Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.150
      1 /*	$NetBSD: kern_sig.c,v 1.150 2003/09/11 01:32:09 cl Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.150 2003/09/11 01:32:09 cl Exp $");
     41 
     42 #include "opt_ktrace.h"
     43 #include "opt_compat_sunos.h"
     44 #include "opt_compat_netbsd32.h"
     45 
     46 #define	SIGPROP		/* include signal properties table */
     47 #include <sys/param.h>
     48 #include <sys/signalvar.h>
     49 #include <sys/resourcevar.h>
     50 #include <sys/namei.h>
     51 #include <sys/vnode.h>
     52 #include <sys/proc.h>
     53 #include <sys/systm.h>
     54 #include <sys/timeb.h>
     55 #include <sys/times.h>
     56 #include <sys/buf.h>
     57 #include <sys/acct.h>
     58 #include <sys/file.h>
     59 #include <sys/kernel.h>
     60 #include <sys/wait.h>
     61 #include <sys/ktrace.h>
     62 #include <sys/syslog.h>
     63 #include <sys/stat.h>
     64 #include <sys/core.h>
     65 #include <sys/filedesc.h>
     66 #include <sys/malloc.h>
     67 #include <sys/pool.h>
     68 #include <sys/ucontext.h>
     69 #include <sys/sa.h>
     70 #include <sys/savar.h>
     71 #include <sys/exec.h>
     72 
     73 #include <sys/mount.h>
     74 #include <sys/syscallargs.h>
     75 
     76 #include <machine/cpu.h>
     77 
     78 #include <sys/user.h>		/* for coredump */
     79 
     80 #include <uvm/uvm_extern.h>
     81 
     82 static void	proc_stop(struct proc *p);
     83 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     84 sigset_t	contsigmask, stopsigmask, sigcantmask;
     85 
     86 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     87 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     88 
     89 /*
     90  * Can process p, with pcred pc, send the signal signum to process q?
     91  */
     92 #define	CANSIGNAL(p, pc, q, signum) \
     93 	((pc)->pc_ucred->cr_uid == 0 || \
     94 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
     95 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
     96 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
     97 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
     98 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
     99 
    100 /*
    101  * Initialize signal-related data structures.
    102  */
    103 void
    104 signal_init(void)
    105 {
    106 
    107 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    108 	    &pool_allocator_nointr);
    109 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    110 	    &pool_allocator_nointr);
    111 }
    112 
    113 /*
    114  * Create an initial sigctx structure, using the same signal state
    115  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    116  * copy it from parent.
    117  */
    118 void
    119 sigactsinit(struct proc *np, struct proc *pp, int share)
    120 {
    121 	struct sigacts *ps;
    122 
    123 	if (share) {
    124 		np->p_sigacts = pp->p_sigacts;
    125 		pp->p_sigacts->sa_refcnt++;
    126 	} else {
    127 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    128 		if (pp)
    129 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    130 		else
    131 			memset(ps, '\0', sizeof(struct sigacts));
    132 		ps->sa_refcnt = 1;
    133 		np->p_sigacts = ps;
    134 	}
    135 }
    136 
    137 /*
    138  * Make this process not share its sigctx, maintaining all
    139  * signal state.
    140  */
    141 void
    142 sigactsunshare(struct proc *p)
    143 {
    144 	struct sigacts *oldps;
    145 
    146 	if (p->p_sigacts->sa_refcnt == 1)
    147 		return;
    148 
    149 	oldps = p->p_sigacts;
    150 	sigactsinit(p, NULL, 0);
    151 
    152 	if (--oldps->sa_refcnt == 0)
    153 		pool_put(&sigacts_pool, oldps);
    154 }
    155 
    156 /*
    157  * Release a sigctx structure.
    158  */
    159 void
    160 sigactsfree(struct proc *p)
    161 {
    162 	struct sigacts *ps;
    163 
    164 	ps = p->p_sigacts;
    165 	if (--ps->sa_refcnt > 0)
    166 		return;
    167 
    168 	pool_put(&sigacts_pool, ps);
    169 }
    170 
    171 int
    172 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    173 	struct sigaction *osa, void *tramp, int vers)
    174 {
    175 	struct sigacts	*ps;
    176 	int		prop;
    177 
    178 	ps = p->p_sigacts;
    179 	if (signum <= 0 || signum >= NSIG)
    180 		return (EINVAL);
    181 
    182 	/*
    183 	 * Trampoline ABI version 0 is reserved for the legacy
    184 	 * kernel-provided on-stack trampoline.  Conversely, if
    185 	 * we are using a non-0 ABI version, we must have a
    186 	 * trampoline.
    187 	 */
    188 	if ((vers != 0 && tramp == NULL) ||
    189 	    (vers == 0 && tramp != NULL))
    190 		return (EINVAL);
    191 
    192 	if (osa)
    193 		*osa = SIGACTION_PS(ps, signum);
    194 
    195 	if (nsa) {
    196 		if (nsa->sa_flags & ~SA_ALLBITS)
    197 			return (EINVAL);
    198 
    199 #ifndef __HAVE_SIGINFO
    200 		if (nsa->sa_flags & SA_SIGINFO)
    201 			return (EINVAL);
    202 #endif
    203 
    204 		prop = sigprop[signum];
    205 		if (prop & SA_CANTMASK)
    206 			return (EINVAL);
    207 
    208 		(void) splsched();	/* XXXSMP */
    209 		SIGACTION_PS(ps, signum) = *nsa;
    210 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    211 		ps->sa_sigdesc[signum].sd_vers = vers;
    212 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    213 		if ((prop & SA_NORESET) != 0)
    214 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    215 		if (signum == SIGCHLD) {
    216 			if (nsa->sa_flags & SA_NOCLDSTOP)
    217 				p->p_flag |= P_NOCLDSTOP;
    218 			else
    219 				p->p_flag &= ~P_NOCLDSTOP;
    220 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    221 				/*
    222 				 * Paranoia: since SA_NOCLDWAIT is implemented
    223 				 * by reparenting the dying child to PID 1 (and
    224 				 * trust it to reap the zombie), PID 1 itself
    225 				 * is forbidden to set SA_NOCLDWAIT.
    226 				 */
    227 				if (p->p_pid == 1)
    228 					p->p_flag &= ~P_NOCLDWAIT;
    229 				else
    230 					p->p_flag |= P_NOCLDWAIT;
    231 			} else
    232 				p->p_flag &= ~P_NOCLDWAIT;
    233 		}
    234 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    235 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    236 		else
    237 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    238 		/*
    239 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    240 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    241 		 * to ignore. However, don't put SIGCONT in
    242 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    243 	 	 */
    244 		if (nsa->sa_handler == SIG_IGN ||
    245 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    246 						/* never to be seen again */
    247 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    248 			if (signum != SIGCONT) {
    249 						/* easier in psignal */
    250 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    251 			}
    252 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    253 		} else {
    254 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    255 			if (nsa->sa_handler == SIG_DFL)
    256 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    257 			else
    258 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    259 		}
    260 		(void) spl0();
    261 	}
    262 
    263 	return (0);
    264 }
    265 
    266 /* ARGSUSED */
    267 int
    268 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    269 {
    270 	struct sys___sigaction14_args /* {
    271 		syscallarg(int)				signum;
    272 		syscallarg(const struct sigaction *)	nsa;
    273 		syscallarg(struct sigaction *)		osa;
    274 	} */ *uap = v;
    275 	struct proc		*p;
    276 	struct sigaction	nsa, osa;
    277 	int			error;
    278 
    279 	if (SCARG(uap, nsa)) {
    280 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    281 		if (error)
    282 			return (error);
    283 	}
    284 	p = l->l_proc;
    285 	error = sigaction1(p, SCARG(uap, signum),
    286 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    287 	    NULL, 0);
    288 	if (error)
    289 		return (error);
    290 	if (SCARG(uap, osa)) {
    291 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    292 		if (error)
    293 			return (error);
    294 	}
    295 	return (0);
    296 }
    297 
    298 /* ARGSUSED */
    299 int
    300 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    301 {
    302 	struct sys___sigaction_sigtramp_args /* {
    303 		syscallarg(int)				signum;
    304 		syscallarg(const struct sigaction *)	nsa;
    305 		syscallarg(struct sigaction *)		osa;
    306 		syscallarg(void *)			tramp;
    307 		syscallarg(int)				vers;
    308 	} */ *uap = v;
    309 	struct proc *p = l->l_proc;
    310 	struct sigaction nsa, osa;
    311 	int error;
    312 
    313 	if (SCARG(uap, nsa)) {
    314 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    315 		if (error)
    316 			return (error);
    317 	}
    318 	error = sigaction1(p, SCARG(uap, signum),
    319 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    320 	    SCARG(uap, tramp), SCARG(uap, vers));
    321 	if (error)
    322 		return (error);
    323 	if (SCARG(uap, osa)) {
    324 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    325 		if (error)
    326 			return (error);
    327 	}
    328 	return (0);
    329 }
    330 
    331 /*
    332  * Initialize signal state for process 0;
    333  * set to ignore signals that are ignored by default and disable the signal
    334  * stack.
    335  */
    336 void
    337 siginit(struct proc *p)
    338 {
    339 	struct sigacts	*ps;
    340 	int		signum, prop;
    341 
    342 	ps = p->p_sigacts;
    343 	sigemptyset(&contsigmask);
    344 	sigemptyset(&stopsigmask);
    345 	sigemptyset(&sigcantmask);
    346 	for (signum = 1; signum < NSIG; signum++) {
    347 		prop = sigprop[signum];
    348 		if (prop & SA_CONT)
    349 			sigaddset(&contsigmask, signum);
    350 		if (prop & SA_STOP)
    351 			sigaddset(&stopsigmask, signum);
    352 		if (prop & SA_CANTMASK)
    353 			sigaddset(&sigcantmask, signum);
    354 		if (prop & SA_IGNORE && signum != SIGCONT)
    355 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    356 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    357 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    358 	}
    359 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    360 	p->p_sigctx.ps_sigwaited = 0;
    361 	p->p_flag &= ~P_NOCLDSTOP;
    362 
    363 	/*
    364 	 * Reset stack state to the user stack.
    365 	 */
    366 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    367 	p->p_sigctx.ps_sigstk.ss_size = 0;
    368 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    369 
    370 	/* One reference. */
    371 	ps->sa_refcnt = 1;
    372 }
    373 
    374 /*
    375  * Reset signals for an exec of the specified process.
    376  */
    377 void
    378 execsigs(struct proc *p)
    379 {
    380 	struct sigacts	*ps;
    381 	int		signum, prop;
    382 
    383 	sigactsunshare(p);
    384 
    385 	ps = p->p_sigacts;
    386 
    387 	/*
    388 	 * Reset caught signals.  Held signals remain held
    389 	 * through p_sigctx.ps_sigmask (unless they were caught,
    390 	 * and are now ignored by default).
    391 	 */
    392 	for (signum = 1; signum < NSIG; signum++) {
    393 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    394 			prop = sigprop[signum];
    395 			if (prop & SA_IGNORE) {
    396 				if ((prop & SA_CONT) == 0)
    397 					sigaddset(&p->p_sigctx.ps_sigignore,
    398 					    signum);
    399 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    400 			}
    401 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    402 		}
    403 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    404 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    405 	}
    406 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    407 	p->p_sigctx.ps_sigwaited = 0;
    408 	p->p_flag &= ~P_NOCLDSTOP;
    409 
    410 	/*
    411 	 * Reset stack state to the user stack.
    412 	 */
    413 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    414 	p->p_sigctx.ps_sigstk.ss_size = 0;
    415 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    416 }
    417 
    418 int
    419 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    420 {
    421 
    422 	if (oss)
    423 		*oss = p->p_sigctx.ps_sigmask;
    424 
    425 	if (nss) {
    426 		(void)splsched();	/* XXXSMP */
    427 		switch (how) {
    428 		case SIG_BLOCK:
    429 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    430 			break;
    431 		case SIG_UNBLOCK:
    432 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    433 			CHECKSIGS(p);
    434 			break;
    435 		case SIG_SETMASK:
    436 			p->p_sigctx.ps_sigmask = *nss;
    437 			CHECKSIGS(p);
    438 			break;
    439 		default:
    440 			(void)spl0();	/* XXXSMP */
    441 			return (EINVAL);
    442 		}
    443 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    444 		(void)spl0();		/* XXXSMP */
    445 	}
    446 
    447 	return (0);
    448 }
    449 
    450 /*
    451  * Manipulate signal mask.
    452  * Note that we receive new mask, not pointer,
    453  * and return old mask as return value;
    454  * the library stub does the rest.
    455  */
    456 int
    457 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    458 {
    459 	struct sys___sigprocmask14_args /* {
    460 		syscallarg(int)			how;
    461 		syscallarg(const sigset_t *)	set;
    462 		syscallarg(sigset_t *)		oset;
    463 	} */ *uap = v;
    464 	struct proc	*p;
    465 	sigset_t	nss, oss;
    466 	int		error;
    467 
    468 	if (SCARG(uap, set)) {
    469 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    470 		if (error)
    471 			return (error);
    472 	}
    473 	p = l->l_proc;
    474 	error = sigprocmask1(p, SCARG(uap, how),
    475 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    476 	if (error)
    477 		return (error);
    478 	if (SCARG(uap, oset)) {
    479 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    480 		if (error)
    481 			return (error);
    482 	}
    483 	return (0);
    484 }
    485 
    486 void
    487 sigpending1(struct proc *p, sigset_t *ss)
    488 {
    489 
    490 	*ss = p->p_sigctx.ps_siglist;
    491 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    492 }
    493 
    494 /* ARGSUSED */
    495 int
    496 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    497 {
    498 	struct sys___sigpending14_args /* {
    499 		syscallarg(sigset_t *)	set;
    500 	} */ *uap = v;
    501 	struct proc	*p;
    502 	sigset_t	ss;
    503 
    504 	p = l->l_proc;
    505 	sigpending1(p, &ss);
    506 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    507 }
    508 
    509 int
    510 sigsuspend1(struct proc *p, const sigset_t *ss)
    511 {
    512 	struct sigacts *ps;
    513 
    514 	ps = p->p_sigacts;
    515 	if (ss) {
    516 		/*
    517 		 * When returning from sigpause, we want
    518 		 * the old mask to be restored after the
    519 		 * signal handler has finished.  Thus, we
    520 		 * save it here and mark the sigctx structure
    521 		 * to indicate this.
    522 		 */
    523 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    524 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    525 		(void) splsched();	/* XXXSMP */
    526 		p->p_sigctx.ps_sigmask = *ss;
    527 		CHECKSIGS(p);
    528 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    529 		(void) spl0();		/* XXXSMP */
    530 	}
    531 
    532 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    533 		/* void */;
    534 
    535 	/* always return EINTR rather than ERESTART... */
    536 	return (EINTR);
    537 }
    538 
    539 /*
    540  * Suspend process until signal, providing mask to be set
    541  * in the meantime.  Note nonstandard calling convention:
    542  * libc stub passes mask, not pointer, to save a copyin.
    543  */
    544 /* ARGSUSED */
    545 int
    546 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    547 {
    548 	struct sys___sigsuspend14_args /* {
    549 		syscallarg(const sigset_t *)	set;
    550 	} */ *uap = v;
    551 	struct proc	*p;
    552 	sigset_t	ss;
    553 	int		error;
    554 
    555 	if (SCARG(uap, set)) {
    556 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    557 		if (error)
    558 			return (error);
    559 	}
    560 
    561 	p = l->l_proc;
    562 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    563 }
    564 
    565 int
    566 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    567 	struct sigaltstack *oss)
    568 {
    569 
    570 	if (oss)
    571 		*oss = p->p_sigctx.ps_sigstk;
    572 
    573 	if (nss) {
    574 		if (nss->ss_flags & ~SS_ALLBITS)
    575 			return (EINVAL);
    576 
    577 		if (nss->ss_flags & SS_DISABLE) {
    578 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    579 				return (EINVAL);
    580 		} else {
    581 			if (nss->ss_size < MINSIGSTKSZ)
    582 				return (ENOMEM);
    583 		}
    584 		p->p_sigctx.ps_sigstk = *nss;
    585 	}
    586 
    587 	return (0);
    588 }
    589 
    590 /* ARGSUSED */
    591 int
    592 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    593 {
    594 	struct sys___sigaltstack14_args /* {
    595 		syscallarg(const struct sigaltstack *)	nss;
    596 		syscallarg(struct sigaltstack *)	oss;
    597 	} */ *uap = v;
    598 	struct proc		*p;
    599 	struct sigaltstack	nss, oss;
    600 	int			error;
    601 
    602 	if (SCARG(uap, nss)) {
    603 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    604 		if (error)
    605 			return (error);
    606 	}
    607 	p = l->l_proc;
    608 	error = sigaltstack1(p,
    609 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    610 	if (error)
    611 		return (error);
    612 	if (SCARG(uap, oss)) {
    613 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    614 		if (error)
    615 			return (error);
    616 	}
    617 	return (0);
    618 }
    619 
    620 /* ARGSUSED */
    621 int
    622 sys_kill(struct lwp *l, void *v, register_t *retval)
    623 {
    624 	struct sys_kill_args /* {
    625 		syscallarg(int)	pid;
    626 		syscallarg(int)	signum;
    627 	} */ *uap = v;
    628 	struct proc	*cp, *p;
    629 	struct pcred	*pc;
    630 	ksiginfo_t	ksi;
    631 
    632 	cp = l->l_proc;
    633 	pc = cp->p_cred;
    634 	if ((u_int)SCARG(uap, signum) >= NSIG)
    635 		return (EINVAL);
    636 	memset(&ksi, 0, sizeof(ksi));
    637 	ksi.ksi_signo = SCARG(uap, signum);
    638 	ksi.ksi_code = SI_USER;
    639 	ksi.ksi_pid = cp->p_pid;
    640 	ksi.ksi_uid = cp->p_ucred->cr_uid;
    641 	if (SCARG(uap, pid) > 0) {
    642 		/* kill single process */
    643 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    644 			return (ESRCH);
    645 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    646 			return (EPERM);
    647 		if (SCARG(uap, signum))
    648 			kpsignal(p, &ksi, NULL);
    649 		return (0);
    650 	}
    651 	switch (SCARG(uap, pid)) {
    652 	case -1:		/* broadcast signal */
    653 		return (killpg1(cp, &ksi, 0, 1));
    654 	case 0:			/* signal own process group */
    655 		return (killpg1(cp, &ksi, 0, 0));
    656 	default:		/* negative explicit process group */
    657 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
    658 	}
    659 	/* NOTREACHED */
    660 }
    661 
    662 /*
    663  * Common code for kill process group/broadcast kill.
    664  * cp is calling process.
    665  */
    666 int
    667 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
    668 {
    669 	struct proc	*p;
    670 	struct pcred	*pc;
    671 	struct pgrp	*pgrp;
    672 	int		nfound;
    673 	int		signum = ksi->ksi_signo;
    674 
    675 	pc = cp->p_cred;
    676 	nfound = 0;
    677 	if (all) {
    678 		/*
    679 		 * broadcast
    680 		 */
    681 		proclist_lock_read();
    682 		LIST_FOREACH(p, &allproc, p_list) {
    683 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    684 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    685 				continue;
    686 			nfound++;
    687 			if (signum)
    688 				kpsignal(p, ksi, NULL);
    689 		}
    690 		proclist_unlock_read();
    691 	} else {
    692 		if (pgid == 0)
    693 			/*
    694 			 * zero pgid means send to my process group.
    695 			 */
    696 			pgrp = cp->p_pgrp;
    697 		else {
    698 			pgrp = pgfind(pgid);
    699 			if (pgrp == NULL)
    700 				return (ESRCH);
    701 		}
    702 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    703 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    704 			    !CANSIGNAL(cp, pc, p, signum))
    705 				continue;
    706 			nfound++;
    707 			if (signum && P_ZOMBIE(p) == 0)
    708 				kpsignal(p, ksi, NULL);
    709 		}
    710 	}
    711 	return (nfound ? 0 : ESRCH);
    712 }
    713 
    714 /*
    715  * Send a signal to a process group.
    716  */
    717 void
    718 gsignal(int pgid, int signum)
    719 {
    720 	ksiginfo_t ksi;
    721 	memset(&ksi, 0, sizeof(ksi));
    722 	ksi.ksi_signo = signum;
    723 	kgsignal(pgid, &ksi, NULL);
    724 }
    725 
    726 void
    727 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    728 {
    729 	struct pgrp *pgrp;
    730 
    731 	if (pgid && (pgrp = pgfind(pgid)))
    732 		kpgsignal(pgrp, ksi, data, 0);
    733 }
    734 
    735 /*
    736  * Send a signal to a process group. If checktty is 1,
    737  * limit to members which have a controlling terminal.
    738  */
    739 void
    740 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    741 {
    742 	ksiginfo_t ksi;
    743 	memset(&ksi, 0, sizeof(ksi));
    744 	ksi.ksi_signo = sig;
    745 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    746 }
    747 
    748 void
    749 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    750 {
    751 	struct proc *p;
    752 
    753 	if (pgrp)
    754 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    755 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    756 				kpsignal(p, ksi, data);
    757 }
    758 
    759 /*
    760  * Send a signal caused by a trap to the current process.
    761  * If it will be caught immediately, deliver it with correct code.
    762  * Otherwise, post it normally.
    763  */
    764 #ifndef __HAVE_SIGINFO
    765 void _trapsignal(struct lwp *, ksiginfo_t *);
    766 void
    767 trapsignal(struct lwp *l, int signum, u_long code)
    768 {
    769 #define trapsignal _trapsignal
    770 	ksiginfo_t ksi;
    771 	memset(&ksi, 0, sizeof(ksi));
    772 	ksi.ksi_signo = signum;
    773 	ksi.ksi_trap = (int)code;
    774 	trapsignal(l, &ksi);
    775 }
    776 #endif
    777 
    778 void
    779 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    780 {
    781 	struct proc	*p;
    782 	struct sigacts	*ps;
    783 	int signum = ksi->ksi_signo;
    784 
    785 	p = l->l_proc;
    786 	ps = p->p_sigacts;
    787 	if ((p->p_flag & P_TRACED) == 0 &&
    788 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    789 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    790 		p->p_stats->p_ru.ru_nsignals++;
    791 #ifdef KTRACE
    792 #ifdef notyet
    793 		if (KTRPOINT(p, KTR_PSIGINFO))
    794 			ktrpsiginfo(p, ksi, SIGACTION_PS(ps, signum).sa_handler,
    795 			    &p->p_sigctx.ps_sigmask);
    796 #else
    797 		if (KTRPOINT(p, KTR_PSIG))
    798 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
    799 			    &p->p_sigctx.ps_sigmask, 0);
    800 #endif
    801 #endif
    802 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    803 		(void) splsched();	/* XXXSMP */
    804 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    805 		    &p->p_sigctx.ps_sigmask);
    806 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    807 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    808 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    809 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    810 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    811 		}
    812 		(void) spl0();		/* XXXSMP */
    813 	} else {
    814 		/* XXX for core dump/debugger */
    815 		p->p_sigctx.ps_siginfo = *ksi;
    816 		p->p_sigctx.ps_lwp = l->l_lid;
    817 		kpsignal(p, ksi, NULL);
    818 	}
    819 }
    820 
    821 /*
    822  * Send the signal to the process.  If the signal has an action, the action
    823  * is usually performed by the target process rather than the caller; we add
    824  * the signal to the set of pending signals for the process.
    825  *
    826  * Exceptions:
    827  *   o When a stop signal is sent to a sleeping process that takes the
    828  *     default action, the process is stopped without awakening it.
    829  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    830  *     regardless of the signal action (eg, blocked or ignored).
    831  *
    832  * Other ignored signals are discarded immediately.
    833  *
    834  * XXXSMP: Invoked as psignal() or sched_psignal().
    835  */
    836 void
    837 psignal1(struct proc *p, int signum, int dolock)
    838 {
    839     ksiginfo_t ksi;
    840     memset(&ksi, 0, sizeof(ksi));
    841     ksi.ksi_signo = signum;
    842     kpsignal1(p, &ksi, NULL, dolock);
    843 }
    844 
    845 void
    846 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data,
    847 	int dolock)		/* XXXSMP: works, but icky */
    848 {
    849 	struct lwp *l, *suspended;
    850 	int	s = 0, prop, allsusp;
    851 	sig_t	action;
    852 	int	signum = ksi->ksi_signo;
    853 
    854 #ifdef DIAGNOSTIC
    855 	if (signum <= 0 || signum >= NSIG)
    856 		panic("psignal signal number %d", signum);
    857 
    858 
    859 	/* XXXSMP: works, but icky */
    860 	if (dolock)
    861 		SCHED_ASSERT_UNLOCKED();
    862 	else
    863 		SCHED_ASSERT_LOCKED();
    864 #endif
    865 
    866 	if (data) {
    867 		size_t fd;
    868 		struct filedesc *fdp = p->p_fd;
    869 		ksi->ksi_fd = -1;
    870 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    871 			struct file *fp = fdp->fd_ofiles[fd];
    872 			/* XXX: lock? */
    873 			if (fp && fp->f_data == data) {
    874 				ksi->ksi_fd = fd;
    875 				break;
    876 			}
    877 		}
    878 	}
    879 
    880 	/*
    881 	 * Notify any interested parties in the signal.
    882 	 */
    883 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
    884 
    885 	prop = sigprop[signum];
    886 
    887 	/*
    888 	 * If proc is traced, always give parent a chance.
    889 	 */
    890 	if (p->p_flag & P_TRACED)
    891 		action = SIG_DFL;
    892 	else {
    893 		/*
    894 		 * If the signal is being ignored,
    895 		 * then we forget about it immediately.
    896 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
    897 		 * and if it is set to SIG_IGN,
    898 		 * action will be SIG_DFL here.)
    899 		 */
    900 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
    901 			return;
    902 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
    903 			action = SIG_HOLD;
    904 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
    905 			action = SIG_CATCH;
    906 		else {
    907 			action = SIG_DFL;
    908 
    909 			if (prop & SA_KILL && p->p_nice > NZERO)
    910 				p->p_nice = NZERO;
    911 
    912 			/*
    913 			 * If sending a tty stop signal to a member of an
    914 			 * orphaned process group, discard the signal here if
    915 			 * the action is default; don't stop the process below
    916 			 * if sleeping, and don't clear any pending SIGCONT.
    917 			 */
    918 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
    919 				return;
    920 		}
    921 	}
    922 
    923 	if (prop & SA_CONT)
    924 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
    925 
    926 	if (prop & SA_STOP)
    927 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
    928 
    929 	sigaddset(&p->p_sigctx.ps_siglist, signum);
    930 
    931 	/* CHECKSIGS() is "inlined" here. */
    932 	p->p_sigctx.ps_sigcheck = 1;
    933 
    934 	/*
    935 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
    936 	 * please!), check if anything waits on it. If yes, clear the
    937 	 * pending signal from siglist set, save it to ps_sigwaited,
    938 	 * clear sigwait list, and wakeup any sigwaiters.
    939 	 * The signal won't be processed further here.
    940 	 */
    941 	if ((prop & SA_CANTMASK) == 0
    942 	    && p->p_sigctx.ps_sigwaited < 0
    943 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)
    944 	    &&  p->p_stat != SSTOP) {
    945 		sigdelset(&p->p_sigctx.ps_siglist, signum);
    946 		p->p_sigctx.ps_sigwaited = signum;
    947 		sigemptyset(&p->p_sigctx.ps_sigwait);
    948 
    949 		if (dolock)
    950 			wakeup_one(&p->p_sigctx.ps_sigwait);
    951 		else
    952 			sched_wakeup(&p->p_sigctx.ps_sigwait);
    953 		return;
    954 	}
    955 
    956 	/*
    957 	 * Defer further processing for signals which are held,
    958 	 * except that stopped processes must be continued by SIGCONT.
    959 	 */
    960 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
    961 		return;
    962 	/* XXXSMP: works, but icky */
    963 	if (dolock)
    964 		SCHED_LOCK(s);
    965 
    966 	/* XXXUPSXXX LWPs might go to sleep without passing signal handling */
    967 	if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
    968 	    && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
    969 		/*
    970 		 * At least one LWP is running or on a run queue.
    971 		 * The signal will be noticed when one of them returns
    972 		 * to userspace.
    973 		 */
    974 		signotify(p);
    975 		/*
    976 		 * The signal will be noticed very soon.
    977 		 */
    978 		goto out;
    979 	} else {
    980 		/* Process is sleeping or stopped */
    981 		if (p->p_flag & P_SA) {
    982 			struct lwp *l2 = p->p_sa->sa_vp;
    983 			l = NULL;
    984 			allsusp = 1;
    985 
    986 			if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
    987 				l = l2;
    988 			else if (l2->l_stat == LSSUSPENDED)
    989 				suspended = l2;
    990 			else if ((l2->l_stat != LSZOMB) &&
    991 				 (l2->l_stat != LSDEAD))
    992 				allsusp = 0;
    993 		} else {
    994 			/*
    995 			 * Find out if any of the sleeps are interruptable,
    996 			 * and if all the live LWPs remaining are suspended.
    997 			 */
    998 			allsusp = 1;
    999 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1000 				if (l->l_stat == LSSLEEP &&
   1001 				    l->l_flag & L_SINTR)
   1002 					break;
   1003 				if (l->l_stat == LSSUSPENDED)
   1004 					suspended = l;
   1005 				else if ((l->l_stat != LSZOMB) &&
   1006 				         (l->l_stat != LSDEAD))
   1007 					allsusp = 0;
   1008 			}
   1009 		}
   1010 		if (p->p_stat == SACTIVE) {
   1011 
   1012 
   1013 			if (l != NULL && (p->p_flag & P_TRACED))
   1014 				goto run;
   1015 
   1016 			/*
   1017 			 * If SIGCONT is default (or ignored) and process is
   1018 			 * asleep, we are finished; the process should not
   1019 			 * be awakened.
   1020 			 */
   1021 			if ((prop & SA_CONT) && action == SIG_DFL) {
   1022 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1023 				goto out;
   1024 			}
   1025 
   1026 			/*
   1027 			 * When a sleeping process receives a stop
   1028 			 * signal, process immediately if possible.
   1029 			 */
   1030 			if ((prop & SA_STOP) && action == SIG_DFL) {
   1031 				/*
   1032 				 * If a child holding parent blocked,
   1033 				 * stopping could cause deadlock.
   1034 				 */
   1035 				if (p->p_flag & P_PPWAIT)
   1036 					goto out;
   1037 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1038 				p->p_xstat = signum;
   1039 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1040 					/*
   1041 					 * XXXSMP: recursive call; don't lock
   1042 					 * the second time around.
   1043 					 */
   1044 					sched_psignal(p->p_pptr, SIGCHLD);
   1045 				}
   1046 				proc_stop(p);	/* XXXSMP: recurse? */
   1047 				goto out;
   1048 			}
   1049 
   1050 			if (l == NULL) {
   1051 				/*
   1052 				 * Special case: SIGKILL of a process
   1053 				 * which is entirely composed of
   1054 				 * suspended LWPs should succeed. We
   1055 				 * make this happen by unsuspending one of
   1056 				 * them.
   1057 				 */
   1058 				if (allsusp && (signum == SIGKILL))
   1059 					lwp_continue(suspended);
   1060 				goto out;
   1061 			}
   1062 			/*
   1063 			 * All other (caught or default) signals
   1064 			 * cause the process to run.
   1065 			 */
   1066 			goto runfast;
   1067 			/*NOTREACHED*/
   1068 		} else if (p->p_stat == SSTOP) {
   1069 			/* Process is stopped */
   1070 			/*
   1071 			 * If traced process is already stopped,
   1072 			 * then no further action is necessary.
   1073 			 */
   1074 			if (p->p_flag & P_TRACED)
   1075 				goto out;
   1076 
   1077 			/*
   1078 			 * Kill signal always sets processes running,
   1079 			 * if possible.
   1080 			 */
   1081 			if (signum == SIGKILL) {
   1082 				l = proc_unstop(p);
   1083 				if (l)
   1084 					goto runfast;
   1085 				goto out;
   1086 			}
   1087 
   1088 			if (prop & SA_CONT) {
   1089 				/*
   1090 				 * If SIGCONT is default (or ignored),
   1091 				 * we continue the process but don't
   1092 				 * leave the signal in ps_siglist, as
   1093 				 * it has no further action.  If
   1094 				 * SIGCONT is held, we continue the
   1095 				 * process and leave the signal in
   1096 				 * ps_siglist.  If the process catches
   1097 				 * SIGCONT, let it handle the signal
   1098 				 * itself.  If it isn't waiting on an
   1099 				 * event, then it goes back to run
   1100 				 * state.  Otherwise, process goes
   1101 				 * back to sleep state.
   1102 				 */
   1103 				if (action == SIG_DFL)
   1104 					sigdelset(&p->p_sigctx.ps_siglist,
   1105 					signum);
   1106 				l = proc_unstop(p);
   1107 				if (l && (action == SIG_CATCH))
   1108 					goto runfast;
   1109 				goto out;
   1110 			}
   1111 
   1112 			if (prop & SA_STOP) {
   1113 				/*
   1114 				 * Already stopped, don't need to stop again.
   1115 				 * (If we did the shell could get confused.)
   1116 				 */
   1117 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1118 				goto out;
   1119 			}
   1120 
   1121 			/*
   1122 			 * If a lwp is sleeping interruptibly, then
   1123 			 * wake it up; it will run until the kernel
   1124 			 * boundary, where it will stop in issignal(),
   1125 			 * since p->p_stat is still SSTOP. When the
   1126 			 * process is continued, it will be made
   1127 			 * runnable and can look at the signal.
   1128 			 */
   1129 			if (l)
   1130 				goto run;
   1131 			goto out;
   1132 		} else {
   1133 			/* Else what? */
   1134 			panic("psignal: Invalid process state %d.",
   1135 				p->p_stat);
   1136 		}
   1137 	}
   1138 	/*NOTREACHED*/
   1139 
   1140  runfast:
   1141 	/*
   1142 	 * Raise priority to at least PUSER.
   1143 	 */
   1144 	if (l->l_priority > PUSER)
   1145 		l->l_priority = PUSER;
   1146  run:
   1147 
   1148 	setrunnable(l);		/* XXXSMP: recurse? */
   1149  out:
   1150 	/* XXXSMP: works, but icky */
   1151 	if (dolock)
   1152 		SCHED_UNLOCK(s);
   1153 }
   1154 
   1155 void
   1156 kpsendsig(struct lwp *l, ksiginfo_t *ksi, sigset_t *mask)
   1157 {
   1158 	struct proc *p = l->l_proc;
   1159 	struct lwp *le, *li;
   1160 	siginfo_t *si;
   1161 	int f;
   1162 
   1163 	if (p->p_flag & P_SA) {
   1164 
   1165 		/* XXXUPSXXX What if not on sa_vp ? */
   1166 
   1167 		f = l->l_flag & L_SA;
   1168 		l->l_flag &= ~L_SA;
   1169 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1170 		si->_info = *ksi;
   1171 		le = li = NULL;
   1172 		if (ksi->ksi_trap)
   1173 			le = l;
   1174 		else
   1175 			li = l;
   1176 
   1177 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1178 			    sizeof(siginfo_t), si);
   1179 		l->l_flag |= f;
   1180 		return;
   1181 	}
   1182 
   1183 #ifdef __HAVE_SIGINFO
   1184 	(*p->p_emul->e_sendsig)(ksi, mask);
   1185 #else
   1186 	(*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, ksi->ksi_trap);
   1187 #endif
   1188 }
   1189 
   1190 static __inline int firstsig(const sigset_t *);
   1191 
   1192 static __inline int
   1193 firstsig(const sigset_t *ss)
   1194 {
   1195 	int sig;
   1196 
   1197 	sig = ffs(ss->__bits[0]);
   1198 	if (sig != 0)
   1199 		return (sig);
   1200 #if NSIG > 33
   1201 	sig = ffs(ss->__bits[1]);
   1202 	if (sig != 0)
   1203 		return (sig + 32);
   1204 #endif
   1205 #if NSIG > 65
   1206 	sig = ffs(ss->__bits[2]);
   1207 	if (sig != 0)
   1208 		return (sig + 64);
   1209 #endif
   1210 #if NSIG > 97
   1211 	sig = ffs(ss->__bits[3]);
   1212 	if (sig != 0)
   1213 		return (sig + 96);
   1214 #endif
   1215 	return (0);
   1216 }
   1217 
   1218 /*
   1219  * If the current process has received a signal (should be caught or cause
   1220  * termination, should interrupt current syscall), return the signal number.
   1221  * Stop signals with default action are processed immediately, then cleared;
   1222  * they aren't returned.  This is checked after each entry to the system for
   1223  * a syscall or trap (though this can usually be done without calling issignal
   1224  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1225  * sequence is
   1226  *
   1227  *	while (signum = CURSIG(curlwp))
   1228  *		postsig(signum);
   1229  */
   1230 int
   1231 issignal(struct lwp *l)
   1232 {
   1233 	struct proc	*p = l->l_proc;
   1234 	int		s = 0, signum, prop;
   1235 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1236 	sigset_t	ss;
   1237 
   1238 	if (l->l_flag & L_SA) {
   1239 		struct sadata *sa = p->p_sa;
   1240 
   1241 		/* Bail out if we do not own the virtual processor */
   1242 		if (sa->sa_vp != l)
   1243 			return 0;
   1244 	}
   1245 
   1246 	if (p->p_stat == SSTOP) {
   1247 		/*
   1248 		 * The process is stopped/stopping. Stop ourselves now that
   1249 		 * we're on the kernel/userspace boundary.
   1250 		 */
   1251 		if (dolock)
   1252 			SCHED_LOCK(s);
   1253 		l->l_stat = LSSTOP;
   1254 		p->p_nrlwps--;
   1255 		if (p->p_flag & P_TRACED)
   1256 			goto sigtraceswitch;
   1257 		else
   1258 			goto sigswitch;
   1259 	}
   1260 	for (;;) {
   1261 		sigpending1(p, &ss);
   1262 		if (p->p_flag & P_PPWAIT)
   1263 			sigminusset(&stopsigmask, &ss);
   1264 		signum = firstsig(&ss);
   1265 		if (signum == 0) {		 	/* no signal to send */
   1266 			p->p_sigctx.ps_sigcheck = 0;
   1267 			if (locked && dolock)
   1268 				SCHED_LOCK(s);
   1269 			return (0);
   1270 		}
   1271 							/* take the signal! */
   1272 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1273 
   1274 		/*
   1275 		 * We should see pending but ignored signals
   1276 		 * only if P_TRACED was on when they were posted.
   1277 		 */
   1278 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1279 		    (p->p_flag & P_TRACED) == 0)
   1280 			continue;
   1281 
   1282 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1283 			/*
   1284 			 * If traced, always stop, and stay
   1285 			 * stopped until released by the debugger.
   1286 			 */
   1287 			p->p_xstat = signum;
   1288 			if ((p->p_flag & P_FSTRACE) == 0)
   1289 				psignal1(p->p_pptr, SIGCHLD, dolock);
   1290 			if (dolock)
   1291 				SCHED_LOCK(s);
   1292 			proc_stop(p);
   1293 		sigtraceswitch:
   1294 			mi_switch(l, NULL);
   1295 			SCHED_ASSERT_UNLOCKED();
   1296 			if (dolock)
   1297 				splx(s);
   1298 			else
   1299 				dolock = 1;
   1300 
   1301 			/*
   1302 			 * If we are no longer being traced, or the parent
   1303 			 * didn't give us a signal, look for more signals.
   1304 			 */
   1305 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1306 				continue;
   1307 
   1308 			/*
   1309 			 * If the new signal is being masked, look for other
   1310 			 * signals.
   1311 			 */
   1312 			signum = p->p_xstat;
   1313 			p->p_xstat = 0;
   1314 			/*
   1315 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1316 			 * in setrunnable().
   1317 			 */
   1318 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1319 				continue;
   1320 							/* take the signal! */
   1321 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1322 		}
   1323 
   1324 		prop = sigprop[signum];
   1325 
   1326 		/*
   1327 		 * Decide whether the signal should be returned.
   1328 		 * Return the signal's number, or fall through
   1329 		 * to clear it from the pending mask.
   1330 		 */
   1331 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1332 
   1333 		case (long)SIG_DFL:
   1334 			/*
   1335 			 * Don't take default actions on system processes.
   1336 			 */
   1337 			if (p->p_pid <= 1) {
   1338 #ifdef DIAGNOSTIC
   1339 				/*
   1340 				 * Are you sure you want to ignore SIGSEGV
   1341 				 * in init? XXX
   1342 				 */
   1343 				printf("Process (pid %d) got signal %d\n",
   1344 				    p->p_pid, signum);
   1345 #endif
   1346 				break;		/* == ignore */
   1347 			}
   1348 			/*
   1349 			 * If there is a pending stop signal to process
   1350 			 * with default action, stop here,
   1351 			 * then clear the signal.  However,
   1352 			 * if process is member of an orphaned
   1353 			 * process group, ignore tty stop signals.
   1354 			 */
   1355 			if (prop & SA_STOP) {
   1356 				if (p->p_flag & P_TRACED ||
   1357 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1358 				    prop & SA_TTYSTOP))
   1359 					break;	/* == ignore */
   1360 				p->p_xstat = signum;
   1361 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1362 					psignal1(p->p_pptr, SIGCHLD, dolock);
   1363 				if (dolock)
   1364 					SCHED_LOCK(s);
   1365 				proc_stop(p);
   1366 			sigswitch:
   1367 				mi_switch(l, NULL);
   1368 				SCHED_ASSERT_UNLOCKED();
   1369 				if (dolock)
   1370 					splx(s);
   1371 				else
   1372 					dolock = 1;
   1373 				break;
   1374 			} else if (prop & SA_IGNORE) {
   1375 				/*
   1376 				 * Except for SIGCONT, shouldn't get here.
   1377 				 * Default action is to ignore; drop it.
   1378 				 */
   1379 				break;		/* == ignore */
   1380 			} else
   1381 				goto keep;
   1382 			/*NOTREACHED*/
   1383 
   1384 		case (long)SIG_IGN:
   1385 			/*
   1386 			 * Masking above should prevent us ever trying
   1387 			 * to take action on an ignored signal other
   1388 			 * than SIGCONT, unless process is traced.
   1389 			 */
   1390 #ifdef DEBUG_ISSIGNAL
   1391 			if ((prop & SA_CONT) == 0 &&
   1392 			    (p->p_flag & P_TRACED) == 0)
   1393 				printf("issignal\n");
   1394 #endif
   1395 			break;		/* == ignore */
   1396 
   1397 		default:
   1398 			/*
   1399 			 * This signal has an action, let
   1400 			 * postsig() process it.
   1401 			 */
   1402 			goto keep;
   1403 		}
   1404 	}
   1405 	/* NOTREACHED */
   1406 
   1407  keep:
   1408 						/* leave the signal for later */
   1409 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1410 	CHECKSIGS(p);
   1411 	if (locked && dolock)
   1412 		SCHED_LOCK(s);
   1413 	return (signum);
   1414 }
   1415 
   1416 /*
   1417  * Put the argument process into the stopped state and notify the parent
   1418  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1419  * on the run queue.
   1420  */
   1421 static void
   1422 proc_stop(struct proc *p)
   1423 {
   1424 	struct lwp *l;
   1425 
   1426 	SCHED_ASSERT_LOCKED();
   1427 
   1428 	/* XXX lock process LWP state */
   1429 	p->p_stat = SSTOP;
   1430 	p->p_flag &= ~P_WAITED;
   1431 
   1432 	/*
   1433 	 * Put as many LWP's as possible in stopped state.
   1434 	 * Sleeping ones will notice the stopped state as they try to
   1435 	 * return to userspace.
   1436 	 */
   1437 
   1438 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1439 		if ((l->l_stat == LSONPROC) && (l == curlwp)) {
   1440 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1441 			 * is curlwp and hence is about to be mi_switched
   1442 			 * away; the only callers of proc_stop() are:
   1443 			 * - psignal
   1444 			 * - issignal()
   1445 			 * For the former, proc_stop() is only called when
   1446 			 * no processes are running, so we don't worry.
   1447 			 * For the latter, proc_stop() is called right
   1448 			 * before mi_switch().
   1449 			 */
   1450 			l->l_stat = LSSTOP;
   1451 			p->p_nrlwps--;
   1452 		}
   1453 		 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
   1454 			setrunnable(l);
   1455 		}
   1456 
   1457 /* !!!UPS!!! FIX ME */
   1458 #if 0
   1459 else if (l->l_stat == LSRUN) {
   1460 			/* Remove LWP from the run queue */
   1461 			remrunqueue(l);
   1462 			l->l_stat = LSSTOP;
   1463 			p->p_nrlwps--;
   1464 		} else if ((l->l_stat == LSSLEEP) ||
   1465 		    (l->l_stat == LSSUSPENDED) ||
   1466 		    (l->l_stat == LSZOMB) ||
   1467 		    (l->l_stat == LSDEAD)) {
   1468 			/*
   1469 			 * Don't do anything; let sleeping LWPs
   1470 			 * discover the stopped state of the process
   1471 			 * on their way out of the kernel; otherwise,
   1472 			 * things like NFS threads that sleep with
   1473 			 * locks will block the rest of the system
   1474 			 * from getting any work done.
   1475 			 *
   1476 			 * Suspended/dead/zombie LWPs aren't going
   1477 			 * anywhere, so we don't need to touch them.
   1478 			 */
   1479 		}
   1480 #ifdef DIAGNOSTIC
   1481 		else {
   1482 			panic("proc_stop: process %d lwp %d "
   1483 			      "in unstoppable state %d.\n",
   1484 			    p->p_pid, l->l_lid, l->l_stat);
   1485 		}
   1486 #endif
   1487 #endif
   1488 	}
   1489 	/* XXX unlock process LWP state */
   1490 
   1491 	sched_wakeup((caddr_t)p->p_pptr);
   1492 }
   1493 
   1494 /*
   1495  * Given a process in state SSTOP, set the state back to SACTIVE and
   1496  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1497  *
   1498  * If no LWPs ended up runnable (and therefore able to take a signal),
   1499  * return a LWP that is sleeping interruptably. The caller can wake
   1500  * that LWP up to take a signal.
   1501  */
   1502 struct lwp *
   1503 proc_unstop(struct proc *p)
   1504 {
   1505 	struct lwp *l, *lr = NULL;
   1506 	int cantake = 0;
   1507 
   1508 	SCHED_ASSERT_LOCKED();
   1509 
   1510 	/*
   1511 	 * Our caller wants to be informed if there are only sleeping
   1512 	 * and interruptable LWPs left after we have run so that it
   1513 	 * can invoke setrunnable() if required - return one of the
   1514 	 * interruptable LWPs if this is the case.
   1515 	 */
   1516 
   1517 	p->p_stat = SACTIVE;
   1518 	if (p->p_flag & P_SA) {
   1519 		/*
   1520 		 * Preferentially select the idle LWP as the interruptable
   1521 		 * LWP to return if it exists.
   1522 		 */
   1523 		lr = p->p_sa->sa_idle;
   1524 		if (lr != NULL)
   1525 			cantake = 1;
   1526 	}
   1527 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1528 		if (l->l_stat == LSRUN) {
   1529 			lr = NULL;
   1530 			cantake = 1;
   1531 		}
   1532 		if (l->l_stat != LSSTOP)
   1533 			continue;
   1534 
   1535 		if (l->l_wchan != NULL) {
   1536 			l->l_stat = LSSLEEP;
   1537 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1538 				lr = l;
   1539 				cantake = 1;
   1540 			}
   1541 		} else {
   1542 			setrunnable(l);
   1543 			lr = NULL;
   1544 			cantake = 1;
   1545 		}
   1546 	}
   1547 
   1548 	return lr;
   1549 }
   1550 
   1551 /*
   1552  * Take the action for the specified signal
   1553  * from the current set of pending signals.
   1554  */
   1555 void
   1556 postsig(int signum)
   1557 {
   1558 	struct lwp *l;
   1559 	struct proc	*p;
   1560 	struct sigacts	*ps;
   1561 	sig_t		action;
   1562 	sigset_t	*returnmask;
   1563 
   1564 	l = curlwp;
   1565 	p = l->l_proc;
   1566 	ps = p->p_sigacts;
   1567 #ifdef DIAGNOSTIC
   1568 	if (signum == 0)
   1569 		panic("postsig");
   1570 #endif
   1571 
   1572 	KERNEL_PROC_LOCK(l);
   1573 
   1574 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1575 	action = SIGACTION_PS(ps, signum).sa_handler;
   1576 #ifdef KTRACE
   1577 	if (KTRPOINT(p, KTR_PSIG))
   1578 		ktrpsig(p,
   1579 		    signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1580 		    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
   1581 #endif
   1582 	if (action == SIG_DFL) {
   1583 		/*
   1584 		 * Default action, where the default is to kill
   1585 		 * the process.  (Other cases were ignored above.)
   1586 		 */
   1587 		sigexit(l, signum);
   1588 		/* NOTREACHED */
   1589 	} else {
   1590 		ksiginfo_t ksi;
   1591 		/*
   1592 		 * If we get here, the signal must be caught.
   1593 		 */
   1594 #ifdef DIAGNOSTIC
   1595 		if (action == SIG_IGN ||
   1596 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1597 			panic("postsig action");
   1598 #endif
   1599 		/*
   1600 		 * Set the new mask value and also defer further
   1601 		 * occurrences of this signal.
   1602 		 *
   1603 		 * Special case: user has done a sigpause.  Here the
   1604 		 * current mask is not of interest, but rather the
   1605 		 * mask from before the sigpause is what we want
   1606 		 * restored after the signal processing is completed.
   1607 		 */
   1608 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1609 			returnmask = &p->p_sigctx.ps_oldmask;
   1610 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1611 		} else
   1612 			returnmask = &p->p_sigctx.ps_sigmask;
   1613 		p->p_stats->p_ru.ru_nsignals++;
   1614 		if (p->p_sigctx.ps_siginfo.ksi_signo != signum) {
   1615 			memset(&ksi, 0, sizeof(ksi));
   1616 			ksi.ksi_signo = signum;
   1617 		} else {
   1618 			ksi = p->p_sigctx.ps_siginfo;
   1619 			memset(&p->p_sigctx.ps_siginfo, 0,
   1620 			    sizeof(p->p_sigctx.ps_siginfo));
   1621 			p->p_sigctx.ps_lwp = 0;
   1622 		}
   1623 		kpsendsig(l, &ksi, returnmask);
   1624 		(void) splsched();	/* XXXSMP */
   1625 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1626 		    &p->p_sigctx.ps_sigmask);
   1627 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1628 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1629 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1630 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1631 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1632 		}
   1633 		(void) spl0();		/* XXXSMP */
   1634 	}
   1635 
   1636 	KERNEL_PROC_UNLOCK(l);
   1637 }
   1638 
   1639 /*
   1640  * Kill the current process for stated reason.
   1641  */
   1642 void
   1643 killproc(struct proc *p, const char *why)
   1644 {
   1645 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1646 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1647 	psignal(p, SIGKILL);
   1648 }
   1649 
   1650 /*
   1651  * Force the current process to exit with the specified signal, dumping core
   1652  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1653  * allowing unrecoverable failures to terminate the process without changing
   1654  * signal state.  Mark the accounting record with the signal termination.
   1655  * If dumping core, save the signal number for the debugger.  Calls exit and
   1656  * does not return.
   1657  */
   1658 
   1659 #if defined(DEBUG)
   1660 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1661 #else
   1662 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1663 #endif
   1664 
   1665 static	const char logcoredump[] =
   1666 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1667 static	const char lognocoredump[] =
   1668 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1669 
   1670 /* Wrapper function for use in p_userret */
   1671 static void
   1672 lwp_coredump_hook(struct lwp *l, void *arg)
   1673 {
   1674 	int s;
   1675 
   1676 	/*
   1677 	 * Suspend ourselves, so that the kernel stack and therefore
   1678 	 * the userland registers saved in the trapframe are around
   1679 	 * for coredump() to write them out.
   1680 	 */
   1681 	KERNEL_PROC_LOCK(l);
   1682 	l->l_flag &= ~L_DETACHED;
   1683 	SCHED_LOCK(s);
   1684 	l->l_stat = LSSUSPENDED;
   1685 	l->l_proc->p_nrlwps--;
   1686 	/* XXX NJWLWP check if this makes sense here: */
   1687 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1688 	mi_switch(l, NULL);
   1689 	SCHED_ASSERT_UNLOCKED();
   1690 	splx(s);
   1691 
   1692 	lwp_exit(l);
   1693 }
   1694 
   1695 void
   1696 sigexit(struct lwp *l, int signum)
   1697 {
   1698 	struct proc	*p;
   1699 #if 0
   1700 	struct lwp	*l2;
   1701 #endif
   1702 	int		error, exitsig;
   1703 
   1704 	p = l->l_proc;
   1705 
   1706 	/*
   1707 	 * Don't permit coredump() or exit1() multiple times
   1708 	 * in the same process.
   1709 	 */
   1710 	if (p->p_flag & P_WEXIT) {
   1711 		KERNEL_PROC_UNLOCK(l);
   1712 		(*p->p_userret)(l, p->p_userret_arg);
   1713 	}
   1714 	p->p_flag |= P_WEXIT;
   1715 	/* We don't want to switch away from exiting. */
   1716 	/* XXX multiprocessor: stop LWPs on other processors. */
   1717 #if 0
   1718 	if (p->p_flag & P_SA) {
   1719 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1720 		    l2->l_flag &= ~L_SA;
   1721 		p->p_flag &= ~P_SA;
   1722 	}
   1723 #endif
   1724 
   1725 	/* Make other LWPs stick around long enough to be dumped */
   1726 	p->p_userret = lwp_coredump_hook;
   1727 	p->p_userret_arg = NULL;
   1728 
   1729 	exitsig = signum;
   1730 	p->p_acflag |= AXSIG;
   1731 	if (sigprop[signum] & SA_CORE) {
   1732 		p->p_sigctx.ps_siginfo.ksi_signo = signum;
   1733 		if ((error = coredump(l)) == 0)
   1734 			exitsig |= WCOREFLAG;
   1735 
   1736 		if (kern_logsigexit) {
   1737 			/* XXX What if we ever have really large UIDs? */
   1738 			int uid = p->p_cred && p->p_ucred ?
   1739 				(int) p->p_ucred->cr_uid : -1;
   1740 
   1741 			if (error)
   1742 				log(LOG_INFO, lognocoredump, p->p_pid,
   1743 				    p->p_comm, uid, signum, error);
   1744 			else
   1745 				log(LOG_INFO, logcoredump, p->p_pid,
   1746 				    p->p_comm, uid, signum);
   1747 		}
   1748 
   1749 	}
   1750 
   1751 	exit1(l, W_EXITCODE(0, exitsig));
   1752 	/* NOTREACHED */
   1753 }
   1754 
   1755 /*
   1756  * Dump core, into a file named "progname.core" or "core" (depending on the
   1757  * value of shortcorename), unless the process was setuid/setgid.
   1758  */
   1759 int
   1760 coredump(struct lwp *l)
   1761 {
   1762 	struct vnode		*vp;
   1763 	struct proc		*p;
   1764 	struct vmspace		*vm;
   1765 	struct ucred		*cred;
   1766 	struct nameidata	nd;
   1767 	struct vattr		vattr;
   1768 	int			error, error1;
   1769 	char			name[MAXPATHLEN];
   1770 
   1771 	p = l->l_proc;
   1772 	vm = p->p_vmspace;
   1773 	cred = p->p_cred->pc_ucred;
   1774 
   1775 	/*
   1776 	 * Make sure the process has not set-id, to prevent data leaks.
   1777 	 */
   1778 	if (p->p_flag & P_SUGID)
   1779 		return (EPERM);
   1780 
   1781 	/*
   1782 	 * Refuse to core if the data + stack + user size is larger than
   1783 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   1784 	 * data.
   1785 	 */
   1786 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   1787 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   1788 		return (EFBIG);		/* better error code? */
   1789 
   1790 	/*
   1791 	 * The core dump will go in the current working directory.  Make
   1792 	 * sure that the directory is still there and that the mount flags
   1793 	 * allow us to write core dumps there.
   1794 	 */
   1795 	vp = p->p_cwdi->cwdi_cdir;
   1796 	if (vp->v_mount == NULL ||
   1797 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   1798 		return (EPERM);
   1799 
   1800 	error = build_corename(p, name);
   1801 	if (error)
   1802 		return error;
   1803 
   1804 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   1805 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   1806 	if (error)
   1807 		return (error);
   1808 	vp = nd.ni_vp;
   1809 
   1810 	/* Don't dump to non-regular files or files with links. */
   1811 	if (vp->v_type != VREG ||
   1812 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   1813 		error = EINVAL;
   1814 		goto out;
   1815 	}
   1816 	VATTR_NULL(&vattr);
   1817 	vattr.va_size = 0;
   1818 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   1819 	VOP_SETATTR(vp, &vattr, cred, p);
   1820 	p->p_acflag |= ACORE;
   1821 
   1822 	/* Now dump the actual core file. */
   1823 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   1824  out:
   1825 	VOP_UNLOCK(vp, 0);
   1826 	error1 = vn_close(vp, FWRITE, cred, p);
   1827 	if (error == 0)
   1828 		error = error1;
   1829 	return (error);
   1830 }
   1831 
   1832 /*
   1833  * Nonexistent system call-- signal process (may want to handle it).
   1834  * Flag error in case process won't see signal immediately (blocked or ignored).
   1835  */
   1836 /* ARGSUSED */
   1837 int
   1838 sys_nosys(struct lwp *l, void *v, register_t *retval)
   1839 {
   1840 	struct proc 	*p;
   1841 
   1842 	p = l->l_proc;
   1843 	psignal(p, SIGSYS);
   1844 	return (ENOSYS);
   1845 }
   1846 
   1847 static int
   1848 build_corename(struct proc *p, char dst[MAXPATHLEN])
   1849 {
   1850 	const char	*s;
   1851 	char		*d, *end;
   1852 	int		i;
   1853 
   1854 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   1855 	    *s != '\0'; s++) {
   1856 		if (*s == '%') {
   1857 			switch (*(s + 1)) {
   1858 			case 'n':
   1859 				i = snprintf(d, end - d, "%s", p->p_comm);
   1860 				break;
   1861 			case 'p':
   1862 				i = snprintf(d, end - d, "%d", p->p_pid);
   1863 				break;
   1864 			case 'u':
   1865 				i = snprintf(d, end - d, "%.*s",
   1866 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   1867 				    p->p_pgrp->pg_session->s_login);
   1868 				break;
   1869 			case 't':
   1870 				i = snprintf(d, end - d, "%ld",
   1871 				    p->p_stats->p_start.tv_sec);
   1872 				break;
   1873 			default:
   1874 				goto copy;
   1875 			}
   1876 			d += i;
   1877 			s++;
   1878 		} else {
   1879  copy:			*d = *s;
   1880 			d++;
   1881 		}
   1882 		if (d >= end)
   1883 			return (ENAMETOOLONG);
   1884 	}
   1885 	*d = '\0';
   1886 	return 0;
   1887 }
   1888 
   1889 void
   1890 getucontext(struct lwp *l, ucontext_t *ucp)
   1891 {
   1892 	struct proc	*p;
   1893 
   1894 	p = l->l_proc;
   1895 
   1896 	ucp->uc_flags = 0;
   1897 	ucp->uc_link = l->l_ctxlink;
   1898 
   1899 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   1900 	ucp->uc_flags |= _UC_SIGMASK;
   1901 
   1902 	/*
   1903 	 * The (unsupplied) definition of the `current execution stack'
   1904 	 * in the System V Interface Definition appears to allow returning
   1905 	 * the main context stack.
   1906 	 */
   1907 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   1908 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   1909 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   1910 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   1911 	} else {
   1912 		/* Simply copy alternate signal execution stack. */
   1913 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   1914 	}
   1915 	ucp->uc_flags |= _UC_STACK;
   1916 
   1917 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   1918 }
   1919 
   1920 /* ARGSUSED */
   1921 int
   1922 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   1923 {
   1924 	struct sys_getcontext_args /* {
   1925 		syscallarg(struct __ucontext *) ucp;
   1926 	} */ *uap = v;
   1927 	ucontext_t uc;
   1928 
   1929 	getucontext(l, &uc);
   1930 
   1931 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   1932 }
   1933 
   1934 int
   1935 setucontext(struct lwp *l, const ucontext_t *ucp)
   1936 {
   1937 	struct proc	*p;
   1938 	int		error;
   1939 
   1940 	p = l->l_proc;
   1941 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   1942 		return (error);
   1943 	l->l_ctxlink = ucp->uc_link;
   1944 	/*
   1945 	 * We might want to take care of the stack portion here but currently
   1946 	 * don't; see the comment in getucontext().
   1947 	 */
   1948 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   1949 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   1950 
   1951 	return 0;
   1952 }
   1953 
   1954 /* ARGSUSED */
   1955 int
   1956 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   1957 {
   1958 	struct sys_setcontext_args /* {
   1959 		syscallarg(const ucontext_t *) ucp;
   1960 	} */ *uap = v;
   1961 	ucontext_t uc;
   1962 	int error;
   1963 
   1964 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   1965 		exit1(l, W_EXITCODE(0, 0));
   1966 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   1967 	    (error = setucontext(l, &uc)) != 0)
   1968 		return (error);
   1969 
   1970 	return (EJUSTRETURN);
   1971 }
   1972 
   1973 /*
   1974  * sigtimedwait(2) system call, used also for implementation
   1975  * of sigwaitinfo() and sigwait().
   1976  *
   1977  * This only handles single LWP in signal wait. libpthread provides
   1978  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   1979  *
   1980  * XXX no support for queued signals, si_code is always SI_USER.
   1981  */
   1982 int
   1983 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   1984 {
   1985 	struct sys___sigtimedwait_args /* {
   1986 		syscallarg(const sigset_t *) set;
   1987 		syscallarg(siginfo_t *) info;
   1988 		syscallarg(struct timespec *) timeout;
   1989 	} */ *uap = v;
   1990 	sigset_t waitset, twaitset;
   1991 	struct proc *p = l->l_proc;
   1992 	int error, signum, s;
   1993 	int timo = 0;
   1994 	struct timeval tvstart;
   1995 	struct timespec ts;
   1996 
   1997 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
   1998 		return (error);
   1999 
   2000 	/*
   2001 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   2002 	 * ignore SA_CANTMASK signals in waitset, we do this
   2003 	 * only for the below siglist check.
   2004 	 */
   2005 	sigminusset(&sigcantmask, &waitset);
   2006 
   2007 	/*
   2008 	 * First scan siglist and check if there is signal from
   2009 	 * our waitset already pending.
   2010 	 */
   2011 	twaitset = waitset;
   2012 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2013 	if ((signum = firstsig(&twaitset))) {
   2014 		/* found pending signal */
   2015 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2016 		goto sig;
   2017 	}
   2018 
   2019 	/*
   2020 	 * Calculate timeout, if it was specified.
   2021 	 */
   2022 	if (SCARG(uap, timeout)) {
   2023 		uint64_t ms;
   2024 
   2025 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   2026 			return (error);
   2027 
   2028 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2029 		timo = mstohz(ms);
   2030 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2031 			timo = 1;
   2032 		if (timo <= 0)
   2033 			return (EAGAIN);
   2034 
   2035 		/*
   2036 		 * Remember current mono_time, it would be used in
   2037 		 * ECANCELED/ERESTART case.
   2038 		 */
   2039 		s = splclock();
   2040 		tvstart = mono_time;
   2041 		splx(s);
   2042 	}
   2043 
   2044 	/*
   2045 	 * Setup ps_sigwait list.
   2046 	 */
   2047 	p->p_sigctx.ps_sigwaited = -1;
   2048 	p->p_sigctx.ps_sigwait = waitset;
   2049 
   2050 	/*
   2051 	 * Wait for signal to arrive. We can either be woken up or
   2052 	 * time out.
   2053 	 */
   2054 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2055 
   2056 	/*
   2057 	 * Check if a signal from our wait set has arrived, or if it
   2058 	 * was mere wakeup.
   2059 	 */
   2060 	if (!error) {
   2061 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
   2062 			/* wakeup via _lwp_wakeup() */
   2063 			error = ECANCELED;
   2064 		}
   2065 	}
   2066 
   2067 	/*
   2068 	 * On error, clear sigwait indication. psignal1() sets it
   2069 	 * in !error case.
   2070 	 */
   2071 	if (error) {
   2072 		p->p_sigctx.ps_sigwaited = 0;
   2073 
   2074 		/*
   2075 		 * If the sleep was interrupted (either by signal or wakeup),
   2076 		 * update the timeout and copyout new value back.
   2077 		 * It would be used when the syscall would be restarted
   2078 		 * or called again.
   2079 		 */
   2080 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2081 			struct timeval tvnow, tvtimo;
   2082 			int err;
   2083 
   2084 			s = splclock();
   2085 			tvnow = mono_time;
   2086 			splx(s);
   2087 
   2088 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   2089 
   2090 			/* compute how much time has passed since start */
   2091 			timersub(&tvnow, &tvstart, &tvnow);
   2092 			/* substract passed time from timeout */
   2093 			timersub(&tvtimo, &tvnow, &tvtimo);
   2094 
   2095 			if (tvtimo.tv_sec < 0)
   2096 				return (EAGAIN);
   2097 
   2098 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   2099 
   2100 			/* copy updated timeout to userland */
   2101 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
   2102 				return (err);
   2103 		}
   2104 
   2105 		return (error);
   2106 	}
   2107 
   2108 	/*
   2109 	 * If a signal from the wait set arrived, copy it to userland.
   2110 	 * XXX no queued signals for now
   2111 	 */
   2112 	if (signum > 0) {
   2113 		siginfo_t si;
   2114 
   2115  sig:
   2116 		memset(&si, 0, sizeof(si));
   2117 		si.si_signo = signum;
   2118 		si.si_code = SI_USER;
   2119 
   2120 		error = copyout(&si, SCARG(uap, info), sizeof(si));
   2121 		if (error)
   2122 			return (error);
   2123 	}
   2124 
   2125 	return (0);
   2126 }
   2127 
   2128 /*
   2129  * Returns true if signal is ignored or masked for passed process.
   2130  */
   2131 int
   2132 sigismasked(struct proc *p, int sig)
   2133 {
   2134 
   2135 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2136 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2137 }
   2138 
   2139 static int
   2140 filt_sigattach(struct knote *kn)
   2141 {
   2142 	struct proc *p = curproc;
   2143 
   2144 	kn->kn_ptr.p_proc = p;
   2145 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2146 
   2147 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2148 
   2149 	return (0);
   2150 }
   2151 
   2152 static void
   2153 filt_sigdetach(struct knote *kn)
   2154 {
   2155 	struct proc *p = kn->kn_ptr.p_proc;
   2156 
   2157 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2158 }
   2159 
   2160 /*
   2161  * signal knotes are shared with proc knotes, so we apply a mask to
   2162  * the hint in order to differentiate them from process hints.  This
   2163  * could be avoided by using a signal-specific knote list, but probably
   2164  * isn't worth the trouble.
   2165  */
   2166 static int
   2167 filt_signal(struct knote *kn, long hint)
   2168 {
   2169 
   2170 	if (hint & NOTE_SIGNAL) {
   2171 		hint &= ~NOTE_SIGNAL;
   2172 
   2173 		if (kn->kn_id == hint)
   2174 			kn->kn_data++;
   2175 	}
   2176 	return (kn->kn_data != 0);
   2177 }
   2178 
   2179 const struct filterops sig_filtops = {
   2180 	0, filt_sigattach, filt_sigdetach, filt_signal
   2181 };
   2182