kern_sig.c revision 1.142 1 /* $NetBSD: kern_sig.c,v 1.142 2003/06/28 14:21:54 darrenr Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.142 2003/06/28 14:21:54 darrenr Exp $");
45
46 #include "opt_ktrace.h"
47 #include "opt_compat_sunos.h"
48 #include "opt_compat_netbsd32.h"
49
50 #define SIGPROP /* include signal properties table */
51 #include <sys/param.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/namei.h>
55 #include <sys/vnode.h>
56 #include <sys/proc.h>
57 #include <sys/systm.h>
58 #include <sys/timeb.h>
59 #include <sys/times.h>
60 #include <sys/buf.h>
61 #include <sys/acct.h>
62 #include <sys/file.h>
63 #include <sys/kernel.h>
64 #include <sys/wait.h>
65 #include <sys/ktrace.h>
66 #include <sys/syslog.h>
67 #include <sys/stat.h>
68 #include <sys/core.h>
69 #include <sys/filedesc.h>
70 #include <sys/malloc.h>
71 #include <sys/pool.h>
72 #include <sys/ucontext.h>
73 #include <sys/sa.h>
74 #include <sys/savar.h>
75 #include <sys/exec.h>
76
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79
80 #include <machine/cpu.h>
81
82 #include <sys/user.h> /* for coredump */
83
84 #include <uvm/uvm_extern.h>
85
86 static void proc_stop(struct proc *p);
87 static int build_corename(struct proc *, char [MAXPATHLEN]);
88 sigset_t contsigmask, stopsigmask, sigcantmask;
89
90 struct pool sigacts_pool; /* memory pool for sigacts structures */
91 struct pool siginfo_pool; /* memory pool for siginfo structures */
92
93 /*
94 * Can process p, with pcred pc, send the signal signum to process q?
95 */
96 #define CANSIGNAL(p, pc, q, signum) \
97 ((pc)->pc_ucred->cr_uid == 0 || \
98 (pc)->p_ruid == (q)->p_cred->p_ruid || \
99 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
100 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
101 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
102 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
103
104 /*
105 * Initialize signal-related data structures.
106 */
107 void
108 signal_init(void)
109 {
110
111 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
112 &pool_allocator_nointr);
113 pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
114 &pool_allocator_nointr);
115 }
116
117 /*
118 * Create an initial sigctx structure, using the same signal state
119 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
120 * copy it from parent.
121 */
122 void
123 sigactsinit(struct proc *np, struct proc *pp, int share)
124 {
125 struct sigacts *ps;
126
127 if (share) {
128 np->p_sigacts = pp->p_sigacts;
129 pp->p_sigacts->sa_refcnt++;
130 } else {
131 ps = pool_get(&sigacts_pool, PR_WAITOK);
132 if (pp)
133 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
134 else
135 memset(ps, '\0', sizeof(struct sigacts));
136 ps->sa_refcnt = 1;
137 np->p_sigacts = ps;
138 }
139 }
140
141 /*
142 * Make this process not share its sigctx, maintaining all
143 * signal state.
144 */
145 void
146 sigactsunshare(struct proc *p)
147 {
148 struct sigacts *oldps;
149
150 if (p->p_sigacts->sa_refcnt == 1)
151 return;
152
153 oldps = p->p_sigacts;
154 sigactsinit(p, NULL, 0);
155
156 if (--oldps->sa_refcnt == 0)
157 pool_put(&sigacts_pool, oldps);
158 }
159
160 /*
161 * Release a sigctx structure.
162 */
163 void
164 sigactsfree(struct proc *p)
165 {
166 struct sigacts *ps;
167
168 ps = p->p_sigacts;
169 if (--ps->sa_refcnt > 0)
170 return;
171
172 pool_put(&sigacts_pool, ps);
173 }
174
175 int
176 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
177 struct sigaction *osa, void *tramp, int vers)
178 {
179 struct sigacts *ps;
180 int prop;
181
182 ps = p->p_sigacts;
183 if (signum <= 0 || signum >= NSIG)
184 return (EINVAL);
185
186 /*
187 * Trampoline ABI version 0 is reserved for the legacy
188 * kernel-provided on-stack trampoline. Conversely, if
189 * we are using a non-0 ABI version, we must have a
190 * trampoline.
191 */
192 if ((vers != 0 && tramp == NULL) ||
193 (vers == 0 && tramp != NULL))
194 return (EINVAL);
195
196 if (osa)
197 *osa = SIGACTION_PS(ps, signum);
198
199 if (nsa) {
200 if (nsa->sa_flags & ~SA_ALLBITS)
201 return (EINVAL);
202
203 prop = sigprop[signum];
204 if (prop & SA_CANTMASK)
205 return (EINVAL);
206
207 (void) splsched(); /* XXXSMP */
208 SIGACTION_PS(ps, signum) = *nsa;
209 ps->sa_sigdesc[signum].sd_tramp = tramp;
210 ps->sa_sigdesc[signum].sd_vers = vers;
211 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
212 if ((prop & SA_NORESET) != 0)
213 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
214 if (signum == SIGCHLD) {
215 if (nsa->sa_flags & SA_NOCLDSTOP)
216 p->p_flag |= P_NOCLDSTOP;
217 else
218 p->p_flag &= ~P_NOCLDSTOP;
219 if (nsa->sa_flags & SA_NOCLDWAIT) {
220 /*
221 * Paranoia: since SA_NOCLDWAIT is implemented
222 * by reparenting the dying child to PID 1 (and
223 * trust it to reap the zombie), PID 1 itself
224 * is forbidden to set SA_NOCLDWAIT.
225 */
226 if (p->p_pid == 1)
227 p->p_flag &= ~P_NOCLDWAIT;
228 else
229 p->p_flag |= P_NOCLDWAIT;
230 } else
231 p->p_flag &= ~P_NOCLDWAIT;
232 }
233 if ((nsa->sa_flags & SA_NODEFER) == 0)
234 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
235 else
236 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
237 /*
238 * Set bit in p_sigctx.ps_sigignore for signals that are set to
239 * SIG_IGN, and for signals set to SIG_DFL where the default is
240 * to ignore. However, don't put SIGCONT in
241 * p_sigctx.ps_sigignore, as we have to restart the process.
242 */
243 if (nsa->sa_handler == SIG_IGN ||
244 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
245 /* never to be seen again */
246 sigdelset(&p->p_sigctx.ps_siglist, signum);
247 if (signum != SIGCONT) {
248 /* easier in psignal */
249 sigaddset(&p->p_sigctx.ps_sigignore, signum);
250 }
251 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
252 } else {
253 sigdelset(&p->p_sigctx.ps_sigignore, signum);
254 if (nsa->sa_handler == SIG_DFL)
255 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
256 else
257 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
258 }
259 (void) spl0();
260 }
261
262 return (0);
263 }
264
265 /* ARGSUSED */
266 int
267 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
268 {
269 struct sys___sigaction14_args /* {
270 syscallarg(int) signum;
271 syscallarg(const struct sigaction *) nsa;
272 syscallarg(struct sigaction *) osa;
273 } */ *uap = v;
274 struct proc *p;
275 struct sigaction nsa, osa;
276 int error;
277
278 if (SCARG(uap, nsa)) {
279 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
280 if (error)
281 return (error);
282 }
283 p = l->l_proc;
284 error = sigaction1(p, SCARG(uap, signum),
285 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
286 NULL, 0);
287 if (error)
288 return (error);
289 if (SCARG(uap, osa)) {
290 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
291 if (error)
292 return (error);
293 }
294 return (0);
295 }
296
297 /* ARGSUSED */
298 int
299 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
300 {
301 struct sys___sigaction_sigtramp_args /* {
302 syscallarg(int) signum;
303 syscallarg(const struct sigaction *) nsa;
304 syscallarg(struct sigaction *) osa;
305 syscallarg(void *) tramp;
306 syscallarg(int) vers;
307 } */ *uap = v;
308 struct proc *p = l->l_proc;
309 struct sigaction nsa, osa;
310 int error;
311
312 if (SCARG(uap, nsa)) {
313 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
314 if (error)
315 return (error);
316 }
317 error = sigaction1(p, SCARG(uap, signum),
318 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
319 SCARG(uap, tramp), SCARG(uap, vers));
320 if (error)
321 return (error);
322 if (SCARG(uap, osa)) {
323 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
324 if (error)
325 return (error);
326 }
327 return (0);
328 }
329
330 /*
331 * Initialize signal state for process 0;
332 * set to ignore signals that are ignored by default and disable the signal
333 * stack.
334 */
335 void
336 siginit(struct proc *p)
337 {
338 struct sigacts *ps;
339 int signum, prop;
340
341 ps = p->p_sigacts;
342 sigemptyset(&contsigmask);
343 sigemptyset(&stopsigmask);
344 sigemptyset(&sigcantmask);
345 for (signum = 1; signum < NSIG; signum++) {
346 prop = sigprop[signum];
347 if (prop & SA_CONT)
348 sigaddset(&contsigmask, signum);
349 if (prop & SA_STOP)
350 sigaddset(&stopsigmask, signum);
351 if (prop & SA_CANTMASK)
352 sigaddset(&sigcantmask, signum);
353 if (prop & SA_IGNORE && signum != SIGCONT)
354 sigaddset(&p->p_sigctx.ps_sigignore, signum);
355 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
356 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
357 }
358 sigemptyset(&p->p_sigctx.ps_sigcatch);
359 p->p_sigctx.ps_sigwaited = 0;
360 p->p_flag &= ~P_NOCLDSTOP;
361
362 /*
363 * Reset stack state to the user stack.
364 */
365 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
366 p->p_sigctx.ps_sigstk.ss_size = 0;
367 p->p_sigctx.ps_sigstk.ss_sp = 0;
368
369 /* One reference. */
370 ps->sa_refcnt = 1;
371 }
372
373 /*
374 * Reset signals for an exec of the specified process.
375 */
376 void
377 execsigs(struct proc *p)
378 {
379 struct sigacts *ps;
380 int signum, prop;
381
382 sigactsunshare(p);
383
384 ps = p->p_sigacts;
385
386 /*
387 * Reset caught signals. Held signals remain held
388 * through p_sigctx.ps_sigmask (unless they were caught,
389 * and are now ignored by default).
390 */
391 for (signum = 1; signum < NSIG; signum++) {
392 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
393 prop = sigprop[signum];
394 if (prop & SA_IGNORE) {
395 if ((prop & SA_CONT) == 0)
396 sigaddset(&p->p_sigctx.ps_sigignore,
397 signum);
398 sigdelset(&p->p_sigctx.ps_siglist, signum);
399 }
400 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
401 }
402 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
403 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
404 }
405 sigemptyset(&p->p_sigctx.ps_sigcatch);
406 p->p_sigctx.ps_sigwaited = 0;
407 p->p_flag &= ~P_NOCLDSTOP;
408
409 /*
410 * Reset stack state to the user stack.
411 */
412 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
413 p->p_sigctx.ps_sigstk.ss_size = 0;
414 p->p_sigctx.ps_sigstk.ss_sp = 0;
415 }
416
417 int
418 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
419 {
420
421 if (oss)
422 *oss = p->p_sigctx.ps_sigmask;
423
424 if (nss) {
425 (void)splsched(); /* XXXSMP */
426 switch (how) {
427 case SIG_BLOCK:
428 sigplusset(nss, &p->p_sigctx.ps_sigmask);
429 break;
430 case SIG_UNBLOCK:
431 sigminusset(nss, &p->p_sigctx.ps_sigmask);
432 CHECKSIGS(p);
433 break;
434 case SIG_SETMASK:
435 p->p_sigctx.ps_sigmask = *nss;
436 CHECKSIGS(p);
437 break;
438 default:
439 (void)spl0(); /* XXXSMP */
440 return (EINVAL);
441 }
442 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
443 (void)spl0(); /* XXXSMP */
444 }
445
446 return (0);
447 }
448
449 /*
450 * Manipulate signal mask.
451 * Note that we receive new mask, not pointer,
452 * and return old mask as return value;
453 * the library stub does the rest.
454 */
455 int
456 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
457 {
458 struct sys___sigprocmask14_args /* {
459 syscallarg(int) how;
460 syscallarg(const sigset_t *) set;
461 syscallarg(sigset_t *) oset;
462 } */ *uap = v;
463 struct proc *p;
464 sigset_t nss, oss;
465 int error;
466
467 if (SCARG(uap, set)) {
468 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
469 if (error)
470 return (error);
471 }
472 p = l->l_proc;
473 error = sigprocmask1(p, SCARG(uap, how),
474 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
475 if (error)
476 return (error);
477 if (SCARG(uap, oset)) {
478 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
479 if (error)
480 return (error);
481 }
482 return (0);
483 }
484
485 void
486 sigpending1(struct proc *p, sigset_t *ss)
487 {
488
489 *ss = p->p_sigctx.ps_siglist;
490 sigminusset(&p->p_sigctx.ps_sigmask, ss);
491 }
492
493 /* ARGSUSED */
494 int
495 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
496 {
497 struct sys___sigpending14_args /* {
498 syscallarg(sigset_t *) set;
499 } */ *uap = v;
500 struct proc *p;
501 sigset_t ss;
502
503 p = l->l_proc;
504 sigpending1(p, &ss);
505 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
506 }
507
508 int
509 sigsuspend1(struct proc *p, const sigset_t *ss)
510 {
511 struct sigacts *ps;
512
513 ps = p->p_sigacts;
514 if (ss) {
515 /*
516 * When returning from sigpause, we want
517 * the old mask to be restored after the
518 * signal handler has finished. Thus, we
519 * save it here and mark the sigctx structure
520 * to indicate this.
521 */
522 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
523 p->p_sigctx.ps_flags |= SAS_OLDMASK;
524 (void) splsched(); /* XXXSMP */
525 p->p_sigctx.ps_sigmask = *ss;
526 CHECKSIGS(p);
527 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
528 (void) spl0(); /* XXXSMP */
529 }
530
531 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
532 /* void */;
533 /* always return EINTR rather than ERESTART... */
534 return (EINTR);
535 }
536
537 /*
538 * Suspend process until signal, providing mask to be set
539 * in the meantime. Note nonstandard calling convention:
540 * libc stub passes mask, not pointer, to save a copyin.
541 */
542 /* ARGSUSED */
543 int
544 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
545 {
546 struct sys___sigsuspend14_args /* {
547 syscallarg(const sigset_t *) set;
548 } */ *uap = v;
549 struct proc *p;
550 sigset_t ss;
551 int error;
552
553 if (SCARG(uap, set)) {
554 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
555 if (error)
556 return (error);
557 }
558
559 p = l->l_proc;
560 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
561 }
562
563 int
564 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
565 struct sigaltstack *oss)
566 {
567
568 if (oss)
569 *oss = p->p_sigctx.ps_sigstk;
570
571 if (nss) {
572 if (nss->ss_flags & ~SS_ALLBITS)
573 return (EINVAL);
574
575 if (nss->ss_flags & SS_DISABLE) {
576 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
577 return (EINVAL);
578 } else {
579 if (nss->ss_size < MINSIGSTKSZ)
580 return (ENOMEM);
581 }
582 p->p_sigctx.ps_sigstk = *nss;
583 }
584
585 return (0);
586 }
587
588 /* ARGSUSED */
589 int
590 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
591 {
592 struct sys___sigaltstack14_args /* {
593 syscallarg(const struct sigaltstack *) nss;
594 syscallarg(struct sigaltstack *) oss;
595 } */ *uap = v;
596 struct proc *p;
597 struct sigaltstack nss, oss;
598 int error;
599
600 if (SCARG(uap, nss)) {
601 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
602 if (error)
603 return (error);
604 }
605 p = l->l_proc;
606 error = sigaltstack1(p,
607 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
608 if (error)
609 return (error);
610 if (SCARG(uap, oss)) {
611 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
612 if (error)
613 return (error);
614 }
615 return (0);
616 }
617
618 /* ARGSUSED */
619 int
620 sys_kill(struct lwp *l, void *v, register_t *retval)
621 {
622 struct sys_kill_args /* {
623 syscallarg(int) pid;
624 syscallarg(int) signum;
625 } */ *uap = v;
626 struct proc *cp, *p;
627 struct pcred *pc;
628
629 cp = l->l_proc;
630 pc = cp->p_cred;
631 if ((u_int)SCARG(uap, signum) >= NSIG)
632 return (EINVAL);
633 if (SCARG(uap, pid) > 0) {
634 /* kill single process */
635 if ((p = pfind(SCARG(uap, pid))) == NULL)
636 return (ESRCH);
637 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
638 return (EPERM);
639 if (SCARG(uap, signum))
640 psignal(p, SCARG(uap, signum));
641 return (0);
642 }
643 switch (SCARG(uap, pid)) {
644 case -1: /* broadcast signal */
645 return (killpg1(cp, SCARG(uap, signum), 0, 1));
646 case 0: /* signal own process group */
647 return (killpg1(cp, SCARG(uap, signum), 0, 0));
648 default: /* negative explicit process group */
649 return (killpg1(cp, SCARG(uap, signum), -SCARG(uap, pid), 0));
650 }
651 /* NOTREACHED */
652 }
653
654 /*
655 * Common code for kill process group/broadcast kill.
656 * cp is calling process.
657 */
658 int
659 killpg1(struct proc *cp, int signum, int pgid, int all)
660 {
661 struct proc *p;
662 struct pcred *pc;
663 struct pgrp *pgrp;
664 int nfound;
665
666 pc = cp->p_cred;
667 nfound = 0;
668 if (all) {
669 /*
670 * broadcast
671 */
672 proclist_lock_read();
673 LIST_FOREACH(p, &allproc, p_list) {
674 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
675 p == cp || !CANSIGNAL(cp, pc, p, signum))
676 continue;
677 nfound++;
678 if (signum)
679 psignal(p, signum);
680 }
681 proclist_unlock_read();
682 } else {
683 if (pgid == 0)
684 /*
685 * zero pgid means send to my process group.
686 */
687 pgrp = cp->p_pgrp;
688 else {
689 pgrp = pgfind(pgid);
690 if (pgrp == NULL)
691 return (ESRCH);
692 }
693 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
694 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
695 !CANSIGNAL(cp, pc, p, signum))
696 continue;
697 nfound++;
698 if (signum && P_ZOMBIE(p) == 0)
699 psignal(p, signum);
700 }
701 }
702 return (nfound ? 0 : ESRCH);
703 }
704
705 /*
706 * Send a signal to a process group.
707 */
708 void
709 gsignal(int pgid, int signum)
710 {
711 struct pgrp *pgrp;
712
713 if (pgid && (pgrp = pgfind(pgid)))
714 pgsignal(pgrp, signum, 0);
715 }
716
717 /*
718 * Send a signal to a process group. If checktty is 1,
719 * limit to members which have a controlling terminal.
720 */
721 void
722 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
723 {
724 struct proc *p;
725
726 if (pgrp)
727 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
728 if (checkctty == 0 || p->p_flag & P_CONTROLT)
729 psignal(p, signum);
730 }
731
732 /*
733 * Send a signal caused by a trap to the current process.
734 * If it will be caught immediately, deliver it with correct code.
735 * Otherwise, post it normally.
736 */
737 void
738 trapsignal(struct lwp *l, int signum, u_long code)
739 {
740 struct proc *p;
741 struct sigacts *ps;
742
743 p = l->l_proc;
744 ps = p->p_sigacts;
745 if ((p->p_flag & P_TRACED) == 0 &&
746 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
747 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
748 p->p_stats->p_ru.ru_nsignals++;
749 #ifdef KTRACE
750 if (KTRPOINT(p, KTR_PSIG))
751 ktrpsig(l, signum,
752 SIGACTION_PS(ps, signum).sa_handler,
753 &p->p_sigctx.ps_sigmask, code);
754 #endif
755 psendsig(l, signum, &p->p_sigctx.ps_sigmask, code);
756 (void) splsched(); /* XXXSMP */
757 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
758 &p->p_sigctx.ps_sigmask);
759 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
760 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
761 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
762 sigaddset(&p->p_sigctx.ps_sigignore, signum);
763 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
764 }
765 (void) spl0(); /* XXXSMP */
766 } else {
767 p->p_sigctx.ps_code = code; /* XXX for core dump/debugger */
768 p->p_sigctx.ps_sig = signum; /* XXX to verify code */
769 p->p_sigctx.ps_lwp = l->l_lid;
770 psignal(p, signum);
771 }
772 }
773
774 /*
775 * Send the signal to the process. If the signal has an action, the action
776 * is usually performed by the target process rather than the caller; we add
777 * the signal to the set of pending signals for the process.
778 *
779 * Exceptions:
780 * o When a stop signal is sent to a sleeping process that takes the
781 * default action, the process is stopped without awakening it.
782 * o SIGCONT restarts stopped processes (or puts them back to sleep)
783 * regardless of the signal action (eg, blocked or ignored).
784 *
785 * Other ignored signals are discarded immediately.
786 *
787 * XXXSMP: Invoked as psignal() or sched_psignal().
788 */
789 void
790 psignal1(struct proc *p, int signum,
791 int dolock) /* XXXSMP: works, but icky */
792 {
793 struct lwp *l, *suspended;
794 int s = 0, prop, allsusp;
795 sig_t action;
796
797 #ifdef DIAGNOSTIC
798 if (signum <= 0 || signum >= NSIG)
799 panic("psignal signal number");
800
801 /* XXXSMP: works, but icky */
802 if (dolock)
803 SCHED_ASSERT_UNLOCKED();
804 else
805 SCHED_ASSERT_LOCKED();
806 #endif
807 /*
808 * Notify any interested parties in the signal.
809 */
810 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
811
812 prop = sigprop[signum];
813
814 /*
815 * If proc is traced, always give parent a chance.
816 */
817 if (p->p_flag & P_TRACED)
818 action = SIG_DFL;
819 else {
820 /*
821 * If the signal is being ignored,
822 * then we forget about it immediately.
823 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
824 * and if it is set to SIG_IGN,
825 * action will be SIG_DFL here.)
826 */
827 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
828 return;
829 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
830 action = SIG_HOLD;
831 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
832 action = SIG_CATCH;
833 else {
834 action = SIG_DFL;
835
836 if (prop & SA_KILL && p->p_nice > NZERO)
837 p->p_nice = NZERO;
838
839 /*
840 * If sending a tty stop signal to a member of an
841 * orphaned process group, discard the signal here if
842 * the action is default; don't stop the process below
843 * if sleeping, and don't clear any pending SIGCONT.
844 */
845 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
846 return;
847 }
848 }
849
850 if (prop & SA_CONT)
851 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
852
853 if (prop & SA_STOP)
854 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
855
856 sigaddset(&p->p_sigctx.ps_siglist, signum);
857
858 /* CHECKSIGS() is "inlined" here. */
859 p->p_sigctx.ps_sigcheck = 1;
860
861 /*
862 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
863 * please!), check if anything waits on it. If yes, clear the
864 * pending signal from siglist set, save it to ps_sigwaited,
865 * clear sigwait list, and wakeup any sigwaiters.
866 * The signal won't be processed further here.
867 */
868 if ((prop & SA_CANTMASK) == 0
869 && p->p_sigctx.ps_sigwaited < 0
870 && sigismember(&p->p_sigctx.ps_sigwait, signum)) {
871 sigdelset(&p->p_sigctx.ps_siglist, signum);
872 p->p_sigctx.ps_sigwaited = signum;
873 sigemptyset(&p->p_sigctx.ps_sigwait);
874
875 if (dolock)
876 wakeup_one(&p->p_sigctx.ps_sigwait);
877 else
878 sched_wakeup(&p->p_sigctx.ps_sigwait);
879 return;
880 }
881
882 /*
883 * Defer further processing for signals which are held,
884 * except that stopped processes must be continued by SIGCONT.
885 */
886 if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
887 return;
888 /* XXXSMP: works, but icky */
889 if (dolock)
890 SCHED_LOCK(s);
891
892 if (p->p_nrlwps > 0) {
893 /*
894 * At least one LWP is running or on a run queue.
895 * The signal will be noticed when one of them returns
896 * to userspace.
897 */
898 signotify(p);
899 /*
900 * The signal will be noticed very soon.
901 */
902 goto out;
903 } else {
904 /* Process is sleeping or stopped */
905 if (p->p_flag & P_SA) {
906 l = p->p_sa->sa_idle;
907 } else {
908 /*
909 * Find out if any of the sleeps are interruptable,
910 * and if all the live LWPs remaining are suspended.
911 */
912 allsusp = 1;
913 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
914 if (l->l_stat == LSSLEEP &&
915 l->l_flag & L_SINTR)
916 break;
917 if (l->l_stat == LSSUSPENDED)
918 suspended = l;
919 else if ((l->l_stat != LSZOMB) &&
920 (l->l_stat != LSDEAD))
921 allsusp = 0;
922 }
923 }
924 if (p->p_stat == SACTIVE) {
925 /* All LWPs must be sleeping */
926 KDASSERT(((p->p_flag & P_SA) == 0) || (l != NULL));
927
928 if (l != NULL && (p->p_flag & P_TRACED))
929 goto run;
930
931 /*
932 * If SIGCONT is default (or ignored) and process is
933 * asleep, we are finished; the process should not
934 * be awakened.
935 */
936 if ((prop & SA_CONT) && action == SIG_DFL) {
937 sigdelset(&p->p_sigctx.ps_siglist, signum);
938 goto out;
939 }
940
941 /*
942 * When a sleeping process receives a stop
943 * signal, process immediately if possible.
944 */
945 if ((prop & SA_STOP) && action == SIG_DFL) {
946 /*
947 * If a child holding parent blocked,
948 * stopping could cause deadlock.
949 */
950 if (p->p_flag & P_PPWAIT)
951 goto out;
952 sigdelset(&p->p_sigctx.ps_siglist, signum);
953 p->p_xstat = signum;
954 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
955 /*
956 * XXXSMP: recursive call; don't lock
957 * the second time around.
958 */
959 sched_psignal(p->p_pptr, SIGCHLD);
960 }
961 proc_stop(p); /* XXXSMP: recurse? */
962 goto out;
963 }
964
965 if (l == NULL) {
966 /*
967 * Special case: SIGKILL of a process
968 * which is entirely composed of
969 * suspended LWPs should succeed. We
970 * make this happen by unsuspending one of
971 * them.
972 */
973 if (allsusp && (signum == SIGKILL))
974 lwp_continue(suspended);
975 goto out;
976 }
977 /*
978 * All other (caught or default) signals
979 * cause the process to run.
980 */
981 goto runfast;
982 /*NOTREACHED*/
983 } else if (p->p_stat == SSTOP) {
984 /* Process is stopped */
985 /*
986 * If traced process is already stopped,
987 * then no further action is necessary.
988 */
989 if (p->p_flag & P_TRACED)
990 goto out;
991
992 /*
993 * Kill signal always sets processes running,
994 * if possible.
995 */
996 if (signum == SIGKILL) {
997 l = proc_unstop(p);
998 if (l)
999 goto runfast;
1000 goto out;
1001 }
1002
1003 if (prop & SA_CONT) {
1004 /*
1005 * If SIGCONT is default (or ignored),
1006 * we continue the process but don't
1007 * leave the signal in ps_siglist, as
1008 * it has no further action. If
1009 * SIGCONT is held, we continue the
1010 * process and leave the signal in
1011 * ps_siglist. If the process catches
1012 * SIGCONT, let it handle the signal
1013 * itself. If it isn't waiting on an
1014 * event, then it goes back to run
1015 * state. Otherwise, process goes
1016 * back to sleep state.
1017 */
1018 if (action == SIG_DFL)
1019 sigdelset(&p->p_sigctx.ps_siglist,
1020 signum);
1021 l = proc_unstop(p);
1022 if (l && (action == SIG_CATCH))
1023 goto runfast;
1024 goto out;
1025 }
1026
1027 if (prop & SA_STOP) {
1028 /*
1029 * Already stopped, don't need to stop again.
1030 * (If we did the shell could get confused.)
1031 */
1032 sigdelset(&p->p_sigctx.ps_siglist, signum);
1033 goto out;
1034 }
1035
1036 /*
1037 * If a lwp is sleeping interruptibly, then
1038 * wake it up; it will run until the kernel
1039 * boundary, where it will stop in issignal(),
1040 * since p->p_stat is still SSTOP. When the
1041 * process is continued, it will be made
1042 * runnable and can look at the signal.
1043 */
1044 if (l)
1045 goto run;
1046 goto out;
1047 } else {
1048 /* Else what? */
1049 panic("psignal: Invalid process state %d.",
1050 p->p_stat);
1051 }
1052 }
1053 /*NOTREACHED*/
1054
1055 runfast:
1056 /*
1057 * Raise priority to at least PUSER.
1058 */
1059 if (l->l_priority > PUSER)
1060 l->l_priority = PUSER;
1061 run:
1062 setrunnable(l); /* XXXSMP: recurse? */
1063 out:
1064 /* XXXSMP: works, but icky */
1065 if (dolock)
1066 SCHED_UNLOCK(s);
1067 }
1068
1069 void
1070 psendsig(struct lwp *l, int sig, sigset_t *mask, u_long code)
1071 {
1072 struct proc *p = l->l_proc;
1073 struct lwp *le, *li;
1074 siginfo_t *si;
1075
1076 if (p->p_flag & P_SA) {
1077 si = pool_get(&siginfo_pool, PR_WAITOK);
1078 si->si_signo = sig;
1079 si->si_errno = 0;
1080 si->si_code = code;
1081 le = li = NULL;
1082 if (code)
1083 le = l;
1084 else
1085 li = l;
1086
1087 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1088 sizeof(siginfo_t), si);
1089 return;
1090 }
1091
1092 (*p->p_emul->e_sendsig)(sig, mask, code);
1093 }
1094
1095 static __inline int firstsig(const sigset_t *);
1096
1097 static __inline int
1098 firstsig(const sigset_t *ss)
1099 {
1100 int sig;
1101
1102 sig = ffs(ss->__bits[0]);
1103 if (sig != 0)
1104 return (sig);
1105 #if NSIG > 33
1106 sig = ffs(ss->__bits[1]);
1107 if (sig != 0)
1108 return (sig + 32);
1109 #endif
1110 #if NSIG > 65
1111 sig = ffs(ss->__bits[2]);
1112 if (sig != 0)
1113 return (sig + 64);
1114 #endif
1115 #if NSIG > 97
1116 sig = ffs(ss->__bits[3]);
1117 if (sig != 0)
1118 return (sig + 96);
1119 #endif
1120 return (0);
1121 }
1122
1123 /*
1124 * If the current process has received a signal (should be caught or cause
1125 * termination, should interrupt current syscall), return the signal number.
1126 * Stop signals with default action are processed immediately, then cleared;
1127 * they aren't returned. This is checked after each entry to the system for
1128 * a syscall or trap (though this can usually be done without calling issignal
1129 * by checking the pending signal masks in the CURSIG macro.) The normal call
1130 * sequence is
1131 *
1132 * while (signum = CURSIG(curlwp))
1133 * postsig(signum);
1134 */
1135 int
1136 issignal(struct lwp *l)
1137 {
1138 struct proc *p = l->l_proc;
1139 int s = 0, signum, prop;
1140 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1141 sigset_t ss;
1142
1143 if (p->p_stat == SSTOP) {
1144 /*
1145 * The process is stopped/stopping. Stop ourselves now that
1146 * we're on the kernel/userspace boundary.
1147 */
1148 if (dolock)
1149 SCHED_LOCK(s);
1150 l->l_stat = LSSTOP;
1151 p->p_nrlwps--;
1152 if (p->p_flag & P_TRACED)
1153 goto sigtraceswitch;
1154 else
1155 goto sigswitch;
1156 }
1157 for (;;) {
1158 sigpending1(p, &ss);
1159 if (p->p_flag & P_PPWAIT)
1160 sigminusset(&stopsigmask, &ss);
1161 signum = firstsig(&ss);
1162 if (signum == 0) { /* no signal to send */
1163 p->p_sigctx.ps_sigcheck = 0;
1164 if (locked && dolock)
1165 SCHED_LOCK(s);
1166 return (0);
1167 }
1168 /* take the signal! */
1169 sigdelset(&p->p_sigctx.ps_siglist, signum);
1170
1171 /*
1172 * We should see pending but ignored signals
1173 * only if P_TRACED was on when they were posted.
1174 */
1175 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1176 (p->p_flag & P_TRACED) == 0)
1177 continue;
1178
1179 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1180 /*
1181 * If traced, always stop, and stay
1182 * stopped until released by the debugger.
1183 */
1184 p->p_xstat = signum;
1185 if ((p->p_flag & P_FSTRACE) == 0)
1186 psignal1(p->p_pptr, SIGCHLD, dolock);
1187 if (dolock)
1188 SCHED_LOCK(s);
1189 proc_stop(p);
1190 sigtraceswitch:
1191 mi_switch(l, NULL);
1192 SCHED_ASSERT_UNLOCKED();
1193 if (dolock)
1194 splx(s);
1195 else
1196 dolock = 1;
1197
1198 /*
1199 * If we are no longer being traced, or the parent
1200 * didn't give us a signal, look for more signals.
1201 */
1202 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1203 continue;
1204
1205 /*
1206 * If the new signal is being masked, look for other
1207 * signals.
1208 */
1209 signum = p->p_xstat;
1210 p->p_xstat = 0;
1211 /*
1212 * `p->p_sigctx.ps_siglist |= mask' is done
1213 * in setrunnable().
1214 */
1215 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1216 continue;
1217 /* take the signal! */
1218 sigdelset(&p->p_sigctx.ps_siglist, signum);
1219 }
1220
1221 prop = sigprop[signum];
1222
1223 /*
1224 * Decide whether the signal should be returned.
1225 * Return the signal's number, or fall through
1226 * to clear it from the pending mask.
1227 */
1228 switch ((long)SIGACTION(p, signum).sa_handler) {
1229
1230 case (long)SIG_DFL:
1231 /*
1232 * Don't take default actions on system processes.
1233 */
1234 if (p->p_pid <= 1) {
1235 #ifdef DIAGNOSTIC
1236 /*
1237 * Are you sure you want to ignore SIGSEGV
1238 * in init? XXX
1239 */
1240 printf("Process (pid %d) got signal %d\n",
1241 p->p_pid, signum);
1242 #endif
1243 break; /* == ignore */
1244 }
1245 /*
1246 * If there is a pending stop signal to process
1247 * with default action, stop here,
1248 * then clear the signal. However,
1249 * if process is member of an orphaned
1250 * process group, ignore tty stop signals.
1251 */
1252 if (prop & SA_STOP) {
1253 if (p->p_flag & P_TRACED ||
1254 (p->p_pgrp->pg_jobc == 0 &&
1255 prop & SA_TTYSTOP))
1256 break; /* == ignore */
1257 p->p_xstat = signum;
1258 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1259 psignal1(p->p_pptr, SIGCHLD, dolock);
1260 if (dolock)
1261 SCHED_LOCK(s);
1262 proc_stop(p);
1263 sigswitch:
1264 mi_switch(l, NULL);
1265 SCHED_ASSERT_UNLOCKED();
1266 if (dolock)
1267 splx(s);
1268 else
1269 dolock = 1;
1270 break;
1271 } else if (prop & SA_IGNORE) {
1272 /*
1273 * Except for SIGCONT, shouldn't get here.
1274 * Default action is to ignore; drop it.
1275 */
1276 break; /* == ignore */
1277 } else
1278 goto keep;
1279 /*NOTREACHED*/
1280
1281 case (long)SIG_IGN:
1282 /*
1283 * Masking above should prevent us ever trying
1284 * to take action on an ignored signal other
1285 * than SIGCONT, unless process is traced.
1286 */
1287 #ifdef DEBUG_ISSIGNAL
1288 if ((prop & SA_CONT) == 0 &&
1289 (p->p_flag & P_TRACED) == 0)
1290 printf("issignal\n");
1291 #endif
1292 break; /* == ignore */
1293
1294 default:
1295 /*
1296 * This signal has an action, let
1297 * postsig() process it.
1298 */
1299 goto keep;
1300 }
1301 }
1302 /* NOTREACHED */
1303
1304 keep:
1305 /* leave the signal for later */
1306 sigaddset(&p->p_sigctx.ps_siglist, signum);
1307 CHECKSIGS(p);
1308 if (locked && dolock)
1309 SCHED_LOCK(s);
1310 return (signum);
1311 }
1312
1313 /*
1314 * Put the argument process into the stopped state and notify the parent
1315 * via wakeup. Signals are handled elsewhere. The process must not be
1316 * on the run queue.
1317 */
1318 static void
1319 proc_stop(struct proc *p)
1320 {
1321 struct lwp *l;
1322
1323 SCHED_ASSERT_LOCKED();
1324
1325 /* XXX lock process LWP state */
1326 p->p_stat = SSTOP;
1327 p->p_flag &= ~P_WAITED;
1328
1329 /*
1330 * Put as many LWP's as possible in stopped state.
1331 * Sleeping ones will notice the stopped state as they try to
1332 * return to userspace.
1333 */
1334
1335 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1336 if (l->l_stat == LSONPROC) {
1337 /* XXX SMP this assumes that a LWP that is LSONPROC
1338 * is curlwp and hence is about to be mi_switched
1339 * away; the only callers of proc_stop() are:
1340 * - psignal
1341 * - issignal()
1342 * For the former, proc_stop() is only called when
1343 * no processes are running, so we don't worry.
1344 * For the latter, proc_stop() is called right
1345 * before mi_switch().
1346 */
1347 l->l_stat = LSSTOP;
1348 p->p_nrlwps--;
1349 } else if (l->l_stat == LSRUN) {
1350 /* Remove LWP from the run queue */
1351 remrunqueue(l);
1352 l->l_stat = LSSTOP;
1353 p->p_nrlwps--;
1354 } else if ((l->l_stat == LSSLEEP) ||
1355 (l->l_stat == LSSUSPENDED) ||
1356 (l->l_stat == LSZOMB) ||
1357 (l->l_stat == LSDEAD)) {
1358 /*
1359 * Don't do anything; let sleeping LWPs
1360 * discover the stopped state of the process
1361 * on their way out of the kernel; otherwise,
1362 * things like NFS threads that sleep with
1363 * locks will block the rest of the system
1364 * from getting any work done.
1365 *
1366 * Suspended/dead/zombie LWPs aren't going
1367 * anywhere, so we don't need to touch them.
1368 */
1369 }
1370 #ifdef DIAGNOSTIC
1371 else {
1372 panic("proc_stop: process %d lwp %d "
1373 "in unstoppable state %d.\n",
1374 p->p_pid, l->l_lid, l->l_stat);
1375 }
1376 #endif
1377 }
1378 /* XXX unlock process LWP state */
1379
1380 sched_wakeup((caddr_t)p->p_pptr);
1381 }
1382
1383 /*
1384 * Given a process in state SSTOP, set the state back to SACTIVE and
1385 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1386 *
1387 * If no LWPs ended up runnable (and therefore able to take a signal),
1388 * return a LWP that is sleeping interruptably. The caller can wake
1389 * that LWP up to take a signal.
1390 */
1391 struct lwp *
1392 proc_unstop(struct proc *p)
1393 {
1394 struct lwp *l, *lr = NULL;
1395 int cantake = 0;
1396
1397 SCHED_ASSERT_LOCKED();
1398
1399 /*
1400 * Our caller wants to be informed if there are only sleeping
1401 * and interruptable LWPs left after we have run so that it
1402 * can invoke setrunnable() if required - return one of the
1403 * interruptable LWPs if this is the case.
1404 */
1405
1406 p->p_stat = SACTIVE;
1407 if (p->p_flag & P_SA) {
1408 /*
1409 * Preferentially select the idle LWP as the interruptable
1410 * LWP to return if it exists.
1411 */
1412 lr = p->p_sa->sa_idle;
1413 if (lr != NULL)
1414 cantake = 1;
1415 }
1416 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1417 if (l->l_stat == LSRUN) {
1418 lr = NULL;
1419 cantake = 1;
1420 }
1421 if (l->l_stat != LSSTOP)
1422 continue;
1423
1424 if (l->l_wchan != NULL) {
1425 l->l_stat = LSSLEEP;
1426 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1427 lr = l;
1428 cantake = 1;
1429 }
1430 } else {
1431 setrunnable(l);
1432 lr = NULL;
1433 cantake = 1;
1434 }
1435 }
1436
1437 return lr;
1438 }
1439
1440 /*
1441 * Take the action for the specified signal
1442 * from the current set of pending signals.
1443 */
1444 void
1445 postsig(int signum)
1446 {
1447 struct lwp *l;
1448 struct proc *p;
1449 struct sigacts *ps;
1450 sig_t action;
1451 u_long code;
1452 sigset_t *returnmask;
1453
1454 l = curlwp;
1455 p = l->l_proc;
1456 ps = p->p_sigacts;
1457 #ifdef DIAGNOSTIC
1458 if (signum == 0)
1459 panic("postsig");
1460 #endif
1461
1462 KERNEL_PROC_LOCK(l);
1463
1464 sigdelset(&p->p_sigctx.ps_siglist, signum);
1465 action = SIGACTION_PS(ps, signum).sa_handler;
1466 #ifdef KTRACE
1467 if (KTRPOINT(p, KTR_PSIG))
1468 ktrpsig(l,
1469 signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
1470 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
1471 #endif
1472 if (action == SIG_DFL) {
1473 /*
1474 * Default action, where the default is to kill
1475 * the process. (Other cases were ignored above.)
1476 */
1477 sigexit(l, signum);
1478 /* NOTREACHED */
1479 } else {
1480 /*
1481 * If we get here, the signal must be caught.
1482 */
1483 #ifdef DIAGNOSTIC
1484 if (action == SIG_IGN ||
1485 sigismember(&p->p_sigctx.ps_sigmask, signum))
1486 panic("postsig action");
1487 #endif
1488 /*
1489 * Set the new mask value and also defer further
1490 * occurrences of this signal.
1491 *
1492 * Special case: user has done a sigpause. Here the
1493 * current mask is not of interest, but rather the
1494 * mask from before the sigpause is what we want
1495 * restored after the signal processing is completed.
1496 */
1497 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1498 returnmask = &p->p_sigctx.ps_oldmask;
1499 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1500 } else
1501 returnmask = &p->p_sigctx.ps_sigmask;
1502 p->p_stats->p_ru.ru_nsignals++;
1503 if (p->p_sigctx.ps_sig != signum) {
1504 code = 0;
1505 } else {
1506 code = p->p_sigctx.ps_code;
1507 p->p_sigctx.ps_code = 0;
1508 p->p_sigctx.ps_lwp = 0;
1509 p->p_sigctx.ps_sig = 0;
1510 }
1511 psendsig(l, signum, returnmask, code);
1512 (void) splsched(); /* XXXSMP */
1513 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1514 &p->p_sigctx.ps_sigmask);
1515 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1516 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1517 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1518 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1519 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1520 }
1521 (void) spl0(); /* XXXSMP */
1522 }
1523
1524 KERNEL_PROC_UNLOCK(l);
1525 }
1526
1527 /*
1528 * Kill the current process for stated reason.
1529 */
1530 void
1531 killproc(struct proc *p, const char *why)
1532 {
1533
1534 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1535 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1536 psignal(p, SIGKILL);
1537 }
1538
1539 /*
1540 * Force the current process to exit with the specified signal, dumping core
1541 * if appropriate. We bypass the normal tests for masked and caught signals,
1542 * allowing unrecoverable failures to terminate the process without changing
1543 * signal state. Mark the accounting record with the signal termination.
1544 * If dumping core, save the signal number for the debugger. Calls exit and
1545 * does not return.
1546 */
1547
1548 #if defined(DEBUG)
1549 int kern_logsigexit = 1; /* not static to make public for sysctl */
1550 #else
1551 int kern_logsigexit = 0; /* not static to make public for sysctl */
1552 #endif
1553
1554 static const char logcoredump[] =
1555 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1556 static const char lognocoredump[] =
1557 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1558
1559 /* Wrapper function for use in p_userret */
1560 static void
1561 lwp_coredump_hook(struct lwp *l, void *arg)
1562 {
1563 int s;
1564
1565 /*
1566 * Suspend ourselves, so that the kernel stack and therefore
1567 * the userland registers saved in the trapframe are around
1568 * for coredump() to write them out.
1569 */
1570 KERNEL_PROC_LOCK(l);
1571 l->l_flag &= ~L_DETACHED;
1572 SCHED_LOCK(s);
1573 l->l_stat = LSSUSPENDED;
1574 l->l_proc->p_nrlwps--;
1575 /* XXX NJWLWP check if this makes sense here: */
1576 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1577 mi_switch(l, NULL);
1578 SCHED_ASSERT_UNLOCKED();
1579 splx(s);
1580
1581 lwp_exit(l);
1582 }
1583
1584 void
1585 sigexit(struct lwp *l, int signum)
1586 {
1587 struct proc *p;
1588 struct lwp *l2;
1589 int error, exitsig;
1590
1591 p = l->l_proc;
1592
1593 /*
1594 * Don't permit coredump() or exit1() multiple times
1595 * in the same process.
1596 */
1597 if (p->p_flag & P_WEXIT) {
1598 KERNEL_PROC_UNLOCK(l);
1599 (*p->p_userret)(l, p->p_userret_arg);
1600 }
1601 p->p_flag |= P_WEXIT;
1602 /* We don't want to switch away from exiting. */
1603 /* XXX multiprocessor: stop LWPs on other processors. */
1604 if (p->p_flag & P_SA) {
1605 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1606 l2->l_flag &= ~L_SA;
1607 p->p_flag &= ~P_SA;
1608 }
1609
1610 /* Make other LWPs stick around long enough to be dumped */
1611 p->p_userret = lwp_coredump_hook;
1612 p->p_userret_arg = NULL;
1613
1614 exitsig = signum;
1615 p->p_acflag |= AXSIG;
1616 if (sigprop[signum] & SA_CORE) {
1617 p->p_sigctx.ps_sig = signum;
1618 if ((error = coredump(l)) == 0)
1619 exitsig |= WCOREFLAG;
1620
1621 if (kern_logsigexit) {
1622 /* XXX What if we ever have really large UIDs? */
1623 int uid = p->p_cred && p->p_ucred ?
1624 (int) p->p_ucred->cr_uid : -1;
1625
1626 if (error)
1627 log(LOG_INFO, lognocoredump, p->p_pid,
1628 p->p_comm, uid, signum, error);
1629 else
1630 log(LOG_INFO, logcoredump, p->p_pid,
1631 p->p_comm, uid, signum);
1632 }
1633
1634 }
1635
1636 exit1(l, W_EXITCODE(0, exitsig));
1637 /* NOTREACHED */
1638 }
1639
1640 /*
1641 * Dump core, into a file named "progname.core" or "core" (depending on the
1642 * value of shortcorename), unless the process was setuid/setgid.
1643 */
1644 int
1645 coredump(struct lwp *l)
1646 {
1647 struct vnode *vp;
1648 struct proc *p;
1649 struct vmspace *vm;
1650 struct ucred *cred;
1651 struct nameidata nd;
1652 struct vattr vattr;
1653 int error, error1;
1654 char name[MAXPATHLEN];
1655
1656 p = l->l_proc;
1657 vm = p->p_vmspace;
1658 cred = p->p_cred->pc_ucred;
1659
1660 /*
1661 * Make sure the process has not set-id, to prevent data leaks.
1662 */
1663 if (p->p_flag & P_SUGID)
1664 return (EPERM);
1665
1666 /*
1667 * Refuse to core if the data + stack + user size is larger than
1668 * the core dump limit. XXX THIS IS WRONG, because of mapped
1669 * data.
1670 */
1671 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
1672 p->p_rlimit[RLIMIT_CORE].rlim_cur)
1673 return (EFBIG); /* better error code? */
1674
1675 /*
1676 * The core dump will go in the current working directory. Make
1677 * sure that the directory is still there and that the mount flags
1678 * allow us to write core dumps there.
1679 */
1680 vp = p->p_cwdi->cwdi_cdir;
1681 if (vp->v_mount == NULL ||
1682 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
1683 return (EPERM);
1684
1685 error = build_corename(p, name);
1686 if (error)
1687 return error;
1688
1689 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
1690 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
1691 if (error)
1692 return (error);
1693 vp = nd.ni_vp;
1694
1695 /* Don't dump to non-regular files or files with links. */
1696 if (vp->v_type != VREG ||
1697 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
1698 error = EINVAL;
1699 goto out;
1700 }
1701 VATTR_NULL(&vattr);
1702 vattr.va_size = 0;
1703 VOP_LEASE(vp, l, cred, LEASE_WRITE);
1704 VOP_SETATTR(vp, &vattr, cred, l);
1705 p->p_acflag |= ACORE;
1706
1707 /* Now dump the actual core file. */
1708 error = (*p->p_execsw->es_coredump)(l, vp, cred);
1709 out:
1710 VOP_UNLOCK(vp, 0);
1711 error1 = vn_close(vp, FWRITE, cred, l);
1712 if (error == 0)
1713 error = error1;
1714 return (error);
1715 }
1716
1717 /*
1718 * Nonexistent system call-- signal process (may want to handle it).
1719 * Flag error in case process won't see signal immediately (blocked or ignored).
1720 */
1721 /* ARGSUSED */
1722 int
1723 sys_nosys(struct lwp *l, void *v, register_t *retval)
1724 {
1725 struct proc *p;
1726
1727 p = l->l_proc;
1728 psignal(p, SIGSYS);
1729 return (ENOSYS);
1730 }
1731
1732 static int
1733 build_corename(struct proc *p, char dst[MAXPATHLEN])
1734 {
1735 const char *s;
1736 char *d, *end;
1737 int i;
1738
1739 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
1740 *s != '\0'; s++) {
1741 if (*s == '%') {
1742 switch (*(s + 1)) {
1743 case 'n':
1744 i = snprintf(d, end - d, "%s", p->p_comm);
1745 break;
1746 case 'p':
1747 i = snprintf(d, end - d, "%d", p->p_pid);
1748 break;
1749 case 'u':
1750 i = snprintf(d, end - d, "%.*s",
1751 (int)sizeof p->p_pgrp->pg_session->s_login,
1752 p->p_pgrp->pg_session->s_login);
1753 break;
1754 case 't':
1755 i = snprintf(d, end - d, "%ld",
1756 p->p_stats->p_start.tv_sec);
1757 break;
1758 default:
1759 goto copy;
1760 }
1761 d += i;
1762 s++;
1763 } else {
1764 copy: *d = *s;
1765 d++;
1766 }
1767 if (d >= end)
1768 return (ENAMETOOLONG);
1769 }
1770 *d = '\0';
1771 return 0;
1772 }
1773
1774 void
1775 getucontext(struct lwp *l, ucontext_t *ucp)
1776 {
1777 struct proc *p;
1778
1779 p = l->l_proc;
1780
1781 ucp->uc_flags = 0;
1782 ucp->uc_link = l->l_ctxlink;
1783
1784 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
1785 ucp->uc_flags |= _UC_SIGMASK;
1786
1787 /*
1788 * The (unsupplied) definition of the `current execution stack'
1789 * in the System V Interface Definition appears to allow returning
1790 * the main context stack.
1791 */
1792 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
1793 ucp->uc_stack.ss_sp = (void *)USRSTACK;
1794 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
1795 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
1796 } else {
1797 /* Simply copy alternate signal execution stack. */
1798 ucp->uc_stack = p->p_sigctx.ps_sigstk;
1799 }
1800 ucp->uc_flags |= _UC_STACK;
1801
1802 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
1803 }
1804
1805 /* ARGSUSED */
1806 int
1807 sys_getcontext(struct lwp *l, void *v, register_t *retval)
1808 {
1809 struct sys_getcontext_args /* {
1810 syscallarg(struct __ucontext *) ucp;
1811 } */ *uap = v;
1812 ucontext_t uc;
1813
1814 getucontext(l, &uc);
1815
1816 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
1817 }
1818
1819 int
1820 setucontext(struct lwp *l, const ucontext_t *ucp)
1821 {
1822 struct proc *p;
1823 int error;
1824
1825 p = l->l_proc;
1826 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
1827 return (error);
1828 l->l_ctxlink = ucp->uc_link;
1829 /*
1830 * We might want to take care of the stack portion here but currently
1831 * don't; see the comment in getucontext().
1832 */
1833 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
1834 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
1835
1836 return 0;
1837 }
1838
1839 /* ARGSUSED */
1840 int
1841 sys_setcontext(struct lwp *l, void *v, register_t *retval)
1842 {
1843 struct sys_setcontext_args /* {
1844 syscallarg(const ucontext_t *) ucp;
1845 } */ *uap = v;
1846 ucontext_t uc;
1847 int error;
1848
1849 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
1850 exit1(l, W_EXITCODE(0, 0));
1851 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
1852 (error = setucontext(l, &uc)) != 0)
1853 return (error);
1854
1855 return (EJUSTRETURN);
1856 }
1857
1858 /*
1859 * sigtimedwait(2) system call, used also for implementation
1860 * of sigwaitinfo() and sigwait().
1861 *
1862 * This only handles single LWP in signal wait. libpthread provides
1863 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
1864 *
1865 * XXX no support for queued signals, si_code is always SI_USER.
1866 */
1867 int
1868 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
1869 {
1870 struct sys___sigtimedwait_args /* {
1871 syscallarg(const sigset_t *) set;
1872 syscallarg(siginfo_t *) info;
1873 syscallarg(struct timespec *) timeout;
1874 } */ *uap = v;
1875 sigset_t waitset, twaitset;
1876 struct proc *p = l->l_proc;
1877 int error, signum, s;
1878 int timo = 0;
1879 struct timeval tvstart;
1880 struct timespec ts;
1881
1882 if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
1883 return (error);
1884
1885 /*
1886 * Silently ignore SA_CANTMASK signals. psignal1() would
1887 * ignore SA_CANTMASK signals in waitset, we do this
1888 * only for the below siglist check.
1889 */
1890 sigminusset(&sigcantmask, &waitset);
1891
1892 /*
1893 * First scan siglist and check if there is signal from
1894 * our waitset already pending.
1895 */
1896 twaitset = waitset;
1897 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
1898 if ((signum = firstsig(&twaitset))) {
1899 /* found pending signal */
1900 sigdelset(&p->p_sigctx.ps_siglist, signum);
1901 goto sig;
1902 }
1903
1904 /*
1905 * Calculate timeout, if it was specified.
1906 */
1907 if (SCARG(uap, timeout)) {
1908 uint64_t ms;
1909
1910 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
1911 return (error);
1912
1913 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
1914 timo = mstohz(ms);
1915 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
1916 timo = 1;
1917 if (timo <= 0)
1918 return (EAGAIN);
1919
1920 /*
1921 * Remember current mono_time, it would be used in
1922 * ECANCELED/ERESTART case.
1923 */
1924 s = splclock();
1925 tvstart = mono_time;
1926 splx(s);
1927 }
1928
1929 /*
1930 * Setup ps_sigwait list.
1931 */
1932 p->p_sigctx.ps_sigwaited = -1;
1933 p->p_sigctx.ps_sigwait = waitset;
1934
1935 /*
1936 * Wait for signal to arrive. We can either be woken up or
1937 * time out.
1938 */
1939 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
1940
1941 /*
1942 * Check if a signal from our wait set has arrived, or if it
1943 * was mere wakeup.
1944 */
1945 if (!error) {
1946 if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
1947 /* wakeup via _lwp_wakeup() */
1948 error = ECANCELED;
1949 }
1950 }
1951
1952 /*
1953 * On error, clear sigwait indication. psignal1() sets it
1954 * in !error case.
1955 */
1956 if (error) {
1957 p->p_sigctx.ps_sigwaited = 0;
1958
1959 /*
1960 * If the sleep was interrupted (either by signal or wakeup),
1961 * update the timeout and copyout new value back.
1962 * It would be used when the syscall would be restarted
1963 * or called again.
1964 */
1965 if (timo && (error == ERESTART || error == ECANCELED)) {
1966 struct timeval tvnow, tvtimo;
1967 int err;
1968
1969 s = splclock();
1970 tvnow = mono_time;
1971 splx(s);
1972
1973 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
1974
1975 /* compute how much time has passed since start */
1976 timersub(&tvnow, &tvstart, &tvnow);
1977 /* substract passed time from timeout */
1978 timersub(&tvtimo, &tvnow, &tvtimo);
1979
1980 if (tvtimo.tv_sec < 0)
1981 return (EAGAIN);
1982
1983 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
1984
1985 /* copy updated timeout to userland */
1986 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
1987 return (err);
1988 }
1989
1990 return (error);
1991 }
1992
1993 /*
1994 * If a signal from the wait set arrived, copy it to userland.
1995 * XXX no queued signals for now
1996 */
1997 if (signum > 0) {
1998 siginfo_t si;
1999
2000 sig:
2001 memset(&si, 0, sizeof(si));
2002 si.si_signo = signum;
2003 si.si_code = SI_USER;
2004
2005 error = copyout(&si, SCARG(uap, info), sizeof(si));
2006 if (error)
2007 return (error);
2008 }
2009
2010 return (0);
2011 }
2012
2013 /*
2014 * Returns true if signal is ignored or masked for passed process.
2015 */
2016 int
2017 sigismasked(struct proc *p, int sig)
2018 {
2019
2020 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2021 sigismember(&p->p_sigctx.ps_sigmask, sig));
2022 }
2023
2024 static int
2025 filt_sigattach(struct knote *kn)
2026 {
2027 struct proc *p = curproc;
2028
2029 kn->kn_ptr.p_proc = p;
2030 kn->kn_flags |= EV_CLEAR; /* automatically set */
2031
2032 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2033
2034 return (0);
2035 }
2036
2037 static void
2038 filt_sigdetach(struct knote *kn)
2039 {
2040 struct proc *p = kn->kn_ptr.p_proc;
2041
2042 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2043 }
2044
2045 /*
2046 * signal knotes are shared with proc knotes, so we apply a mask to
2047 * the hint in order to differentiate them from process hints. This
2048 * could be avoided by using a signal-specific knote list, but probably
2049 * isn't worth the trouble.
2050 */
2051 static int
2052 filt_signal(struct knote *kn, long hint)
2053 {
2054
2055 if (hint & NOTE_SIGNAL) {
2056 hint &= ~NOTE_SIGNAL;
2057
2058 if (kn->kn_id == hint)
2059 kn->kn_data++;
2060 }
2061 return (kn->kn_data != 0);
2062 }
2063
2064 const struct filterops sig_filtops = {
2065 0, filt_sigattach, filt_sigdetach, filt_signal
2066 };
2067