    798 	if (signum <= 0 || signum >= NSIG)
    799 		panic("psignal signal number");
    800 
    801 	/* XXXSMP: works, but icky */
    802 	if (dolock)
    803 		SCHED_ASSERT_UNLOCKED();
    804 	else
    805 		SCHED_ASSERT_LOCKED();
    806 #endif
    807 	/*
    808 	 * Notify any interested parties in the signal.
    809 	 */
    810 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
    811 
    812 	prop = sigprop[signum];
    813 
    814 	/*
    815 	 * If proc is traced, always give parent a chance.
    816 	 */
    817 	if (p->p_flag & P_TRACED)
    818 		action = SIG_DFL;
    819 	else {
    820 		/*
    821 		 * If the signal is being ignored,
    822 		 * then we forget about it immediately.
    823 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
    824 		 * and if it is set to SIG_IGN,
    825 		 * action will be SIG_DFL here.)
    826 		 */
    827 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
    828 			return;
    829 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
    830 			action = SIG_HOLD;
    831 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
    832 			action = SIG_CATCH;
    833 		else {
    834 			action = SIG_DFL;
    835 
    836 			if (prop & SA_KILL && p->p_nice > NZERO)
    837 				p->p_nice = NZERO;
    838 
    839 			/*
    840 			 * If sending a tty stop signal to a member of an
    841 			 * orphaned process group, discard the signal here if
    842 			 * the action is default; don't stop the process below
    843 			 * if sleeping, and don't clear any pending SIGCONT.
    844 			 */
    845 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
    846 				return;
    847 		}
    848 	}
    849 
    850 	if (prop & SA_CONT)
    851 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
    852 
    853 	if (prop & SA_STOP)
    854 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
    855 
    856 	sigaddset(&p->p_sigctx.ps_siglist, signum);
    857 
    858 	/* CHECKSIGS() is "inlined" here. */
    859 	p->p_sigctx.ps_sigcheck = 1;
    860 
    861 	/*
    862 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
    863 	 * please!), check if anything waits on it. If yes, clear the
    864 	 * pending signal from siglist set, save it to ps_sigwaited,
    865 	 * clear sigwait list, and wakeup any sigwaiters.
    866 	 * The signal won't be processed further here.
    867 	 */
    868 	if ((prop & SA_CANTMASK) == 0
    869 	    && p->p_sigctx.ps_sigwaited < 0
    870 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)) {
    871 		sigdelset(&p->p_sigctx.ps_siglist, signum);
    872 		p->p_sigctx.ps_sigwaited = signum;
    873 		sigemptyset(&p->p_sigctx.ps_sigwait);
    874 
    875 		if (dolock)
    876 			wakeup_one(&p->p_sigctx.ps_sigwait);
    877 		else
    878 			sched_wakeup(&p->p_sigctx.ps_sigwait);
    879 		return;
    880 	}
    881 
    882 	/*
    883 	 * Defer further processing for signals which are held,
    884 	 * except that stopped processes must be continued by SIGCONT.
    885 	 */
    886 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
    887 		return;
    888 	/* XXXSMP: works, but icky */
    889 	if (dolock)
    890 		SCHED_LOCK(s);
    891 
    892 	if (p->p_nrlwps > 0) {
    893 		/*
    894 		 * At least one LWP is running or on a run queue.
    895 		 * The signal will be noticed when one of them returns
    896 		 * to userspace.
    897 		 */
    898 		signotify(p);
    899 		/*
    900 		 * The signal will be noticed very soon.
    901 		 */
    902 		goto out;
    903 	} else {
    904 		/* Process is sleeping or stopped */
    905 		if (p->p_flag & P_SA) {
    906 			l = p->p_sa->sa_idle;
    907 		} else {
    908 			/*
    909 			 * Find out if any of the sleeps are interruptable,
    910 			 * and if all the live LWPs remaining are suspended.
    911 			 */
    912 			allsusp = 1;
    913 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    914 				if (l->l_stat == LSSLEEP &&
    915 				    l->l_flag & L_SINTR)
    916 					break;
    917 				if (l->l_stat == LSSUSPENDED)
    918 					suspended = l;
    919 				else if ((l->l_stat != LSZOMB) &&
    920 				         (l->l_stat != LSDEAD))
    921 					allsusp = 0;
    922 			}
    923 		}
    924 		if (p->p_stat == SACTIVE) {
    925 			/* All LWPs must be sleeping */
    926 			KDASSERT(((p->p_flag & P_SA) == 0) || (l != NULL));
    927 
    928 			if (l != NULL && (p->p_flag & P_TRACED))
    929 				goto run;
    930 
    931 			/*
    932 			 * If SIGCONT is default (or ignored) and process is
    933 			 * asleep, we are finished; the process should not
    934 			 * be awakened.
    935 			 */
    936 			if ((prop & SA_CONT) && action == SIG_DFL) {
    937 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    938 				goto out;
    939 			}
    940 
    941 			/*
    942 			 * When a sleeping process receives a stop
    943 			 * signal, process immediately if possible.
    944 			 */
    945 			if ((prop & SA_STOP) && action == SIG_DFL) {
    946 				/*
    947 				 * If a child holding parent blocked,
    948 				 * stopping could cause deadlock.
    949 				 */
    950 				if (p->p_flag & P_PPWAIT)
    951 					goto out;
    952 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    953 				p->p_xstat = signum;
    954 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
    955 					/*
    956 					 * XXXSMP: recursive call; don't lock
    957 					 * the second time around.
    958 					 */
    959 					sched_psignal(p->p_pptr, SIGCHLD);
    960 				}
    961 				proc_stop(p);	/* XXXSMP: recurse? */
    962 				goto out;
    963 			}
    964 
    965 			if (l == NULL) {
    966 				/*
    967 				 * Special case: SIGKILL of a process
    968 				 * which is entirely composed of
    969 				 * suspended LWPs should succeed. We
    970 				 * make this happen by unsuspending one of
    971 				 * them.
    972 				 */
    973 				if (allsusp && (signum == SIGKILL))
    974 					lwp_continue(suspended);
    975 				goto out;
    976 			}
    977 			/*
    978 			 * All other (caught or default) signals
    979 			 * cause the process to run.
    980 			 */
    981 			goto runfast;
    982 			/*NOTREACHED*/
    983 		} else if (p->p_stat == SSTOP) {
    984 			/* Process is stopped */
    985 			/*
    986 			 * If traced process is already stopped,
    987 			 * then no further action is necessary.
    988 			 */
    989 			if (p->p_flag & P_TRACED)
    990 				goto out;
    991 
    992 			/*
    993 			 * Kill signal always sets processes running,
    994 			 * if possible.
    995 			 */
    996 			if (signum == SIGKILL) {
    997 				l = proc_unstop(p);
    998 				if (l)
    999 					goto runfast;
   1000 				goto out;
   1001 			}
   1002 
   1003 			if (prop & SA_CONT) {
   1004 				/*
   1005 				 * If SIGCONT is default (or ignored),
   1006 				 * we continue the process but don't
   1007 				 * leave the signal in ps_siglist, as
   1008 				 * it has no further action.  If
   1009 				 * SIGCONT is held, we continue the
   1010 				 * process and leave the signal in
   1011 				 * ps_siglist.  If the process catches
   1012 				 * SIGCONT, let it handle the signal
   1013 				 * itself.  If it isn't waiting on an
   1014 				 * event, then it goes back to run
   1015 				 * state.  Otherwise, process goes
   1016 				 * back to sleep state.
   1017 				 */
   1018 				if (action == SIG_DFL)
   1019 					sigdelset(&p->p_sigctx.ps_siglist,
   1020 					signum);
   1021 				l = proc_unstop(p);
   1022 				if (l && (action == SIG_CATCH))
   1023 					goto runfast;
   1024 				goto out;
   1025 			}
   1026 
   1027 			if (prop & SA_STOP) {
   1028 				/*
   1029 				 * Already stopped, don't need to stop again.
   1030 				 * (If we did the shell could get confused.)
   1031 				 */
   1032 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1033 				goto out;
   1034 			}
   1035 
   1036 			/*
   1037 			 * If a lwp is sleeping interruptibly, then
   1038 			 * wake it up; it will run until the kernel
   1039 			 * boundary, where it will stop in issignal(),
   1040 			 * since p->p_stat is still SSTOP. When the
   1041 			 * process is continued, it will be made
   1042 			 * runnable and can look at the signal.
   1043 			 */
   1044 			if (l)
   1045 				goto run;
   1046 			goto out;
   1047 		} else {
   1048 			/* Else what? */
   1049 			panic("psignal: Invalid process state %d.",
   1050 				p->p_stat);
   1051 		}
   1052 	}
   1053 	/*NOTREACHED*/
   1054 
   1055  runfast:
   1056 	/*
   1057 	 * Raise priority to at least PUSER.
   1058 	 */
   1059 	if (l->l_priority > PUSER)
   1060 		l->l_priority = PUSER;
   1061  run:
   1062 	setrunnable(l);		/* XXXSMP: recurse? */
   1063  out:
   1064 	/* XXXSMP: works, but icky */
   1065 	if (dolock)
   1066 		SCHED_UNLOCK(s);
   1067 }
   1068 
   1069 void
   1070 psendsig(struct lwp *l, int sig, sigset_t *mask, u_long code)
   1071 {
   1072 	struct proc *p = l->l_proc;
   1073 	struct lwp *le, *li;
   1074 	siginfo_t *si;
   1075 
   1076 	if (p->p_flag & P_SA) {
   1077 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1078 		si->si_signo = sig;
   1079 		si->si_errno = 0;
   1080 		si->si_code = code;
   1081 		le = li = NULL;
   1082 		if (code)
   1083 			le = l;
   1084 		else
   1085 			li = l;
   1086 
   1087 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1088 			    sizeof(siginfo_t), si);
   1089 		return;
   1090 	}
   1091 
   1092 	(*p->p_emul->e_sendsig)(sig, mask, code);
   1093 }
   1094 
   1095 static __inline int firstsig(const sigset_t *);
   1096 
   1097 static __inline int
   1098 firstsig(const sigset_t *ss)
   1099 {
   1100 	int sig;
   1101 
   1102 	sig = ffs(ss->__bits[0]);
   1103 	if (sig != 0)
   1104 		return (sig);
   1105 #if NSIG > 33
   1106 	sig = ffs(ss->__bits[1]);
   1107 	if (sig != 0)
   1108 		return (sig + 32);
   1109 #endif
   1110 #if NSIG > 65
   1111 	sig = ffs(ss->__bits[2]);
   1112 	if (sig != 0)
   1113 		return (sig + 64);
   1114 #endif
   1115 #if NSIG > 97
   1116 	sig = ffs(ss->__bits[3]);
   1117 	if (sig != 0)
   1118 		return (sig + 96);
   1119 #endif
   1120 	return (0);
   1121 }
   1122 
   1123 /*
   1124  * If the current process has received a signal (should be caught or cause
   1125  * termination, should interrupt current syscall), return the signal number.
   1126  * Stop signals with default action are processed immediately, then cleared;
   1127  * they aren't returned.  This is checked after each entry to the system for
   1128  * a syscall or trap (though this can usually be done without calling issignal
   1129  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1130  * sequence is
   1131  *
   1132  *	while (signum = CURSIG(curlwp))
   1133  *		postsig(signum);
   1134  */
   1135 int
   1136 issignal(struct lwp *l)
   1137 {
   1138 	struct proc	*p = l->l_proc;
   1139 	int		s = 0, signum, prop;
   1140 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1141 	sigset_t	ss;
   1142 
   1143 	if (p->p_stat == SSTOP) {
   1144 		/*
   1145 		 * The process is stopped/stopping. Stop ourselves now that
   1146 		 * we're on the kernel/userspace boundary.
   1147 		 */
   1148 		if (dolock)
   1149 			SCHED_LOCK(s);
   1150 		l->l_stat = LSSTOP;
   1151 		p->p_nrlwps--;
   1152 		if (p->p_flag & P_TRACED)
   1153 			goto sigtraceswitch;
   1154 		else
   1155 			goto sigswitch;
   1156 	}
   1157 	for (;;) {
   1158 		sigpending1(p, &ss);
   1159 		if (p->p_flag & P_PPWAIT)
   1160 			sigminusset(&stopsigmask, &ss);
   1161 		signum = firstsig(&ss);
   1162 		if (signum == 0) {		 	/* no signal to send */
   1163 			p->p_sigctx.ps_sigcheck = 0;
   1164 			if (locked && dolock)
   1165 				SCHED_LOCK(s);
   1166 			return (0);
   1167 		}
   1168 							/* take the signal! */
   1169 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1170 
   1171 		/*
   1172 		 * We should see pending but ignored signals
   1173 		 * only if P_TRACED was on when they were posted.
   1174 		 */
   1175 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1176 		    (p->p_flag & P_TRACED) == 0)
   1177 			continue;
   1178 
   1179 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1180 			/*
   1181 			 * If traced, always stop, and stay
   1182 			 * stopped until released by the debugger.
   1183 			 */
   1184 			p->p_xstat = signum;
   1185 			if ((p->p_flag & P_FSTRACE) == 0)
   1186 				psignal1(p->p_pptr, SIGCHLD, dolock);
   1187 			if (dolock)
   1188 				SCHED_LOCK(s);
   1189 			proc_stop(p);
   1190 		sigtraceswitch:
   1191 			mi_switch(l, NULL);
   1192 			SCHED_ASSERT_UNLOCKED();
   1193 			if (dolock)
   1194 				splx(s);
   1195 			else
   1196 				dolock = 1;
   1197 
   1198 			/*
   1199 			 * If we are no longer being traced, or the parent
   1200 			 * didn't give us a signal, look for more signals.
   1201 			 */
   1202 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1203 				continue;
   1204 
   1205 			/*
   1206 			 * If the new signal is being masked, look for other
   1207 			 * signals.
   1208 			 */
   1209 			signum = p->p_xstat;
   1210 			p->p_xstat = 0;
   1211 			/*
   1212 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1213 			 * in setrunnable().
   1214 			 */
   1215 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1216 				continue;
   1217 							/* take the signal! */
   1218 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1219 		}
   1220 
   1221 		prop = sigprop[signum];
   1222 
   1223 		/*
   1224 		 * Decide whether the signal should be returned.
   1225 		 * Return the signal's number, or fall through
   1226 		 * to clear it from the pending mask.
   1227 		 */
   1228 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1229 
   1230 		case (long)SIG_DFL:
   1231 			/*
   1232 			 * Don't take default actions on system processes.
   1233 			 */
   1234 			if (p->p_pid <= 1) {
   1235 #ifdef DIAGNOSTIC
   1236 				/*
   1237 				 * Are you sure you want to ignore SIGSEGV
   1238 				 * in init? XXX
   1239 				 */
   1240 				printf("Process (pid %d) got signal %d\n",
   1241 				    p->p_pid, signum);
   1242 #endif
   1243 				break;		/* == ignore */
   1244 			}
   1245 			/*
   1246 			 * If there is a pending stop signal to process
   1247 			 * with default action, stop here,
   1248 			 * then clear the signal.  However,
   1249 			 * if process is member of an orphaned
   1250 			 * process group, ignore tty stop signals.
   1251 			 */
   1252 			if (prop & SA_STOP) {
   1253 				if (p->p_flag & P_TRACED ||
   1254 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1255 				    prop & SA_TTYSTOP))
   1256 					break;	/* == ignore */
   1257 				p->p_xstat = signum;
   1258 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1259 					psignal1(p->p_pptr, SIGCHLD, dolock);
   1260 				if (dolock)
   1261 					SCHED_LOCK(s);
   1262 				proc_stop(p);
   1263 			sigswitch:
   1264 				mi_switch(l, NULL);
   1265 				SCHED_ASSERT_UNLOCKED();
   1266 				if (dolock)
   1267 					splx(s);
   1268 				else
   1269 					dolock = 1;
   1270 				break;
   1271 			} else if (prop & SA_IGNORE) {
   1272 				/*
   1273 				 * Except for SIGCONT, shouldn't get here.
   1274 				 * Default action is to ignore; drop it.
   1275 				 */
   1276 				break;		/* == ignore */
   1277 			} else
   1278 				goto keep;
   1279 			/*NOTREACHED*/
   1280 
   1281 		case (long)SIG_IGN:
   1282 			/*
   1283 			 * Masking above should prevent us ever trying
   1284 			 * to take action on an ignored signal other
   1285 			 * than SIGCONT, unless process is traced.
   1286 			 */
   1287 #ifdef DEBUG_ISSIGNAL
   1288 			if ((prop & SA_CONT) == 0 &&
   1289 			    (p->p_flag & P_TRACED) == 0)
   1290 				printf("issignal\n");
   1291 #endif
   1292 			break;		/* == ignore */
   1293 
   1294 		default:
   1295 			/*
   1296 			 * This signal has an action, let
   1297 			 * postsig() process it.
   1298 			 */
   1299 			goto keep;
   1300 		}
   1301 	}
   1302 	/* NOTREACHED */
   1303 
   1304  keep:
   1305 						/* leave the signal for later */
   1306 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1307 	CHECKSIGS(p);
   1308 	if (locked && dolock)
   1309 		SCHED_LOCK(s);
   1310 	return (signum);
   1311 }
   1312 
   1313 /*
   1314  * Put the argument process into the stopped state and notify the parent
   1315  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1316  * on the run queue.
   1317  */
   1318 static void
   1319 proc_stop(struct proc *p)
   1320 {
   1321 	struct lwp *l;
   1322 
   1323 	SCHED_ASSERT_LOCKED();
   1324 
   1325 	/* XXX lock process LWP state */
   1326 	p->p_stat = SSTOP;
   1327 	p->p_flag &= ~P_WAITED;
   1328 
   1329 	/*
   1330 	 * Put as many LWP's as possible in stopped state.
   1331 	 * Sleeping ones will notice the stopped state as they try to
   1332 	 * return to userspace.
   1333 	 */
   1334 
   1335 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1336 		if (l->l_stat == LSONPROC) {
   1337 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1338 			 * is curlwp and hence is about to be mi_switched
   1339 			 * away; the only callers of proc_stop() are:
   1340 			 * - psignal
   1341 			 * - issignal()
   1342 			 * For the former, proc_stop() is only called when
   1343 			 * no processes are running, so we don't worry.
   1344 			 * For the latter, proc_stop() is called right
   1345 			 * before mi_switch().
   1346 			 */
   1347 			l->l_stat = LSSTOP;
   1348 			p->p_nrlwps--;
   1349 		} else if (l->l_stat == LSRUN) {
   1350 			/* Remove LWP from the run queue */
   1351 			remrunqueue(l);
   1352 			l->l_stat = LSSTOP;
   1353 			p->p_nrlwps--;
   1354 		} else if ((l->l_stat == LSSLEEP) ||
   1355 		    (l->l_stat == LSSUSPENDED) ||
   1356 		    (l->l_stat == LSZOMB) ||
   1357 		    (l->l_stat == LSDEAD)) {
   1358 			/*
   1359 			 * Don't do anything; let sleeping LWPs
   1360 			 * discover the stopped state of the process
   1361 			 * on their way out of the kernel; otherwise,
   1362 			 * things like NFS threads that sleep with
   1363 			 * locks will block the rest of the system
   1364 			 * from getting any work done.
   1365 			 *
   1366 			 * Suspended/dead/zombie LWPs aren't going
   1367 			 * anywhere, so we don't need to touch them.
   1368 			 */
   1369 		}
   1370 #ifdef DIAGNOSTIC
   1371 		else {
   1372 			panic("proc_stop: process %d lwp %d "
   1373 			      "in unstoppable state %d.\n",
   1374 			    p->p_pid, l->l_lid, l->l_stat);
   1375 		}
   1376 #endif
   1377 	}
   1378 	/* XXX unlock process LWP state */
   1379 
   1380 	sched_wakeup((caddr_t)p->p_pptr);
   1381 }
   1382 
   1383 /*
   1384  * Given a process in state SSTOP, set the state back to SACTIVE and
   1385  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1386  *
   1387  * If no LWPs ended up runnable (and therefore able to take a signal),
   1388  * return a LWP that is sleeping interruptably. The caller can wake
   1389  * that LWP up to take a signal.
   1390  */
   1391 struct lwp *
   1392 proc_unstop(struct proc *p)
   1393 {
   1394 	struct lwp *l, *lr = NULL;
   1395 	int cantake = 0;
   1396 
   1397 	SCHED_ASSERT_LOCKED();
   1398 
   1399 	/*
   1400 	 * Our caller wants to be informed if there are only sleeping
   1401 	 * and interruptable LWPs left after we have run so that it
   1402 	 * can invoke setrunnable() if required - return one of the
   1403 	 * interruptable LWPs if this is the case.
   1404 	 */
   1405 
   1406 	p->p_stat = SACTIVE;
   1407 	if (p->p_flag & P_SA) {
   1408 		/*
   1409 		 * Preferentially select the idle LWP as the interruptable
   1410 		 * LWP to return if it exists.
   1411 		 */
   1412 		lr = p->p_sa->sa_idle;
   1413 		if (lr != NULL)
   1414 			cantake = 1;
   1415 	}
   1416 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1417 		if (l->l_stat == LSRUN) {
   1418 			lr = NULL;
   1419 			cantake = 1;
   1420 		}
   1421 		if (l->l_stat != LSSTOP)
   1422 			continue;
   1423 
   1424 		if (l->l_wchan != NULL) {
   1425 			l->l_stat = LSSLEEP;
   1426 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1427 				lr = l;
   1428 				cantake = 1;
   1429 			}
   1430 		} else {
   1431 			setrunnable(l);
   1432 			lr = NULL;
   1433 			cantake = 1;
   1434 		}
   1435 	}
   1436 
   1437 	return lr;
   1438 }
   1439 
   1440 /*
   1441  * Take the action for the specified signal
   1442  * from the current set of pending signals.
   1443  */
   1444 void
   1445 postsig(int signum)
   1446 {
   1447 	struct lwp *l;
   1448 	struct proc	*p;
   1449 	struct sigacts	*ps;
   1450 	sig_t		action;
   1451 	u_long		code;
   1452 	sigset_t	*returnmask;
   1453 
   1454 	l = curlwp;
   1455 	p = l->l_proc;
   1456 	ps = p->p_sigacts;
   1457 #ifdef DIAGNOSTIC
   1458 	if (signum == 0)
   1459 		panic("postsig");
   1460 #endif
   1461 
   1462 	KERNEL_PROC_LOCK(l);
   1463 
   1464 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1465 	action = SIGACTION_PS(ps, signum).sa_handler;
   1466 #ifdef KTRACE
   1467 	if (KTRPOINT(p, KTR_PSIG))
   1468 		ktrpsig(l,
   1469 		    signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1470 		    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
   1471 #endif
   1472 	if (action == SIG_DFL) {
   1473 		/*
   1474 		 * Default action, where the default is to kill
   1475 		 * the process.  (Other cases were ignored above.)
   1476 		 */
   1477 		sigexit(l, signum);
   1478 		/* NOTREACHED */
   1479 	} else {
   1480 		/*
   1481 		 * If we get here, the signal must be caught.
   1482 		 */
   1483 #ifdef DIAGNOSTIC
   1484 		if (action == SIG_IGN ||
   1485 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1486 			panic("postsig action");
   1487 #endif
   1488 		/*
   1489 		 * Set the new mask value and also defer further
   1490 		 * occurrences of this signal.
   1491 		 *
   1492 		 * Special case: user has done a sigpause.  Here the
   1493 		 * current mask is not of interest, but rather the
   1494 		 * mask from before the sigpause is what we want
   1495 		 * restored after the signal processing is completed.
   1496 		 */
   1497 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1498 			returnmask = &p->p_sigctx.ps_oldmask;
   1499 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1500 		} else
   1501 			returnmask = &p->p_sigctx.ps_sigmask;
   1502 		p->p_stats->p_ru.ru_nsignals++;
   1503 		if (p->p_sigctx.ps_sig != signum) {
   1504 			code = 0;
   1505 		} else {
   1506 			code = p->p_sigctx.ps_code;
   1507 			p->p_sigctx.ps_code = 0;
   1508 			p->p_sigctx.ps_lwp = 0;
   1509 			p->p_sigctx.ps_sig = 0;
   1510 		}
   1511 		psendsig(l, signum, returnmask, code);
   1512 		(void) splsched();	/* XXXSMP */
   1513 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1514 		    &p->p_sigctx.ps_sigmask);
   1515 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1516 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1517 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1518 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1519 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1520 		}
   1521 		(void) spl0();		/* XXXSMP */
   1522 	}
   1523 
   1524 	KERNEL_PROC_UNLOCK(l);
   1525 }
   1526 
   1527 /*
   1528  * Kill the current process for stated reason.
   1529  */
   1530 void
   1531 killproc(struct proc *p, const char *why)
   1532 {
   1533 
   1534 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1535 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1536 	psignal(p, SIGKILL);
   1537 }
   1538 
   1539 /*
   1540  * Force the current process to exit with the specified signal, dumping core
   1541  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1542  * allowing unrecoverable failures to terminate the process without changing
   1543  * signal state.  Mark the accounting record with the signal termination.
   1544  * If dumping core, save the signal number for the debugger.  Calls exit and
   1545  * does not return.
   1546  */
   1547 
   1548 #if defined(DEBUG)
   1549 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1550 #else
   1551 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1552 #endif
   1553 
   1554 static	const char logcoredump[] =
   1555 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1556 static	const char lognocoredump[] =
   1557 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1558 
   1559 /* Wrapper function for use in p_userret */
   1560 static void
   1561 lwp_coredump_hook(struct lwp *l, void *arg)
   1562 {
   1563 	int s;
   1564 
   1565 	/*
   1566 	 * Suspend ourselves, so that the kernel stack and therefore
   1567 	 * the userland registers saved in the trapframe are around
   1568 	 * for coredump() to write them out.
   1569 	 */
   1570 	KERNEL_PROC_LOCK(l);
   1571 	l->l_flag &= ~L_DETACHED;
   1572 	SCHED_LOCK(s);
   1573 	l->l_stat = LSSUSPENDED;
   1574 	l->l_proc->p_nrlwps--;
   1575 	/* XXX NJWLWP check if this makes sense here: */
   1576 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1577 	mi_switch(l, NULL);
   1578 	SCHED_ASSERT_UNLOCKED();
   1579 	splx(s);
   1580 
   1581 	lwp_exit(l);
   1582 }
   1583 
   1584 void
   1585 sigexit(struct lwp *l, int signum)
   1586 {
   1587 	struct proc	*p;
   1588 	struct lwp	*l2;
   1589 	int		error, exitsig;
   1590 
   1591 	p = l->l_proc;
   1592 
   1593 	/*
   1594 	 * Don't permit coredump() or exit1() multiple times
   1595 	 * in the same process.
   1596 	 */
   1597 	if (p->p_flag & P_WEXIT) {
   1598 		KERNEL_PROC_UNLOCK(l);
   1599 		(*p->p_userret)(l, p->p_userret_arg);
   1600 	}
   1601 	p->p_flag |= P_WEXIT;
   1602 	/* We don't want to switch away from exiting. */
   1603 	/* XXX multiprocessor: stop LWPs on other processors. */
   1604 	if (p->p_flag & P_SA) {
   1605 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1606 		    l2->l_flag &= ~L_SA;
   1607 		p->p_flag &= ~P_SA;
   1608 	}
   1609 
   1610 	/* Make other LWPs stick around long enough to be dumped */
   1611 	p->p_userret = lwp_coredump_hook;
   1612 	p->p_userret_arg = NULL;
   1613 
   1614 	exitsig = signum;
   1615 	p->p_acflag |= AXSIG;
   1616 	if (sigprop[signum] & SA_CORE) {
   1617 		p->p_sigctx.ps_sig = signum;
   1618 		if ((error = coredump(l)) == 0)
   1619 			exitsig |= WCOREFLAG;
   1620 
   1621 		if (kern_logsigexit) {
   1622 			/* XXX What if we ever have really large UIDs? */
   1623 			int uid = p->p_cred && p->p_ucred ?
   1624 				(int) p->p_ucred->cr_uid : -1;
   1625 
   1626 			if (error)
   1627 				log(LOG_INFO, lognocoredump, p->p_pid,
   1628 				    p->p_comm, uid, signum, error);
   1629 			else
   1630 				log(LOG_INFO, logcoredump, p->p_pid,
   1631 				    p->p_comm, uid, signum);
   1632 		}
   1633 
   1634 	}
   1635 
   1636 	exit1(l, W_EXITCODE(0, exitsig));
   1637 	/* NOTREACHED */
   1638 }
   1639 
   1640 /*
   1641  * Dump core, into a file named "progname.core" or "core" (depending on the
   1642  * value of shortcorename), unless the process was setuid/setgid.
   1643  */
   1644 int
   1645 coredump(struct lwp *l)
   1646 {
   1647 	struct vnode		*vp;
   1648 	struct proc		*p;
   1649 	struct vmspace		*vm;
   1650 	struct ucred		*cred;
   1651 	struct nameidata	nd;
   1652 	struct vattr		vattr;
   1653 	int			error, error1;
   1654 	char			name[MAXPATHLEN];
   1655 
   1656 	p = l->l_proc;
   1657 	vm = p->p_vmspace;
   1658 	cred = p->p_cred->pc_ucred;
   1659 
   1660 	/*
   1661 	 * Make sure the process has not set-id, to prevent data leaks.
   1662 	 */
   1663 	if (p->p_flag & P_SUGID)
   1664 		return (EPERM);
   1665 
   1666 	/*
   1667 	 * Refuse to core if the data + stack + user size is larger than
   1668 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   1669 	 * data.
   1670 	 */
   1671 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   1672 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   1673 		return (EFBIG);		/* better error code? */
   1674 
   1675 	/*
   1676 	 * The core dump will go in the current working directory.  Make
   1677 	 * sure that the directory is still there and that the mount flags
   1678 	 * allow us to write core dumps there.
   1679 	 */
   1680 	vp = p->p_cwdi->cwdi_cdir;
   1681 	if (vp->v_mount == NULL ||
   1682 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   1683 		return (EPERM);
   1684 
   1685 	error = build_corename(p, name);
   1686 	if (error)
   1687 		return error;
   1688 
   1689 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
   1690 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   1691 	if (error)
   1692 		return (error);
   1693 	vp = nd.ni_vp;
   1694 
   1695 	/* Don't dump to non-regular files or files with links. */
   1696 	if (vp->v_type != VREG ||
   1697 	    VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
   1698 		error = EINVAL;
   1699 		goto out;
   1700 	}
   1701 	VATTR_NULL(&vattr);
   1702 	vattr.va_size = 0;
   1703 	VOP_LEASE(vp, l, cred, LEASE_WRITE);
   1704 	VOP_SETATTR(vp, &vattr, cred, l);
   1705 	p->p_acflag |= ACORE;
   1706 
   1707 	/* Now dump the actual core file. */
   1708 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   1709  out:
   1710 	VOP_UNLOCK(vp, 0);
   1711 	error1 = vn_close(vp, FWRITE, cred, l);
   1712 	if (error == 0)
   1713 		error = error1;
   1714 	return (error);
   1715 }
   1716 
   1717 /*
   1718  * Nonexistent system call-- signal process (may want to handle it).
   1719  * Flag error in case process won't see signal immediately (blocked or ignored).
   1720  */
   1721 /* ARGSUSED */
   1722 int
   1723 sys_nosys(struct lwp *l, void *v, register_t *retval)
   1724 {
   1725 	struct proc 	*p;
   1726 
   1727 	p = l->l_proc;
   1728 	psignal(p, SIGSYS);
   1729 	return (ENOSYS);
   1730 }
   1731 
   1732 static int
   1733 build_corename(struct proc *p, char dst[MAXPATHLEN])
   1734 {
   1735 	const char	*s;
   1736 	char		*d, *end;
   1737 	int		i;
   1738 
   1739 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   1740 	    *s != '\0'; s++) {
   1741 		if (*s == '%') {
   1742 			switch (*(s + 1)) {
   1743 			case 'n':
   1744 				i = snprintf(d, end - d, "%s", p->p_comm);
   1745 				break;
   1746 			case 'p':
   1747 				i = snprintf(d, end - d, "%d", p->p_pid);
   1748 				break;
   1749 			case 'u':
   1750 				i = snprintf(d, end - d, "%.*s",
   1751 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   1752 				    p->p_pgrp->pg_session->s_login);
   1753 				break;
   1754 			case 't':
   1755 				i = snprintf(d, end - d, "%ld",
   1756 				    p->p_stats->p_start.tv_sec);
   1757 				break;
   1758 			default:
   1759 				goto copy;
   1760 			}
   1761 			d += i;
   1762 			s++;
   1763 		} else {
   1764  copy:			*d = *s;
   1765 			d++;
   1766 		}
   1767 		if (d >= end)
   1768 			return (ENAMETOOLONG);
   1769 	}
   1770 	*d = '\0';
   1771 	return 0;
   1772 }
   1773 
   1774 void
   1775 getucontext(struct lwp *l, ucontext_t *ucp)
   1776 {
   1777 	struct proc	*p;
   1778 
   1779 	p = l->l_proc;
   1780 
   1781 	ucp->uc_flags = 0;
   1782 	ucp->uc_link = l->l_ctxlink;
   1783 
   1784 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   1785 	ucp->uc_flags |= _UC_SIGMASK;
   1786 
   1787 	/*
   1788 	 * The (unsupplied) definition of the `current execution stack'
   1789 	 * in the System V Interface Definition appears to allow returning
   1790 	 * the main context stack.
   1791 	 */
   1792 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   1793 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   1794 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   1795 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   1796 	} else {
   1797 		/* Simply copy alternate signal execution stack. */
   1798 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   1799 	}
   1800 	ucp->uc_flags |= _UC_STACK;
   1801 
   1802 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   1803 }
   1804 
   1805 /* ARGSUSED */
   1806 int
   1807 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   1808 {
   1809 	struct sys_getcontext_args /* {
   1810 		syscallarg(struct __ucontext *) ucp;
   1811 	} */ *uap = v;
   1812 	ucontext_t uc;
   1813 
   1814 	getucontext(l, &uc);
   1815 
   1816 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   1817 }
   1818 
   1819 int
   1820 setucontext(struct lwp *l, const ucontext_t *ucp)
   1821 {
   1822 	struct proc	*p;
   1823 	int		error;
   1824 
   1825 	p = l->l_proc;
   1826 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   1827 		return (error);
   1828 	l->l_ctxlink = ucp->uc_link;
   1829 	/*
   1830 	 * We might want to take care of the stack portion here but currently
   1831 	 * don't; see the comment in getucontext().
   1832 	 */
   1833 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   1834 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   1835 
   1836 	return 0;
   1837 }
   1838 
   1839 /* ARGSUSED */
   1840 int
   1841 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   1842 {
   1843 	struct sys_setcontext_args /* {
   1844 		syscallarg(const ucontext_t *) ucp;
   1845 	} */ *uap = v;
   1846 	ucontext_t uc;
   1847 	int error;
   1848 
   1849 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   1850 		exit1(l, W_EXITCODE(0, 0));
   1851 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   1852 	    (error = setucontext(l, &uc)) != 0)
   1853 		return (error);
   1854 
   1855 	return (EJUSTRETURN);
   1856 }
   1857 
   1858 /*
   1859  * sigtimedwait(2) system call, used also for implementation
   1860  * of sigwaitinfo() and sigwait().
   1861  *
   1862  * This only handles single LWP in signal wait. libpthread provides
   1863  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   1864  *
   1865  * XXX no support for queued signals, si_code is always SI_USER.
   1866  */
   1867 int
   1868 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   1869 {
   1870 	struct sys___sigtimedwait_args /* {
   1871 		syscallarg(const sigset_t *) set;
   1872 		syscallarg(siginfo_t *) info;
   1873 		syscallarg(struct timespec *) timeout;
   1874 	} */ *uap = v;
   1875 	sigset_t waitset, twaitset;
   1876 	struct proc *p = l->l_proc;
   1877 	int error, signum, s;
   1878 	int timo = 0;
   1879 	struct timeval tvstart;
   1880 	struct timespec ts;
   1881 
   1882 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
   1883 		return (error);
   1884 
   1885 	/*
   1886 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   1887 	 * ignore SA_CANTMASK signals in waitset, we do this
   1888 	 * only for the below siglist check.
   1889 	 */
   1890 	sigminusset(&sigcantmask, &waitset);
   1891 
   1892 	/*
   1893 	 * First scan siglist and check if there is signal from
   1894 	 * our waitset already pending.
   1895 	 */
   1896 	twaitset = waitset;
   1897 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   1898 	if ((signum = firstsig(&twaitset))) {
   1899 		/* found pending signal */
   1900 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1901 		goto sig;
   1902 	}
   1903 
   1904 	/*
   1905 	 * Calculate timeout, if it was specified.
   1906 	 */
   1907 	if (SCARG(uap, timeout)) {
   1908 		uint64_t ms;
   1909 
   1910 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   1911 			return (error);
   1912 
   1913 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   1914 		timo = mstohz(ms);
   1915 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   1916 			timo = 1;
   1917 		if (timo <= 0)
   1918 			return (EAGAIN);
   1919 
   1920 		/*
   1921 		 * Remember current mono_time, it would be used in
   1922 		 * ECANCELED/ERESTART case.
   1923 		 */
   1924 		s = splclock();
   1925 		tvstart = mono_time;
   1926 		splx(s);
   1927 	}
   1928 
   1929 	/*
   1930 	 * Setup ps_sigwait list.
   1931 	 */
   1932 	p->p_sigctx.ps_sigwaited = -1;
   1933 	p->p_sigctx.ps_sigwait = waitset;
   1934 
   1935 	/*
   1936 	 * Wait for signal to arrive. We can either be woken up or
   1937 	 * time out.
   1938 	 */
   1939 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   1940 
   1941 	/*
   1942 	 * Check if a signal from our wait set has arrived, or if it
   1943 	 * was mere wakeup.
   1944 	 */
   1945 	if (!error) {
   1946 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
   1947 			/* wakeup via _lwp_wakeup() */
   1948 			error = ECANCELED;
   1949 		}
   1950 	}
   1951 
   1952 	/*
   1953 	 * On error, clear sigwait indication. psignal1() sets it
   1954 	 * in !error case.
   1955 	 */
   1956 	if (error) {
   1957 		p->p_sigctx.ps_sigwaited = 0;
   1958 
   1959 		/*
   1960 		 * If the sleep was interrupted (either by signal or wakeup),
   1961 		 * update the timeout and copyout new value back.
   1962 		 * It would be used when the syscall would be restarted
   1963 		 * or called again.
   1964 		 */
   1965 		if (timo && (error == ERESTART || error == ECANCELED)) {
   1966 			struct timeval tvnow, tvtimo;
   1967 			int err;
   1968 
   1969 			s = splclock();
   1970 			tvnow = mono_time;
   1971 			splx(s);
   1972 
   1973 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   1974 
   1975 			/* compute how much time has passed since start */
   1976 			timersub(&tvnow, &tvstart, &tvnow);
   1977 			/* substract passed time from timeout */
   1978 			timersub(&tvtimo, &tvnow, &tvtimo);
   1979 
   1980 			if (tvtimo.tv_sec < 0)
   1981 				return (EAGAIN);
   1982 
   1983 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   1984 
   1985 			/* copy updated timeout to userland */
   1986 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
   1987 				return (err);
   1988 		}
   1989 
   1990 		return (error);
   1991 	}
   1992 
   1993 	/*
   1994 	 * If a signal from the wait set arrived, copy it to userland.
   1995 	 * XXX no queued signals for now
   1996 	 */
   1997 	if (signum > 0) {
   1998 		siginfo_t si;
   1999 
   2000  sig:
   2001 		memset(&si, 0, sizeof(si));
   2002 		si.si_signo = signum;
   2003 		si.si_code = SI_USER;
   2004 
   2005 		error = copyout(&si, SCARG(uap, info), sizeof(si));
   2006 		if (error)
   2007 			return (error);
   2008 	}
   2009 
   2010 	return (0);
   2011 }
   2012 
   2013 /*
   2014  * Returns true if signal is ignored or masked for passed process.
   2015  */
   2016 int
   2017 sigismasked(struct proc *p, int sig)
   2018 {
   2019 
   2020 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2021 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2022 }
   2023 
   2024 static int
   2025 filt_sigattach(struct knote *kn)
   2026 {
   2027 	struct proc *p = curproc;
   2028 
   2029 	kn->kn_ptr.p_proc = p;
   2030 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2031 
   2032 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2033 
   2034 	return (0);
   2035 }
   2036 
   2037 static void
   2038 filt_sigdetach(struct knote *kn)
   2039 {
   2040 	struct proc *p = kn->kn_ptr.p_proc;
   2041 
   2042 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2043 }
   2044 
   2045 /*
   2046  * signal knotes are shared with proc knotes, so we apply a mask to
   2047  * the hint in order to differentiate them from process hints.  This
   2048  * could be avoided by using a signal-specific knote list, but probably
   2049  * isn't worth the trouble.
   2050  */
   2051 static int
   2052 filt_signal(struct knote *kn, long hint)
   2053 {
   2054 
   2055 	if (hint & NOTE_SIGNAL) {
   2056 		hint &= ~NOTE_SIGNAL;
   2057 
   2058 		if (kn->kn_id == hint)
   2059 			kn->kn_data++;
   2060 	}
   2061 	return (kn->kn_data != 0);
   2062 }
   2063 
   2064 const struct filterops sig_filtops = {
   2065 	0, filt_sigattach, filt_sigdetach, filt_signal
   2066 };
   2067