Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.148
      1 /*	$NetBSD: kern_sig.c,v 1.148 2003/09/06 22:03:09 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.148 2003/09/06 22:03:09 christos Exp $");
     41 
     42 #include "opt_ktrace.h"
     43 #include "opt_compat_sunos.h"
     44 #include "opt_compat_netbsd32.h"
     45 
     46 #define	SIGPROP		/* include signal properties table */
     47 #include <sys/param.h>
     48 #include <sys/signalvar.h>
     49 #include <sys/resourcevar.h>
     50 #include <sys/namei.h>
     51 #include <sys/vnode.h>
     52 #include <sys/proc.h>
     53 #include <sys/systm.h>
     54 #include <sys/timeb.h>
     55 #include <sys/times.h>
     56 #include <sys/buf.h>
     57 #include <sys/acct.h>
     58 #include <sys/file.h>
     59 #include <sys/kernel.h>
     60 #include <sys/wait.h>
     61 #include <sys/ktrace.h>
     62 #include <sys/syslog.h>
     63 #include <sys/stat.h>
     64 #include <sys/core.h>
     65 #include <sys/filedesc.h>
     66 #include <sys/malloc.h>
     67 #include <sys/pool.h>
     68 #include <sys/ucontext.h>
     69 #include <sys/sa.h>
     70 #include <sys/savar.h>
     71 #include <sys/exec.h>
     72 
     73 #include <sys/mount.h>
     74 #include <sys/syscallargs.h>
     75 
     76 #include <machine/cpu.h>
     77 
     78 #include <sys/user.h>		/* for coredump */
     79 
     80 #include <uvm/uvm_extern.h>
     81 
     82 static void	proc_stop(struct proc *p);
     83 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     84 sigset_t	contsigmask, stopsigmask, sigcantmask;
     85 
     86 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     87 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     88 
     89 /*
     90  * Can process p, with pcred pc, send the signal signum to process q?
     91  */
     92 #define	CANSIGNAL(p, pc, q, signum) \
     93 	((pc)->pc_ucred->cr_uid == 0 || \
     94 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
     95 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
     96 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
     97 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
     98 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
     99 
    100 /*
    101  * Initialize signal-related data structures.
    102  */
    103 void
    104 signal_init(void)
    105 {
    106 
    107 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    108 	    &pool_allocator_nointr);
    109 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    110 	    &pool_allocator_nointr);
    111 }
    112 
    113 /*
    114  * Create an initial sigctx structure, using the same signal state
    115  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    116  * copy it from parent.
    117  */
    118 void
    119 sigactsinit(struct proc *np, struct proc *pp, int share)
    120 {
    121 	struct sigacts *ps;
    122 
    123 	if (share) {
    124 		np->p_sigacts = pp->p_sigacts;
    125 		pp->p_sigacts->sa_refcnt++;
    126 	} else {
    127 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    128 		if (pp)
    129 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    130 		else
    131 			memset(ps, '\0', sizeof(struct sigacts));
    132 		ps->sa_refcnt = 1;
    133 		np->p_sigacts = ps;
    134 	}
    135 }
    136 
    137 /*
    138  * Make this process not share its sigctx, maintaining all
    139  * signal state.
    140  */
    141 void
    142 sigactsunshare(struct proc *p)
    143 {
    144 	struct sigacts *oldps;
    145 
    146 	if (p->p_sigacts->sa_refcnt == 1)
    147 		return;
    148 
    149 	oldps = p->p_sigacts;
    150 	sigactsinit(p, NULL, 0);
    151 
    152 	if (--oldps->sa_refcnt == 0)
    153 		pool_put(&sigacts_pool, oldps);
    154 }
    155 
    156 /*
    157  * Release a sigctx structure.
    158  */
    159 void
    160 sigactsfree(struct proc *p)
    161 {
    162 	struct sigacts *ps;
    163 
    164 	ps = p->p_sigacts;
    165 	if (--ps->sa_refcnt > 0)
    166 		return;
    167 
    168 	pool_put(&sigacts_pool, ps);
    169 }
    170 
    171 int
    172 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    173 	struct sigaction *osa, void *tramp, int vers)
    174 {
    175 	struct sigacts	*ps;
    176 	int		prop;
    177 
    178 	ps = p->p_sigacts;
    179 	if (signum <= 0 || signum >= NSIG)
    180 		return (EINVAL);
    181 
    182 	/*
    183 	 * Trampoline ABI version 0 is reserved for the legacy
    184 	 * kernel-provided on-stack trampoline.  Conversely, if
    185 	 * we are using a non-0 ABI version, we must have a
    186 	 * trampoline.
    187 	 */
    188 	if ((vers != 0 && tramp == NULL) ||
    189 	    (vers == 0 && tramp != NULL))
    190 		return (EINVAL);
    191 
    192 	if (osa)
    193 		*osa = SIGACTION_PS(ps, signum);
    194 
    195 	if (nsa) {
    196 		if (nsa->sa_flags & ~SA_ALLBITS)
    197 			return (EINVAL);
    198 
    199 		prop = sigprop[signum];
    200 		if (prop & SA_CANTMASK)
    201 			return (EINVAL);
    202 
    203 		(void) splsched();	/* XXXSMP */
    204 		SIGACTION_PS(ps, signum) = *nsa;
    205 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    206 		ps->sa_sigdesc[signum].sd_vers = vers;
    207 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    208 		if ((prop & SA_NORESET) != 0)
    209 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    210 		if (signum == SIGCHLD) {
    211 			if (nsa->sa_flags & SA_NOCLDSTOP)
    212 				p->p_flag |= P_NOCLDSTOP;
    213 			else
    214 				p->p_flag &= ~P_NOCLDSTOP;
    215 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    216 				/*
    217 				 * Paranoia: since SA_NOCLDWAIT is implemented
    218 				 * by reparenting the dying child to PID 1 (and
    219 				 * trust it to reap the zombie), PID 1 itself
    220 				 * is forbidden to set SA_NOCLDWAIT.
    221 				 */
    222 				if (p->p_pid == 1)
    223 					p->p_flag &= ~P_NOCLDWAIT;
    224 				else
    225 					p->p_flag |= P_NOCLDWAIT;
    226 			} else
    227 				p->p_flag &= ~P_NOCLDWAIT;
    228 		}
    229 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    230 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    231 		else
    232 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    233 		/*
    234 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    235 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    236 		 * to ignore. However, don't put SIGCONT in
    237 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    238 	 	 */
    239 		if (nsa->sa_handler == SIG_IGN ||
    240 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    241 						/* never to be seen again */
    242 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    243 			if (signum != SIGCONT) {
    244 						/* easier in psignal */
    245 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    246 			}
    247 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    248 		} else {
    249 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    250 			if (nsa->sa_handler == SIG_DFL)
    251 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    252 			else
    253 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    254 		}
    255 		(void) spl0();
    256 	}
    257 
    258 	return (0);
    259 }
    260 
    261 /* ARGSUSED */
    262 int
    263 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    264 {
    265 	struct sys___sigaction14_args /* {
    266 		syscallarg(int)				signum;
    267 		syscallarg(const struct sigaction *)	nsa;
    268 		syscallarg(struct sigaction *)		osa;
    269 	} */ *uap = v;
    270 	struct proc		*p;
    271 	struct sigaction	nsa, osa;
    272 	int			error;
    273 
    274 	if (SCARG(uap, nsa)) {
    275 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    276 		if (error)
    277 			return (error);
    278 	}
    279 	p = l->l_proc;
    280 	error = sigaction1(p, SCARG(uap, signum),
    281 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    282 	    NULL, 0);
    283 	if (error)
    284 		return (error);
    285 	if (SCARG(uap, osa)) {
    286 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    287 		if (error)
    288 			return (error);
    289 	}
    290 	return (0);
    291 }
    292 
    293 /* ARGSUSED */
    294 int
    295 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    296 {
    297 	struct sys___sigaction_sigtramp_args /* {
    298 		syscallarg(int)				signum;
    299 		syscallarg(const struct sigaction *)	nsa;
    300 		syscallarg(struct sigaction *)		osa;
    301 		syscallarg(void *)			tramp;
    302 		syscallarg(int)				vers;
    303 	} */ *uap = v;
    304 	struct proc *p = l->l_proc;
    305 	struct sigaction nsa, osa;
    306 	int error;
    307 
    308 	if (SCARG(uap, nsa)) {
    309 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    310 		if (error)
    311 			return (error);
    312 	}
    313 	error = sigaction1(p, SCARG(uap, signum),
    314 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    315 	    SCARG(uap, tramp), SCARG(uap, vers));
    316 	if (error)
    317 		return (error);
    318 	if (SCARG(uap, osa)) {
    319 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    320 		if (error)
    321 			return (error);
    322 	}
    323 	return (0);
    324 }
    325 
    326 /*
    327  * Initialize signal state for process 0;
    328  * set to ignore signals that are ignored by default and disable the signal
    329  * stack.
    330  */
    331 void
    332 siginit(struct proc *p)
    333 {
    334 	struct sigacts	*ps;
    335 	int		signum, prop;
    336 
    337 	ps = p->p_sigacts;
    338 	sigemptyset(&contsigmask);
    339 	sigemptyset(&stopsigmask);
    340 	sigemptyset(&sigcantmask);
    341 	for (signum = 1; signum < NSIG; signum++) {
    342 		prop = sigprop[signum];
    343 		if (prop & SA_CONT)
    344 			sigaddset(&contsigmask, signum);
    345 		if (prop & SA_STOP)
    346 			sigaddset(&stopsigmask, signum);
    347 		if (prop & SA_CANTMASK)
    348 			sigaddset(&sigcantmask, signum);
    349 		if (prop & SA_IGNORE && signum != SIGCONT)
    350 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    351 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    352 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    353 	}
    354 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    355 	p->p_sigctx.ps_sigwaited = 0;
    356 	p->p_flag &= ~P_NOCLDSTOP;
    357 
    358 	/*
    359 	 * Reset stack state to the user stack.
    360 	 */
    361 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    362 	p->p_sigctx.ps_sigstk.ss_size = 0;
    363 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    364 
    365 	/* One reference. */
    366 	ps->sa_refcnt = 1;
    367 }
    368 
    369 /*
    370  * Reset signals for an exec of the specified process.
    371  */
    372 void
    373 execsigs(struct proc *p)
    374 {
    375 	struct sigacts	*ps;
    376 	int		signum, prop;
    377 
    378 	sigactsunshare(p);
    379 
    380 	ps = p->p_sigacts;
    381 
    382 	/*
    383 	 * Reset caught signals.  Held signals remain held
    384 	 * through p_sigctx.ps_sigmask (unless they were caught,
    385 	 * and are now ignored by default).
    386 	 */
    387 	for (signum = 1; signum < NSIG; signum++) {
    388 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    389 			prop = sigprop[signum];
    390 			if (prop & SA_IGNORE) {
    391 				if ((prop & SA_CONT) == 0)
    392 					sigaddset(&p->p_sigctx.ps_sigignore,
    393 					    signum);
    394 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    395 			}
    396 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    397 		}
    398 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    399 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    400 	}
    401 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    402 	p->p_sigctx.ps_sigwaited = 0;
    403 	p->p_flag &= ~P_NOCLDSTOP;
    404 
    405 	/*
    406 	 * Reset stack state to the user stack.
    407 	 */
    408 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    409 	p->p_sigctx.ps_sigstk.ss_size = 0;
    410 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    411 }
    412 
    413 int
    414 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    415 {
    416 
    417 	if (oss)
    418 		*oss = p->p_sigctx.ps_sigmask;
    419 
    420 	if (nss) {
    421 		(void)splsched();	/* XXXSMP */
    422 		switch (how) {
    423 		case SIG_BLOCK:
    424 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    425 			break;
    426 		case SIG_UNBLOCK:
    427 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    428 			CHECKSIGS(p);
    429 			break;
    430 		case SIG_SETMASK:
    431 			p->p_sigctx.ps_sigmask = *nss;
    432 			CHECKSIGS(p);
    433 			break;
    434 		default:
    435 			(void)spl0();	/* XXXSMP */
    436 			return (EINVAL);
    437 		}
    438 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    439 		(void)spl0();		/* XXXSMP */
    440 	}
    441 
    442 	return (0);
    443 }
    444 
    445 /*
    446  * Manipulate signal mask.
    447  * Note that we receive new mask, not pointer,
    448  * and return old mask as return value;
    449  * the library stub does the rest.
    450  */
    451 int
    452 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    453 {
    454 	struct sys___sigprocmask14_args /* {
    455 		syscallarg(int)			how;
    456 		syscallarg(const sigset_t *)	set;
    457 		syscallarg(sigset_t *)		oset;
    458 	} */ *uap = v;
    459 	struct proc	*p;
    460 	sigset_t	nss, oss;
    461 	int		error;
    462 
    463 	if (SCARG(uap, set)) {
    464 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    465 		if (error)
    466 			return (error);
    467 	}
    468 	p = l->l_proc;
    469 	error = sigprocmask1(p, SCARG(uap, how),
    470 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    471 	if (error)
    472 		return (error);
    473 	if (SCARG(uap, oset)) {
    474 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    475 		if (error)
    476 			return (error);
    477 	}
    478 	return (0);
    479 }
    480 
    481 void
    482 sigpending1(struct proc *p, sigset_t *ss)
    483 {
    484 
    485 	*ss = p->p_sigctx.ps_siglist;
    486 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    487 }
    488 
    489 /* ARGSUSED */
    490 int
    491 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    492 {
    493 	struct sys___sigpending14_args /* {
    494 		syscallarg(sigset_t *)	set;
    495 	} */ *uap = v;
    496 	struct proc	*p;
    497 	sigset_t	ss;
    498 
    499 	p = l->l_proc;
    500 	sigpending1(p, &ss);
    501 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    502 }
    503 
    504 int
    505 sigsuspend1(struct proc *p, const sigset_t *ss)
    506 {
    507 	struct sigacts *ps;
    508 
    509 	ps = p->p_sigacts;
    510 	if (ss) {
    511 		/*
    512 		 * When returning from sigpause, we want
    513 		 * the old mask to be restored after the
    514 		 * signal handler has finished.  Thus, we
    515 		 * save it here and mark the sigctx structure
    516 		 * to indicate this.
    517 		 */
    518 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    519 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    520 		(void) splsched();	/* XXXSMP */
    521 		p->p_sigctx.ps_sigmask = *ss;
    522 		CHECKSIGS(p);
    523 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    524 		(void) spl0();		/* XXXSMP */
    525 	}
    526 
    527 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    528 		/* void */;
    529 
    530 	/* always return EINTR rather than ERESTART... */
    531 	return (EINTR);
    532 }
    533 
    534 /*
    535  * Suspend process until signal, providing mask to be set
    536  * in the meantime.  Note nonstandard calling convention:
    537  * libc stub passes mask, not pointer, to save a copyin.
    538  */
    539 /* ARGSUSED */
    540 int
    541 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    542 {
    543 	struct sys___sigsuspend14_args /* {
    544 		syscallarg(const sigset_t *)	set;
    545 	} */ *uap = v;
    546 	struct proc	*p;
    547 	sigset_t	ss;
    548 	int		error;
    549 
    550 	if (SCARG(uap, set)) {
    551 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    552 		if (error)
    553 			return (error);
    554 	}
    555 
    556 	p = l->l_proc;
    557 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    558 }
    559 
    560 int
    561 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    562 	struct sigaltstack *oss)
    563 {
    564 
    565 	if (oss)
    566 		*oss = p->p_sigctx.ps_sigstk;
    567 
    568 	if (nss) {
    569 		if (nss->ss_flags & ~SS_ALLBITS)
    570 			return (EINVAL);
    571 
    572 		if (nss->ss_flags & SS_DISABLE) {
    573 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    574 				return (EINVAL);
    575 		} else {
    576 			if (nss->ss_size < MINSIGSTKSZ)
    577 				return (ENOMEM);
    578 		}
    579 		p->p_sigctx.ps_sigstk = *nss;
    580 	}
    581 
    582 	return (0);
    583 }
    584 
    585 /* ARGSUSED */
    586 int
    587 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    588 {
    589 	struct sys___sigaltstack14_args /* {
    590 		syscallarg(const struct sigaltstack *)	nss;
    591 		syscallarg(struct sigaltstack *)	oss;
    592 	} */ *uap = v;
    593 	struct proc		*p;
    594 	struct sigaltstack	nss, oss;
    595 	int			error;
    596 
    597 	if (SCARG(uap, nss)) {
    598 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    599 		if (error)
    600 			return (error);
    601 	}
    602 	p = l->l_proc;
    603 	error = sigaltstack1(p,
    604 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    605 	if (error)
    606 		return (error);
    607 	if (SCARG(uap, oss)) {
    608 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    609 		if (error)
    610 			return (error);
    611 	}
    612 	return (0);
    613 }
    614 
    615 /* ARGSUSED */
    616 int
    617 sys_kill(struct lwp *l, void *v, register_t *retval)
    618 {
    619 	struct sys_kill_args /* {
    620 		syscallarg(int)	pid;
    621 		syscallarg(int)	signum;
    622 	} */ *uap = v;
    623 	struct proc	*cp, *p;
    624 	struct pcred	*pc;
    625 	ksiginfo_t	ksi;
    626 
    627 	cp = l->l_proc;
    628 	pc = cp->p_cred;
    629 	if ((u_int)SCARG(uap, signum) >= NSIG)
    630 		return (EINVAL);
    631 	memset(&ksi, 0, sizeof(ksi));
    632 	ksi.ksi_signo = SCARG(uap, signum);
    633 	ksi.ksi_code = SI_USER;
    634 	ksi.ksi_pid = cp->p_pid;
    635 	ksi.ksi_uid = cp->p_ucred->cr_uid;
    636 	if (SCARG(uap, pid) > 0) {
    637 		/* kill single process */
    638 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    639 			return (ESRCH);
    640 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    641 			return (EPERM);
    642 		if (SCARG(uap, signum))
    643 			kpsignal(p, &ksi, NULL);
    644 		return (0);
    645 	}
    646 	switch (SCARG(uap, pid)) {
    647 	case -1:		/* broadcast signal */
    648 		return (killpg1(cp, &ksi, 0, 1));
    649 	case 0:			/* signal own process group */
    650 		return (killpg1(cp, &ksi, 0, 0));
    651 	default:		/* negative explicit process group */
    652 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
    653 	}
    654 	/* NOTREACHED */
    655 }
    656 
    657 /*
    658  * Common code for kill process group/broadcast kill.
    659  * cp is calling process.
    660  */
    661 int
    662 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
    663 {
    664 	struct proc	*p;
    665 	struct pcred	*pc;
    666 	struct pgrp	*pgrp;
    667 	int		nfound;
    668 	int		signum = ksi->ksi_signo;
    669 
    670 	pc = cp->p_cred;
    671 	nfound = 0;
    672 	if (all) {
    673 		/*
    674 		 * broadcast
    675 		 */
    676 		proclist_lock_read();
    677 		LIST_FOREACH(p, &allproc, p_list) {
    678 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    679 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    680 				continue;
    681 			nfound++;
    682 			if (signum)
    683 				kpsignal(p, ksi, NULL);
    684 		}
    685 		proclist_unlock_read();
    686 	} else {
    687 		if (pgid == 0)
    688 			/*
    689 			 * zero pgid means send to my process group.
    690 			 */
    691 			pgrp = cp->p_pgrp;
    692 		else {
    693 			pgrp = pgfind(pgid);
    694 			if (pgrp == NULL)
    695 				return (ESRCH);
    696 		}
    697 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    698 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    699 			    !CANSIGNAL(cp, pc, p, signum))
    700 				continue;
    701 			nfound++;
    702 			if (signum && P_ZOMBIE(p) == 0)
    703 				kpsignal(p, ksi, NULL);
    704 		}
    705 	}
    706 	return (nfound ? 0 : ESRCH);
    707 }
    708 
    709 /*
    710  * Send a signal to a process group.
    711  */
    712 void
    713 gsignal(int pgid, int signum)
    714 {
    715 	ksiginfo_t ksi;
    716 	memset(&ksi, 0, sizeof(ksi));
    717 	ksi.ksi_signo = signum;
    718 	kgsignal(pgid, &ksi, NULL);
    719 }
    720 
    721 void
    722 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    723 {
    724 	struct pgrp *pgrp;
    725 
    726 	if (pgid && (pgrp = pgfind(pgid)))
    727 		kpgsignal(pgrp, ksi, data, 0);
    728 }
    729 
    730 /*
    731  * Send a signal to a process group. If checktty is 1,
    732  * limit to members which have a controlling terminal.
    733  */
    734 void
    735 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    736 {
    737 	ksiginfo_t ksi;
    738 	memset(&ksi, 0, sizeof(ksi));
    739 	ksi.ksi_signo = sig;
    740 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    741 }
    742 
    743 void
    744 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    745 {
    746 	struct proc *p;
    747 
    748 	if (pgrp)
    749 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    750 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    751 				kpsignal(p, ksi, data);
    752 }
    753 
    754 /*
    755  * Send a signal caused by a trap to the current process.
    756  * If it will be caught immediately, deliver it with correct code.
    757  * Otherwise, post it normally.
    758  */
    759 #ifndef __HAVE_SIGINFO
    760 void _trapsignal(struct lwp *, ksiginfo_t *);
    761 void
    762 trapsignal(struct lwp *l, int signum, u_long code)
    763 {
    764 #define trapsignal _trapsignal
    765 	ksiginfo_t ksi;
    766 	memset(&ksi, 0, sizeof(ksi));
    767 	ksi.ksi_signo = signum;
    768 	ksi.ksi_trap = (int)code;
    769 	trapsignal(l, &ksi);
    770 }
    771 #endif
    772 
    773 void
    774 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    775 {
    776 	struct proc	*p;
    777 	struct sigacts	*ps;
    778 	int signum = ksi->ksi_signo;
    779 
    780 	p = l->l_proc;
    781 	ps = p->p_sigacts;
    782 	if ((p->p_flag & P_TRACED) == 0 &&
    783 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    784 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    785 		p->p_stats->p_ru.ru_nsignals++;
    786 #ifdef KTRACE
    787 #ifdef notyet
    788 		if (KTRPOINT(p, KTR_PSIGINFO))
    789 			ktrpsiginfo(p, ksi, SIGACTION_PS(ps, signum).sa_handler,
    790 			    &p->p_sigctx.ps_sigmask);
    791 #else
    792 		if (KTRPOINT(p, KTR_PSIG))
    793 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
    794 			    &p->p_sigctx.ps_sigmask, 0);
    795 #endif
    796 #endif
    797 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    798 		(void) splsched();	/* XXXSMP */
    799 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    800 		    &p->p_sigctx.ps_sigmask);
    801 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    802 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    803 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    804 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    805 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    806 		}
    807 		(void) spl0();		/* XXXSMP */
    808 	} else {
    809 		/* XXX for core dump/debugger */
    810 		p->p_sigctx.ps_siginfo = *ksi;
    811 		p->p_sigctx.ps_lwp = l->l_lid;
    812 		kpsignal(p, ksi, NULL);
    813 	}
    814 }
    815 
    816 /*
    817  * Send the signal to the process.  If the signal has an action, the action
    818  * is usually performed by the target process rather than the caller; we add
    819  * the signal to the set of pending signals for the process.
    820  *
    821  * Exceptions:
    822  *   o When a stop signal is sent to a sleeping process that takes the
    823  *     default action, the process is stopped without awakening it.
    824  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    825  *     regardless of the signal action (eg, blocked or ignored).
    826  *
    827  * Other ignored signals are discarded immediately.
    828  *
    829  * XXXSMP: Invoked as psignal() or sched_psignal().
    830  */
    831 void
    832 psignal1(struct proc *p, int signum, int dolock)
    833 {
    834     ksiginfo_t ksi;
    835     memset(&ksi, 0, sizeof(ksi));
    836     ksi.ksi_signo = signum;
    837     kpsignal1(p, &ksi, NULL, dolock);
    838 }
    839 
    840 void
    841 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data,
    842 	int dolock)		/* XXXSMP: works, but icky */
    843 {
    844 	struct lwp *l, *suspended;
    845 	int	s = 0, prop, allsusp;
    846 	sig_t	action;
    847 	int	signum = ksi->ksi_signo;
    848 
    849 #ifdef DIAGNOSTIC
    850 	if (signum <= 0 || signum >= NSIG)
    851 		panic("psignal signal number %d", signum);
    852 
    853 
    854 	/* XXXSMP: works, but icky */
    855 	if (dolock)
    856 		SCHED_ASSERT_UNLOCKED();
    857 	else
    858 		SCHED_ASSERT_LOCKED();
    859 #endif
    860 
    861 	if (data) {
    862 		size_t fd;
    863 		struct filedesc *fdp = p->p_fd;
    864 		ksi->ksi_fd = -1;
    865 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    866 			struct file *fp = fdp->fd_ofiles[fd];
    867 			/* XXX: lock? */
    868 			if (fp && fp->f_data == data) {
    869 				ksi->ksi_fd = fd;
    870 				break;
    871 			}
    872 		}
    873 	}
    874 
    875 	/*
    876 	 * Notify any interested parties in the signal.
    877 	 */
    878 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
    879 
    880 	prop = sigprop[signum];
    881 
    882 	/*
    883 	 * If proc is traced, always give parent a chance.
    884 	 */
    885 	if (p->p_flag & P_TRACED)
    886 		action = SIG_DFL;
    887 	else {
    888 		/*
    889 		 * If the signal is being ignored,
    890 		 * then we forget about it immediately.
    891 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
    892 		 * and if it is set to SIG_IGN,
    893 		 * action will be SIG_DFL here.)
    894 		 */
    895 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
    896 			return;
    897 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
    898 			action = SIG_HOLD;
    899 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
    900 			action = SIG_CATCH;
    901 		else {
    902 			action = SIG_DFL;
    903 
    904 			if (prop & SA_KILL && p->p_nice > NZERO)
    905 				p->p_nice = NZERO;
    906 
    907 			/*
    908 			 * If sending a tty stop signal to a member of an
    909 			 * orphaned process group, discard the signal here if
    910 			 * the action is default; don't stop the process below
    911 			 * if sleeping, and don't clear any pending SIGCONT.
    912 			 */
    913 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
    914 				return;
    915 		}
    916 	}
    917 
    918 	if (prop & SA_CONT)
    919 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
    920 
    921 	if (prop & SA_STOP)
    922 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
    923 
    924 	sigaddset(&p->p_sigctx.ps_siglist, signum);
    925 
    926 	/* CHECKSIGS() is "inlined" here. */
    927 	p->p_sigctx.ps_sigcheck = 1;
    928 
    929 	/*
    930 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
    931 	 * please!), check if anything waits on it. If yes, clear the
    932 	 * pending signal from siglist set, save it to ps_sigwaited,
    933 	 * clear sigwait list, and wakeup any sigwaiters.
    934 	 * The signal won't be processed further here.
    935 	 */
    936 	if ((prop & SA_CANTMASK) == 0
    937 	    && p->p_sigctx.ps_sigwaited < 0
    938 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)
    939 	    &&  p->p_stat != SSTOP) {
    940 		sigdelset(&p->p_sigctx.ps_siglist, signum);
    941 		p->p_sigctx.ps_sigwaited = signum;
    942 		sigemptyset(&p->p_sigctx.ps_sigwait);
    943 
    944 		if (dolock)
    945 			wakeup_one(&p->p_sigctx.ps_sigwait);
    946 		else
    947 			sched_wakeup(&p->p_sigctx.ps_sigwait);
    948 		return;
    949 	}
    950 
    951 	/*
    952 	 * Defer further processing for signals which are held,
    953 	 * except that stopped processes must be continued by SIGCONT.
    954 	 */
    955 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
    956 		return;
    957 	/* XXXSMP: works, but icky */
    958 	if (dolock)
    959 		SCHED_LOCK(s);
    960 
    961 	/* XXXUPSXXX LWPs might go to sleep without passing signal handling */
    962 	if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
    963 	    && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
    964 		/*
    965 		 * At least one LWP is running or on a run queue.
    966 		 * The signal will be noticed when one of them returns
    967 		 * to userspace.
    968 		 */
    969 		signotify(p);
    970 		/*
    971 		 * The signal will be noticed very soon.
    972 		 */
    973 		goto out;
    974 	} else {
    975 		/* Process is sleeping or stopped */
    976 		if (p->p_flag & P_SA) {
    977 			struct lwp *l2 = p->p_sa->sa_vp;
    978 			l = NULL;
    979 			allsusp = 1;
    980 
    981 			if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
    982 				l = l2;
    983 			else if (l2->l_stat == LSSUSPENDED)
    984 				suspended = l2;
    985 			else if ((l2->l_stat != LSZOMB) &&
    986 				 (l2->l_stat != LSDEAD))
    987 				allsusp = 0;
    988 		} else {
    989 			/*
    990 			 * Find out if any of the sleeps are interruptable,
    991 			 * and if all the live LWPs remaining are suspended.
    992 			 */
    993 			allsusp = 1;
    994 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    995 				if (l->l_stat == LSSLEEP &&
    996 				    l->l_flag & L_SINTR)
    997 					break;
    998 				if (l->l_stat == LSSUSPENDED)
    999 					suspended = l;
   1000 				else if ((l->l_stat != LSZOMB) &&
   1001 				         (l->l_stat != LSDEAD))
   1002 					allsusp = 0;
   1003 			}
   1004 		}
   1005 		if (p->p_stat == SACTIVE) {
   1006 
   1007 
   1008 			if (l != NULL && (p->p_flag & P_TRACED))
   1009 				goto run;
   1010 
   1011 			/*
   1012 			 * If SIGCONT is default (or ignored) and process is
   1013 			 * asleep, we are finished; the process should not
   1014 			 * be awakened.
   1015 			 */
   1016 			if ((prop & SA_CONT) && action == SIG_DFL) {
   1017 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1018 				goto out;
   1019 			}
   1020 
   1021 			/*
   1022 			 * When a sleeping process receives a stop
   1023 			 * signal, process immediately if possible.
   1024 			 */
   1025 			if ((prop & SA_STOP) && action == SIG_DFL) {
   1026 				/*
   1027 				 * If a child holding parent blocked,
   1028 				 * stopping could cause deadlock.
   1029 				 */
   1030 				if (p->p_flag & P_PPWAIT)
   1031 					goto out;
   1032 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1033 				p->p_xstat = signum;
   1034 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1035 					/*
   1036 					 * XXXSMP: recursive call; don't lock
   1037 					 * the second time around.
   1038 					 */
   1039 					sched_psignal(p->p_pptr, SIGCHLD);
   1040 				}
   1041 				proc_stop(p);	/* XXXSMP: recurse? */
   1042 				goto out;
   1043 			}
   1044 
   1045 			if (l == NULL) {
   1046 				/*
   1047 				 * Special case: SIGKILL of a process
   1048 				 * which is entirely composed of
   1049 				 * suspended LWPs should succeed. We
   1050 				 * make this happen by unsuspending one of
   1051 				 * them.
   1052 				 */
   1053 				if (allsusp && (signum == SIGKILL))
   1054 					lwp_continue(suspended);
   1055 				goto out;
   1056 			}
   1057 			/*
   1058 			 * All other (caught or default) signals
   1059 			 * cause the process to run.
   1060 			 */
   1061 			goto runfast;
   1062 			/*NOTREACHED*/
   1063 		} else if (p->p_stat == SSTOP) {
   1064 			/* Process is stopped */
   1065 			/*
   1066 			 * If traced process is already stopped,
   1067 			 * then no further action is necessary.
   1068 			 */
   1069 			if (p->p_flag & P_TRACED)
   1070 				goto out;
   1071 
   1072 			/*
   1073 			 * Kill signal always sets processes running,
   1074 			 * if possible.
   1075 			 */
   1076 			if (signum == SIGKILL) {
   1077 				l = proc_unstop(p);
   1078 				if (l)
   1079 					goto runfast;
   1080 				goto out;
   1081 			}
   1082 
   1083 			if (prop & SA_CONT) {
   1084 				/*
   1085 				 * If SIGCONT is default (or ignored),
   1086 				 * we continue the process but don't
   1087 				 * leave the signal in ps_siglist, as
   1088 				 * it has no further action.  If
   1089 				 * SIGCONT is held, we continue the
   1090 				 * process and leave the signal in
   1091 				 * ps_siglist.  If the process catches
   1092 				 * SIGCONT, let it handle the signal
   1093 				 * itself.  If it isn't waiting on an
   1094 				 * event, then it goes back to run
   1095 				 * state.  Otherwise, process goes
   1096 				 * back to sleep state.
   1097 				 */
   1098 				if (action == SIG_DFL)
   1099 					sigdelset(&p->p_sigctx.ps_siglist,
   1100 					signum);
   1101 				l = proc_unstop(p);
   1102 				if (l && (action == SIG_CATCH))
   1103 					goto runfast;
   1104 				goto out;
   1105 			}
   1106 
   1107 			if (prop & SA_STOP) {
   1108 				/*
   1109 				 * Already stopped, don't need to stop again.
   1110 				 * (If we did the shell could get confused.)
   1111 				 */
   1112 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1113 				goto out;
   1114 			}
   1115 
   1116 			/*
   1117 			 * If a lwp is sleeping interruptibly, then
   1118 			 * wake it up; it will run until the kernel
   1119 			 * boundary, where it will stop in issignal(),
   1120 			 * since p->p_stat is still SSTOP. When the
   1121 			 * process is continued, it will be made
   1122 			 * runnable and can look at the signal.
   1123 			 */
   1124 			if (l)
   1125 				goto run;
   1126 			goto out;
   1127 		} else {
   1128 			/* Else what? */
   1129 			panic("psignal: Invalid process state %d.",
   1130 				p->p_stat);
   1131 		}
   1132 	}
   1133 	/*NOTREACHED*/
   1134 
   1135  runfast:
   1136 	/*
   1137 	 * Raise priority to at least PUSER.
   1138 	 */
   1139 	if (l->l_priority > PUSER)
   1140 		l->l_priority = PUSER;
   1141  run:
   1142 
   1143 	setrunnable(l);		/* XXXSMP: recurse? */
   1144  out:
   1145 	/* XXXSMP: works, but icky */
   1146 	if (dolock)
   1147 		SCHED_UNLOCK(s);
   1148 }
   1149 
   1150 void
   1151 kpsendsig(struct lwp *l, ksiginfo_t *ksi, sigset_t *mask)
   1152 {
   1153 	struct proc *p = l->l_proc;
   1154 	struct lwp *le, *li;
   1155 	siginfo_t *si;
   1156 
   1157 	if (p->p_flag & P_SA) {
   1158 
   1159 		/* XXXUPSXXX What if not on sa_vp ? */
   1160 
   1161 		int s = l->l_flag & L_SA;
   1162 		l->l_flag &= ~L_SA;
   1163 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1164 		si->_info = *ksi;
   1165 		le = li = NULL;
   1166 		if (ksi->ksi_trap)
   1167 			le = l;
   1168 		else
   1169 			li = l;
   1170 
   1171 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1172 			    sizeof(siginfo_t), si);
   1173 		l->l_flag |= s;
   1174 		return;
   1175 	}
   1176 
   1177 #ifdef __HAVE_SIGINFO
   1178 	(*p->p_emul->e_sendsig)(ksi, mask);
   1179 #else
   1180 	(*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, ksi->ksi_trap);
   1181 #endif
   1182 }
   1183 
   1184 static __inline int firstsig(const sigset_t *);
   1185 
   1186 static __inline int
   1187 firstsig(const sigset_t *ss)
   1188 {
   1189 	int sig;
   1190 
   1191 	sig = ffs(ss->__bits[0]);
   1192 	if (sig != 0)
   1193 		return (sig);
   1194 #if NSIG > 33
   1195 	sig = ffs(ss->__bits[1]);
   1196 	if (sig != 0)
   1197 		return (sig + 32);
   1198 #endif
   1199 #if NSIG > 65
   1200 	sig = ffs(ss->__bits[2]);
   1201 	if (sig != 0)
   1202 		return (sig + 64);
   1203 #endif
   1204 #if NSIG > 97
   1205 	sig = ffs(ss->__bits[3]);
   1206 	if (sig != 0)
   1207 		return (sig + 96);
   1208 #endif
   1209 	return (0);
   1210 }
   1211 
   1212 /*
   1213  * If the current process has received a signal (should be caught or cause
   1214  * termination, should interrupt current syscall), return the signal number.
   1215  * Stop signals with default action are processed immediately, then cleared;
   1216  * they aren't returned.  This is checked after each entry to the system for
   1217  * a syscall or trap (though this can usually be done without calling issignal
   1218  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1219  * sequence is
   1220  *
   1221  *	while (signum = CURSIG(curlwp))
   1222  *		postsig(signum);
   1223  */
   1224 int
   1225 issignal(struct lwp *l)
   1226 {
   1227 	struct proc	*p = l->l_proc;
   1228 	int		s = 0, signum, prop;
   1229 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1230 	sigset_t	ss;
   1231 
   1232 	if (l->l_flag & L_SA) {
   1233 		struct sadata *sa = p->p_sa;
   1234 
   1235 		/* Bail out if we do not own the virtual processor */
   1236 		if (sa->sa_vp != l)
   1237 			return 0;
   1238 	}
   1239 
   1240 	if (p->p_stat == SSTOP) {
   1241 		/*
   1242 		 * The process is stopped/stopping. Stop ourselves now that
   1243 		 * we're on the kernel/userspace boundary.
   1244 		 */
   1245 		if (dolock)
   1246 			SCHED_LOCK(s);
   1247 		l->l_stat = LSSTOP;
   1248 		p->p_nrlwps--;
   1249 		if (p->p_flag & P_TRACED)
   1250 			goto sigtraceswitch;
   1251 		else
   1252 			goto sigswitch;
   1253 	}
   1254 	for (;;) {
   1255 		sigpending1(p, &ss);
   1256 		if (p->p_flag & P_PPWAIT)
   1257 			sigminusset(&stopsigmask, &ss);
   1258 		signum = firstsig(&ss);
   1259 		if (signum == 0) {		 	/* no signal to send */
   1260 			p->p_sigctx.ps_sigcheck = 0;
   1261 			if (locked && dolock)
   1262 				SCHED_LOCK(s);
   1263 			return (0);
   1264 		}
   1265 							/* take the signal! */
   1266 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1267 
   1268 		/*
   1269 		 * We should see pending but ignored signals
   1270 		 * only if P_TRACED was on when they were posted.
   1271 		 */
   1272 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1273 		    (p->p_flag & P_TRACED) == 0)
   1274 			continue;
   1275 
   1276 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1277 			/*
   1278 			 * If traced, always stop, and stay
   1279 			 * stopped until released by the debugger.
   1280 			 */
   1281 			p->p_xstat = signum;
   1282 			if ((p->p_flag & P_FSTRACE) == 0)
   1283 				psignal1(p->p_pptr, SIGCHLD, dolock);
   1284 			if (dolock)
   1285 				SCHED_LOCK(s);
   1286 			proc_stop(p);
   1287 		sigtraceswitch:
   1288 			mi_switch(l, NULL);
   1289 			SCHED_ASSERT_UNLOCKED();
   1290 			if (dolock)
   1291 				splx(s);
   1292 			else
   1293 				dolock = 1;
   1294 
   1295 			/*
   1296 			 * If we are no longer being traced, or the parent
   1297 			 * didn't give us a signal, look for more signals.
   1298 			 */
   1299 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1300 				continue;
   1301 
   1302 			/*
   1303 			 * If the new signal is being masked, look for other
   1304 			 * signals.
   1305 			 */
   1306 			signum = p->p_xstat;
   1307 			p->p_xstat = 0;
   1308 			/*
   1309 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1310 			 * in setrunnable().
   1311 			 */
   1312 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1313 				continue;
   1314 							/* take the signal! */
   1315 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1316 		}
   1317 
   1318 		prop = sigprop[signum];
   1319 
   1320 		/*
   1321 		 * Decide whether the signal should be returned.
   1322 		 * Return the signal's number, or fall through
   1323 		 * to clear it from the pending mask.
   1324 		 */
   1325 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1326 
   1327 		case (long)SIG_DFL:
   1328 			/*
   1329 			 * Don't take default actions on system processes.
   1330 			 */
   1331 			if (p->p_pid <= 1) {
   1332 #ifdef DIAGNOSTIC
   1333 				/*
   1334 				 * Are you sure you want to ignore SIGSEGV
   1335 				 * in init? XXX
   1336 				 */
   1337 				printf("Process (pid %d) got signal %d\n",
   1338 				    p->p_pid, signum);
   1339 #endif
   1340 				break;		/* == ignore */
   1341 			}
   1342 			/*
   1343 			 * If there is a pending stop signal to process
   1344 			 * with default action, stop here,
   1345 			 * then clear the signal.  However,
   1346 			 * if process is member of an orphaned
   1347 			 * process group, ignore tty stop signals.
   1348 			 */
   1349 			if (prop & SA_STOP) {
   1350 				if (p->p_flag & P_TRACED ||
   1351 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1352 				    prop & SA_TTYSTOP))
   1353 					break;	/* == ignore */
   1354 				p->p_xstat = signum;
   1355 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1356 					psignal1(p->p_pptr, SIGCHLD, dolock);
   1357 				if (dolock)
   1358 					SCHED_LOCK(s);
   1359 				proc_stop(p);
   1360 			sigswitch:
   1361 				mi_switch(l, NULL);
   1362 				SCHED_ASSERT_UNLOCKED();
   1363 				if (dolock)
   1364 					splx(s);
   1365 				else
   1366 					dolock = 1;
   1367 				break;
   1368 			} else if (prop & SA_IGNORE) {
   1369 				/*
   1370 				 * Except for SIGCONT, shouldn't get here.
   1371 				 * Default action is to ignore; drop it.
   1372 				 */
   1373 				break;		/* == ignore */
   1374 			} else
   1375 				goto keep;
   1376 			/*NOTREACHED*/
   1377 
   1378 		case (long)SIG_IGN:
   1379 			/*
   1380 			 * Masking above should prevent us ever trying
   1381 			 * to take action on an ignored signal other
   1382 			 * than SIGCONT, unless process is traced.
   1383 			 */
   1384 #ifdef DEBUG_ISSIGNAL
   1385 			if ((prop & SA_CONT) == 0 &&
   1386 			    (p->p_flag & P_TRACED) == 0)
   1387 				printf("issignal\n");
   1388 #endif
   1389 			break;		/* == ignore */
   1390 
   1391 		default:
   1392 			/*
   1393 			 * This signal has an action, let
   1394 			 * postsig() process it.
   1395 			 */
   1396 			goto keep;
   1397 		}
   1398 	}
   1399 	/* NOTREACHED */
   1400 
   1401  keep:
   1402 						/* leave the signal for later */
   1403 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1404 	CHECKSIGS(p);
   1405 	if (locked && dolock)
   1406 		SCHED_LOCK(s);
   1407 	return (signum);
   1408 }
   1409 
   1410 /*
   1411  * Put the argument process into the stopped state and notify the parent
   1412  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1413  * on the run queue.
   1414  */
   1415 static void
   1416 proc_stop(struct proc *p)
   1417 {
   1418 	struct lwp *l;
   1419 
   1420 	SCHED_ASSERT_LOCKED();
   1421 
   1422 	/* XXX lock process LWP state */
   1423 	p->p_stat = SSTOP;
   1424 	p->p_flag &= ~P_WAITED;
   1425 
   1426 	/*
   1427 	 * Put as many LWP's as possible in stopped state.
   1428 	 * Sleeping ones will notice the stopped state as they try to
   1429 	 * return to userspace.
   1430 	 */
   1431 
   1432 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1433 		if ((l->l_stat == LSONPROC) && (l == curlwp)) {
   1434 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1435 			 * is curlwp and hence is about to be mi_switched
   1436 			 * away; the only callers of proc_stop() are:
   1437 			 * - psignal
   1438 			 * - issignal()
   1439 			 * For the former, proc_stop() is only called when
   1440 			 * no processes are running, so we don't worry.
   1441 			 * For the latter, proc_stop() is called right
   1442 			 * before mi_switch().
   1443 			 */
   1444 			l->l_stat = LSSTOP;
   1445 			p->p_nrlwps--;
   1446 		}
   1447 		 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
   1448 			setrunnable(l);
   1449 		}
   1450 
   1451 /* !!!UPS!!! FIX ME */
   1452 #if 0
   1453 else if (l->l_stat == LSRUN) {
   1454 			/* Remove LWP from the run queue */
   1455 			remrunqueue(l);
   1456 			l->l_stat = LSSTOP;
   1457 			p->p_nrlwps--;
   1458 		} else if ((l->l_stat == LSSLEEP) ||
   1459 		    (l->l_stat == LSSUSPENDED) ||
   1460 		    (l->l_stat == LSZOMB) ||
   1461 		    (l->l_stat == LSDEAD)) {
   1462 			/*
   1463 			 * Don't do anything; let sleeping LWPs
   1464 			 * discover the stopped state of the process
   1465 			 * on their way out of the kernel; otherwise,
   1466 			 * things like NFS threads that sleep with
   1467 			 * locks will block the rest of the system
   1468 			 * from getting any work done.
   1469 			 *
   1470 			 * Suspended/dead/zombie LWPs aren't going
   1471 			 * anywhere, so we don't need to touch them.
   1472 			 */
   1473 		}
   1474 #ifdef DIAGNOSTIC
   1475 		else {
   1476 			panic("proc_stop: process %d lwp %d "
   1477 			      "in unstoppable state %d.\n",
   1478 			    p->p_pid, l->l_lid, l->l_stat);
   1479 		}
   1480 #endif
   1481 #endif
   1482 	}
   1483 	/* XXX unlock process LWP state */
   1484 
   1485 	sched_wakeup((caddr_t)p->p_pptr);
   1486 }
   1487 
   1488 /*
   1489  * Given a process in state SSTOP, set the state back to SACTIVE and
   1490  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1491  *
   1492  * If no LWPs ended up runnable (and therefore able to take a signal),
   1493  * return a LWP that is sleeping interruptably. The caller can wake
   1494  * that LWP up to take a signal.
   1495  */
   1496 struct lwp *
   1497 proc_unstop(struct proc *p)
   1498 {
   1499 	struct lwp *l, *lr = NULL;
   1500 	int cantake = 0;
   1501 
   1502 	SCHED_ASSERT_LOCKED();
   1503 
   1504 	/*
   1505 	 * Our caller wants to be informed if there are only sleeping
   1506 	 * and interruptable LWPs left after we have run so that it
   1507 	 * can invoke setrunnable() if required - return one of the
   1508 	 * interruptable LWPs if this is the case.
   1509 	 */
   1510 
   1511 	p->p_stat = SACTIVE;
   1512 	if (p->p_flag & P_SA) {
   1513 		/*
   1514 		 * Preferentially select the idle LWP as the interruptable
   1515 		 * LWP to return if it exists.
   1516 		 */
   1517 		lr = p->p_sa->sa_idle;
   1518 		if (lr != NULL)
   1519 			cantake = 1;
   1520 	}
   1521 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1522 		if (l->l_stat == LSRUN) {
   1523 			lr = NULL;
   1524 			cantake = 1;
   1525 		}
   1526 		if (l->l_stat != LSSTOP)
   1527 			continue;
   1528 
   1529 		if (l->l_wchan != NULL) {
   1530 			l->l_stat = LSSLEEP;
   1531 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1532 				lr = l;
   1533 				cantake = 1;
   1534 			}
   1535 		} else {
   1536 			setrunnable(l);
   1537 			lr = NULL;
   1538 			cantake = 1;
   1539 		}
   1540 	}
   1541 
   1542 	return lr;
   1543 }
   1544 
   1545 /*
   1546  * Take the action for the specified signal
   1547  * from the current set of pending signals.
   1548  */
   1549 void
   1550 postsig(int signum)
   1551 {
   1552 	struct lwp *l;
   1553 	struct proc	*p;
   1554 	struct sigacts	*ps;
   1555 	sig_t		action;
   1556 	sigset_t	*returnmask;
   1557 
   1558 	l = curlwp;
   1559 	p = l->l_proc;
   1560 	ps = p->p_sigacts;
   1561 #ifdef DIAGNOSTIC
   1562 	if (signum == 0)
   1563 		panic("postsig");
   1564 #endif
   1565 
   1566 	KERNEL_PROC_LOCK(l);
   1567 
   1568 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1569 	action = SIGACTION_PS(ps, signum).sa_handler;
   1570 #ifdef KTRACE
   1571 	if (KTRPOINT(p, KTR_PSIG))
   1572 		ktrpsig(p,
   1573 		    signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1574 		    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
   1575 #endif
   1576 	if (action == SIG_DFL) {
   1577 		/*
   1578 		 * Default action, where the default is to kill
   1579 		 * the process.  (Other cases were ignored above.)
   1580 		 */
   1581 		sigexit(l, signum);
   1582 		/* NOTREACHED */
   1583 	} else {
   1584 		ksiginfo_t ksi;
   1585 		/*
   1586 		 * If we get here, the signal must be caught.
   1587 		 */
   1588 #ifdef DIAGNOSTIC
   1589 		if (action == SIG_IGN ||
   1590 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1591 			panic("postsig action");
   1592 #endif
   1593 		/*
   1594 		 * Set the new mask value and also defer further
   1595 		 * occurrences of this signal.
   1596 		 *
   1597 		 * Special case: user has done a sigpause.  Here the
   1598 		 * current mask is not of interest, but rather the
   1599 		 * mask from before the sigpause is what we want
   1600 		 * restored after the signal processing is completed.
   1601 		 */
   1602 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1603 			returnmask = &p->p_sigctx.ps_oldmask;
   1604 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1605 		} else
   1606 			returnmask = &p->p_sigctx.ps_sigmask;
   1607 		p->p_stats->p_ru.ru_nsignals++;
   1608 		if (p->p_sigctx.ps_siginfo.ksi_signo != signum) {
   1609 			memset(&ksi, 0, sizeof(ksi));
   1610 			ksi.ksi_signo = signum;
   1611 		} else {
   1612 			ksi = p->p_sigctx.ps_siginfo;
   1613 			memset(&p->p_sigctx.ps_siginfo, 0,
   1614 			    sizeof(p->p_sigctx.ps_siginfo));
   1615 			p->p_sigctx.ps_lwp = 0;
   1616 		}
   1617 		kpsendsig(l, &ksi, returnmask);
   1618 		(void) splsched();	/* XXXSMP */
   1619 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1620 		    &p->p_sigctx.ps_sigmask);
   1621 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1622 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1623 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1624 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1625 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1626 		}
   1627 		(void) spl0();		/* XXXSMP */
   1628 	}
   1629 
   1630 	KERNEL_PROC_UNLOCK(l);
   1631 }
   1632 
   1633 /*
   1634  * Kill the current process for stated reason.
   1635  */
   1636 void
   1637 killproc(struct proc *p, const char *why)
   1638 {
   1639 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1640 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1641 	psignal(p, SIGKILL);
   1642 }
   1643 
   1644 /*
   1645  * Force the current process to exit with the specified signal, dumping core
   1646  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1647  * allowing unrecoverable failures to terminate the process without changing
   1648  * signal state.  Mark the accounting record with the signal termination.
   1649  * If dumping core, save the signal number for the debugger.  Calls exit and
   1650  * does not return.
   1651  */
   1652 
   1653 #if defined(DEBUG)
   1654 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1655 #else
   1656 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1657 #endif
   1658 
   1659 static	const char logcoredump[] =
   1660 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1661 static	const char lognocoredump[] =
   1662 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1663 
   1664 /* Wrapper function for use in p_userret */
   1665 static void
   1666 lwp_coredump_hook(struct lwp *l, void *arg)
   1667 {
   1668 	int s;
   1669 
   1670 	/*
   1671 	 * Suspend ourselves, so that the kernel stack and therefore
   1672 	 * the userland registers saved in the trapframe are around
   1673 	 * for coredump() to write them out.
   1674 	 */
   1675 	KERNEL_PROC_LOCK(l);
   1676 	l->l_flag &= ~L_DETACHED;
   1677 	SCHED_LOCK(s);
   1678 	l->l_stat = LSSUSPENDED;
   1679 	l->l_proc->p_nrlwps--;
   1680 	/* XXX NJWLWP check if this makes sense here: */
   1681 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1682 	mi_switch(l, NULL);
   1683 	SCHED_ASSERT_UNLOCKED();
   1684 	splx(s);
   1685 
   1686 	lwp_exit(l);
   1687 }
   1688 
   1689 void
   1690 sigexit(struct lwp *l, int signum)
   1691 {
   1692 	struct proc	*p;
   1693 #if 0
   1694 	struct lwp	*l2;
   1695 #endif
   1696 	int		error, exitsig;
   1697 
   1698 	p = l->l_proc;
   1699 
   1700 	/*
   1701 	 * Don't permit coredump() or exit1() multiple times
   1702 	 * in the same process.
   1703 	 */
   1704 	if (p->p_flag & P_WEXIT) {
   1705 		KERNEL_PROC_UNLOCK(l);
   1706 		(*p->p_userret)(l, p->p_userret_arg);
   1707 	}
   1708 	p->p_flag |= P_WEXIT;
   1709 	/* We don't want to switch away from exiting. */
   1710 	/* XXX multiprocessor: stop LWPs on other processors. */
   1711 #if 0
   1712 	if (p->p_flag & P_SA) {
   1713 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1714 		    l2->l_flag &= ~L_SA;
   1715 		p->p_flag &= ~P_SA;
   1716 	}
   1717 #endif
   1718 
   1719 	/* Make other LWPs stick around long enough to be dumped */
   1720 	p->p_userret = lwp_coredump_hook;
   1721 	p->p_userret_arg = NULL;
   1722 
   1723 	exitsig = signum;
   1724 	p->p_acflag |= AXSIG;
   1725 	if (sigprop[signum] & SA_CORE) {
   1726 		p->p_sigctx.ps_siginfo.ksi_signo = signum;
   1727 		if ((error = coredump(l)) == 0)
   1728 			exitsig |= WCOREFLAG;
   1729 
   1730 		if (kern_logsigexit) {
   1731 			/* XXX What if we ever have really large UIDs? */
   1732 			int uid = p->p_cred && p->p_ucred ?
   1733 				(int) p->p_ucred->cr_uid : -1;
   1734 
   1735 			if (error)
   1736 				log(LOG_INFO, lognocoredump, p->p_pid,
   1737 				    p->p_comm, uid, signum, error);
   1738 			else
   1739 				log(LOG_INFO, logcoredump, p->p_pid,
   1740 				    p->p_comm, uid, signum);
   1741 		}
   1742 
   1743 	}
   1744 
   1745 	exit1(l, W_EXITCODE(0, exitsig));
   1746 	/* NOTREACHED */
   1747 }
   1748 
   1749 /*
   1750  * Dump core, into a file named "progname.core" or "core" (depending on the
   1751  * value of shortcorename), unless the process was setuid/setgid.
   1752  */
   1753 int
   1754 coredump(struct lwp *l)
   1755 {
   1756 	struct vnode		*vp;
   1757 	struct proc		*p;
   1758 	struct vmspace		*vm;
   1759 	struct ucred		*cred;
   1760 	struct nameidata	nd;
   1761 	struct vattr		vattr;
   1762 	int			error, error1;
   1763 	char			name[MAXPATHLEN];
   1764 
   1765 	p = l->l_proc;
   1766 	vm = p->p_vmspace;
   1767 	cred = p->p_cred->pc_ucred;
   1768 
   1769 	/*
   1770 	 * Make sure the process has not set-id, to prevent data leaks.
   1771 	 */
   1772 	if (p->p_flag & P_SUGID)
   1773 		return (EPERM);
   1774 
   1775 	/*
   1776 	 * Refuse to core if the data + stack + user size is larger than
   1777 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   1778 	 * data.
   1779 	 */
   1780 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   1781 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   1782 		return (EFBIG);		/* better error code? */
   1783 
   1784 	/*
   1785 	 * The core dump will go in the current working directory.  Make
   1786 	 * sure that the directory is still there and that the mount flags
   1787 	 * allow us to write core dumps there.
   1788 	 */
   1789 	vp = p->p_cwdi->cwdi_cdir;
   1790 	if (vp->v_mount == NULL ||
   1791 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   1792 		return (EPERM);
   1793 
   1794 	error = build_corename(p, name);
   1795 	if (error)
   1796 		return error;
   1797 
   1798 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   1799 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   1800 	if (error)
   1801 		return (error);
   1802 	vp = nd.ni_vp;
   1803 
   1804 	/* Don't dump to non-regular files or files with links. */
   1805 	if (vp->v_type != VREG ||
   1806 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   1807 		error = EINVAL;
   1808 		goto out;
   1809 	}
   1810 	VATTR_NULL(&vattr);
   1811 	vattr.va_size = 0;
   1812 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   1813 	VOP_SETATTR(vp, &vattr, cred, p);
   1814 	p->p_acflag |= ACORE;
   1815 
   1816 	/* Now dump the actual core file. */
   1817 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   1818  out:
   1819 	VOP_UNLOCK(vp, 0);
   1820 	error1 = vn_close(vp, FWRITE, cred, p);
   1821 	if (error == 0)
   1822 		error = error1;
   1823 	return (error);
   1824 }
   1825 
   1826 /*
   1827  * Nonexistent system call-- signal process (may want to handle it).
   1828  * Flag error in case process won't see signal immediately (blocked or ignored).
   1829  */
   1830 /* ARGSUSED */
   1831 int
   1832 sys_nosys(struct lwp *l, void *v, register_t *retval)
   1833 {
   1834 	struct proc 	*p;
   1835 
   1836 	p = l->l_proc;
   1837 	psignal(p, SIGSYS);
   1838 	return (ENOSYS);
   1839 }
   1840 
   1841 static int
   1842 build_corename(struct proc *p, char dst[MAXPATHLEN])
   1843 {
   1844 	const char	*s;
   1845 	char		*d, *end;
   1846 	int		i;
   1847 
   1848 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   1849 	    *s != '\0'; s++) {
   1850 		if (*s == '%') {
   1851 			switch (*(s + 1)) {
   1852 			case 'n':
   1853 				i = snprintf(d, end - d, "%s", p->p_comm);
   1854 				break;
   1855 			case 'p':
   1856 				i = snprintf(d, end - d, "%d", p->p_pid);
   1857 				break;
   1858 			case 'u':
   1859 				i = snprintf(d, end - d, "%.*s",
   1860 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   1861 				    p->p_pgrp->pg_session->s_login);
   1862 				break;
   1863 			case 't':
   1864 				i = snprintf(d, end - d, "%ld",
   1865 				    p->p_stats->p_start.tv_sec);
   1866 				break;
   1867 			default:
   1868 				goto copy;
   1869 			}
   1870 			d += i;
   1871 			s++;
   1872 		} else {
   1873  copy:			*d = *s;
   1874 			d++;
   1875 		}
   1876 		if (d >= end)
   1877 			return (ENAMETOOLONG);
   1878 	}
   1879 	*d = '\0';
   1880 	return 0;
   1881 }
   1882 
   1883 void
   1884 getucontext(struct lwp *l, ucontext_t *ucp)
   1885 {
   1886 	struct proc	*p;
   1887 
   1888 	p = l->l_proc;
   1889 
   1890 	ucp->uc_flags = 0;
   1891 	ucp->uc_link = l->l_ctxlink;
   1892 
   1893 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   1894 	ucp->uc_flags |= _UC_SIGMASK;
   1895 
   1896 	/*
   1897 	 * The (unsupplied) definition of the `current execution stack'
   1898 	 * in the System V Interface Definition appears to allow returning
   1899 	 * the main context stack.
   1900 	 */
   1901 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   1902 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   1903 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   1904 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   1905 	} else {
   1906 		/* Simply copy alternate signal execution stack. */
   1907 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   1908 	}
   1909 	ucp->uc_flags |= _UC_STACK;
   1910 
   1911 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   1912 }
   1913 
   1914 /* ARGSUSED */
   1915 int
   1916 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   1917 {
   1918 	struct sys_getcontext_args /* {
   1919 		syscallarg(struct __ucontext *) ucp;
   1920 	} */ *uap = v;
   1921 	ucontext_t uc;
   1922 
   1923 	getucontext(l, &uc);
   1924 
   1925 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   1926 }
   1927 
   1928 int
   1929 setucontext(struct lwp *l, const ucontext_t *ucp)
   1930 {
   1931 	struct proc	*p;
   1932 	int		error;
   1933 
   1934 	p = l->l_proc;
   1935 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   1936 		return (error);
   1937 	l->l_ctxlink = ucp->uc_link;
   1938 	/*
   1939 	 * We might want to take care of the stack portion here but currently
   1940 	 * don't; see the comment in getucontext().
   1941 	 */
   1942 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   1943 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   1944 
   1945 	return 0;
   1946 }
   1947 
   1948 /* ARGSUSED */
   1949 int
   1950 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   1951 {
   1952 	struct sys_setcontext_args /* {
   1953 		syscallarg(const ucontext_t *) ucp;
   1954 	} */ *uap = v;
   1955 	ucontext_t uc;
   1956 	int error;
   1957 
   1958 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   1959 		exit1(l, W_EXITCODE(0, 0));
   1960 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   1961 	    (error = setucontext(l, &uc)) != 0)
   1962 		return (error);
   1963 
   1964 	return (EJUSTRETURN);
   1965 }
   1966 
   1967 /*
   1968  * sigtimedwait(2) system call, used also for implementation
   1969  * of sigwaitinfo() and sigwait().
   1970  *
   1971  * This only handles single LWP in signal wait. libpthread provides
   1972  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   1973  *
   1974  * XXX no support for queued signals, si_code is always SI_USER.
   1975  */
   1976 int
   1977 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   1978 {
   1979 	struct sys___sigtimedwait_args /* {
   1980 		syscallarg(const sigset_t *) set;
   1981 		syscallarg(siginfo_t *) info;
   1982 		syscallarg(struct timespec *) timeout;
   1983 	} */ *uap = v;
   1984 	sigset_t waitset, twaitset;
   1985 	struct proc *p = l->l_proc;
   1986 	int error, signum, s;
   1987 	int timo = 0;
   1988 	struct timeval tvstart;
   1989 	struct timespec ts;
   1990 
   1991 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
   1992 		return (error);
   1993 
   1994 	/*
   1995 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   1996 	 * ignore SA_CANTMASK signals in waitset, we do this
   1997 	 * only for the below siglist check.
   1998 	 */
   1999 	sigminusset(&sigcantmask, &waitset);
   2000 
   2001 	/*
   2002 	 * First scan siglist and check if there is signal from
   2003 	 * our waitset already pending.
   2004 	 */
   2005 	twaitset = waitset;
   2006 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2007 	if ((signum = firstsig(&twaitset))) {
   2008 		/* found pending signal */
   2009 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2010 		goto sig;
   2011 	}
   2012 
   2013 	/*
   2014 	 * Calculate timeout, if it was specified.
   2015 	 */
   2016 	if (SCARG(uap, timeout)) {
   2017 		uint64_t ms;
   2018 
   2019 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   2020 			return (error);
   2021 
   2022 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2023 		timo = mstohz(ms);
   2024 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2025 			timo = 1;
   2026 		if (timo <= 0)
   2027 			return (EAGAIN);
   2028 
   2029 		/*
   2030 		 * Remember current mono_time, it would be used in
   2031 		 * ECANCELED/ERESTART case.
   2032 		 */
   2033 		s = splclock();
   2034 		tvstart = mono_time;
   2035 		splx(s);
   2036 	}
   2037 
   2038 	/*
   2039 	 * Setup ps_sigwait list.
   2040 	 */
   2041 	p->p_sigctx.ps_sigwaited = -1;
   2042 	p->p_sigctx.ps_sigwait = waitset;
   2043 
   2044 	/*
   2045 	 * Wait for signal to arrive. We can either be woken up or
   2046 	 * time out.
   2047 	 */
   2048 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2049 
   2050 	/*
   2051 	 * Check if a signal from our wait set has arrived, or if it
   2052 	 * was mere wakeup.
   2053 	 */
   2054 	if (!error) {
   2055 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
   2056 			/* wakeup via _lwp_wakeup() */
   2057 			error = ECANCELED;
   2058 		}
   2059 	}
   2060 
   2061 	/*
   2062 	 * On error, clear sigwait indication. psignal1() sets it
   2063 	 * in !error case.
   2064 	 */
   2065 	if (error) {
   2066 		p->p_sigctx.ps_sigwaited = 0;
   2067 
   2068 		/*
   2069 		 * If the sleep was interrupted (either by signal or wakeup),
   2070 		 * update the timeout and copyout new value back.
   2071 		 * It would be used when the syscall would be restarted
   2072 		 * or called again.
   2073 		 */
   2074 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2075 			struct timeval tvnow, tvtimo;
   2076 			int err;
   2077 
   2078 			s = splclock();
   2079 			tvnow = mono_time;
   2080 			splx(s);
   2081 
   2082 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   2083 
   2084 			/* compute how much time has passed since start */
   2085 			timersub(&tvnow, &tvstart, &tvnow);
   2086 			/* substract passed time from timeout */
   2087 			timersub(&tvtimo, &tvnow, &tvtimo);
   2088 
   2089 			if (tvtimo.tv_sec < 0)
   2090 				return (EAGAIN);
   2091 
   2092 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   2093 
   2094 			/* copy updated timeout to userland */
   2095 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
   2096 				return (err);
   2097 		}
   2098 
   2099 		return (error);
   2100 	}
   2101 
   2102 	/*
   2103 	 * If a signal from the wait set arrived, copy it to userland.
   2104 	 * XXX no queued signals for now
   2105 	 */
   2106 	if (signum > 0) {
   2107 		siginfo_t si;
   2108 
   2109  sig:
   2110 		memset(&si, 0, sizeof(si));
   2111 		si.si_signo = signum;
   2112 		si.si_code = SI_USER;
   2113 
   2114 		error = copyout(&si, SCARG(uap, info), sizeof(si));
   2115 		if (error)
   2116 			return (error);
   2117 	}
   2118 
   2119 	return (0);
   2120 }
   2121 
   2122 /*
   2123  * Returns true if signal is ignored or masked for passed process.
   2124  */
   2125 int
   2126 sigismasked(struct proc *p, int sig)
   2127 {
   2128 
   2129 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2130 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2131 }
   2132 
   2133 static int
   2134 filt_sigattach(struct knote *kn)
   2135 {
   2136 	struct proc *p = curproc;
   2137 
   2138 	kn->kn_ptr.p_proc = p;
   2139 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2140 
   2141 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2142 
   2143 	return (0);
   2144 }
   2145 
   2146 static void
   2147 filt_sigdetach(struct knote *kn)
   2148 {
   2149 	struct proc *p = kn->kn_ptr.p_proc;
   2150 
   2151 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2152 }
   2153 
   2154 /*
   2155  * signal knotes are shared with proc knotes, so we apply a mask to
   2156  * the hint in order to differentiate them from process hints.  This
   2157  * could be avoided by using a signal-specific knote list, but probably
   2158  * isn't worth the trouble.
   2159  */
   2160 static int
   2161 filt_signal(struct knote *kn, long hint)
   2162 {
   2163 
   2164 	if (hint & NOTE_SIGNAL) {
   2165 		hint &= ~NOTE_SIGNAL;
   2166 
   2167 		if (kn->kn_id == hint)
   2168 			kn->kn_data++;
   2169 	}
   2170 	return (kn->kn_data != 0);
   2171 }
   2172 
   2173 const struct filterops sig_filtops = {
   2174 	0, filt_sigattach, filt_sigdetach, filt_signal
   2175 };
   2176