kern_sig.c revision 1.152 1 /* $NetBSD: kern_sig.c,v 1.152 2003/09/14 06:59:14 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.152 2003/09/14 06:59:14 christos Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd32.h"
45
46 #define SIGPROP /* include signal properties table */
47 #include <sys/param.h>
48 #include <sys/signalvar.h>
49 #include <sys/resourcevar.h>
50 #include <sys/namei.h>
51 #include <sys/vnode.h>
52 #include <sys/proc.h>
53 #include <sys/systm.h>
54 #include <sys/timeb.h>
55 #include <sys/times.h>
56 #include <sys/buf.h>
57 #include <sys/acct.h>
58 #include <sys/file.h>
59 #include <sys/kernel.h>
60 #include <sys/wait.h>
61 #include <sys/ktrace.h>
62 #include <sys/syslog.h>
63 #include <sys/stat.h>
64 #include <sys/core.h>
65 #include <sys/filedesc.h>
66 #include <sys/malloc.h>
67 #include <sys/pool.h>
68 #include <sys/ucontext.h>
69 #include <sys/sa.h>
70 #include <sys/savar.h>
71 #include <sys/exec.h>
72
73 #include <sys/mount.h>
74 #include <sys/syscallargs.h>
75
76 #include <machine/cpu.h>
77
78 #include <sys/user.h> /* for coredump */
79
80 #include <uvm/uvm_extern.h>
81
82 static void child_psignal(struct proc *, int);
83 static void proc_stop(struct proc *);
84 static int build_corename(struct proc *, char [MAXPATHLEN]);
85 static void ksiginfo_exithook(struct proc *, void *);
86 static void ksiginfo_save(struct proc *, ksiginfo_t *);
87 static void ksiginfo_del(struct proc *p, ksiginfo_t *);
88 static void ksiginfo_put(struct proc *, ksiginfo_t *);
89 static ksiginfo_t *ksiginfo_get(struct proc *, int);
90
91 sigset_t contsigmask, stopsigmask, sigcantmask;
92
93 struct pool sigacts_pool; /* memory pool for sigacts structures */
94 struct pool siginfo_pool; /* memory pool for siginfo structures */
95 struct pool ksiginfo_pool; /* memory pool for ksiginfo structures */
96
97 /*
98 * Can process p, with pcred pc, send the signal signum to process q?
99 */
100 #define CANSIGNAL(p, pc, q, signum) \
101 ((pc)->pc_ucred->cr_uid == 0 || \
102 (pc)->p_ruid == (q)->p_cred->p_ruid || \
103 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
104 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
105 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
106 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
107
108 /*
109 * return the first ksiginfo struct from our hash table
110 */
111 static ksiginfo_t *
112 ksiginfo_get(struct proc *p, int signo)
113 {
114 ksiginfo_t *ksi, *hp = p->p_sigctx.ps_siginfo;
115
116 if ((ksi = hp) == NULL)
117 return NULL;
118
119 for (;;) {
120 if (ksi->ksi_signo == signo)
121 return ksi;
122 if ((ksi = ksi->ksi_next) == hp)
123 return NULL;
124 }
125 }
126
127 static void
128 ksiginfo_put(struct proc *p, ksiginfo_t *ksi)
129 {
130 ksiginfo_t *hp = p->p_sigctx.ps_siginfo;
131
132 if (hp == NULL)
133 p->p_sigctx.ps_siginfo = ksi->ksi_next = ksi->ksi_prev = ksi;
134 else {
135 ksi->ksi_prev = hp->ksi_prev;
136 hp->ksi_prev->ksi_next = ksi;
137 hp->ksi_prev = ksi;
138 ksi->ksi_next = hp;
139 }
140 }
141
142 static void
143 ksiginfo_del(struct proc *p, ksiginfo_t *ksi)
144 {
145 if (ksi->ksi_next == ksi)
146 p->p_sigctx.ps_siginfo = NULL;
147 else {
148 ksi->ksi_prev->ksi_next = ksi->ksi_next;
149 ksi->ksi_next->ksi_prev = ksi->ksi_prev;
150 }
151 }
152
153 static void
154 ksiginfo_save(struct proc *p, ksiginfo_t *ksi)
155 {
156 ksiginfo_t *kpool = NULL;
157 if ((SIGACTION_PS(p->p_sigacts, ksi->ksi_signo).sa_flags & SA_SIGINFO)
158 == 0)
159 return;
160 if (
161 #ifdef notyet /* XXX: QUEUING */
162 ksi->ksi_signo >= SIGRTMIN ||
163 #endif
164 (kpool = ksiginfo_get(p, ksi->ksi_signo)) == NULL) {
165 if ((kpool = pool_get(&ksiginfo_pool, PR_NOWAIT)) == NULL)
166 return;
167 *kpool = *ksi;
168 ksiginfo_put(p, kpool);
169 } else
170 *kpool = *ksi;
171 }
172
173 /*
174 * free all pending ksiginfo on exit
175 */
176 static void
177 ksiginfo_exithook(struct proc *p, void *v)
178 {
179 ksiginfo_t *ksi, *hp = p->p_sigctx.ps_siginfo;
180
181 if (hp == NULL)
182 return;
183 for (;;) {
184 pool_put(&ksiginfo_pool, ksi);
185 if ((ksi = ksi->ksi_next) == hp)
186 break;
187 }
188 }
189
190 /*
191 * Initialize signal-related data structures.
192 */
193 void
194 signal_init(void)
195 {
196 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
197 &pool_allocator_nointr);
198 pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
199 &pool_allocator_nointr);
200 pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
201 NULL);
202 exithook_establish(ksiginfo_exithook, NULL);
203 exechook_establish(ksiginfo_exithook, NULL);
204 }
205
206 /*
207 * Create an initial sigctx structure, using the same signal state
208 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
209 * copy it from parent.
210 */
211 void
212 sigactsinit(struct proc *np, struct proc *pp, int share)
213 {
214 struct sigacts *ps;
215
216 if (share) {
217 np->p_sigacts = pp->p_sigacts;
218 pp->p_sigacts->sa_refcnt++;
219 } else {
220 ps = pool_get(&sigacts_pool, PR_WAITOK);
221 if (pp)
222 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
223 else
224 memset(ps, '\0', sizeof(struct sigacts));
225 ps->sa_refcnt = 1;
226 np->p_sigacts = ps;
227 }
228 }
229
230 /*
231 * Make this process not share its sigctx, maintaining all
232 * signal state.
233 */
234 void
235 sigactsunshare(struct proc *p)
236 {
237 struct sigacts *oldps;
238
239 if (p->p_sigacts->sa_refcnt == 1)
240 return;
241
242 oldps = p->p_sigacts;
243 sigactsinit(p, NULL, 0);
244
245 if (--oldps->sa_refcnt == 0)
246 pool_put(&sigacts_pool, oldps);
247 }
248
249 /*
250 * Release a sigctx structure.
251 */
252 void
253 sigactsfree(struct proc *p)
254 {
255 struct sigacts *ps;
256
257 ps = p->p_sigacts;
258 if (--ps->sa_refcnt > 0)
259 return;
260
261 pool_put(&sigacts_pool, ps);
262 }
263
264 int
265 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
266 struct sigaction *osa, void *tramp, int vers)
267 {
268 struct sigacts *ps;
269 int prop;
270
271 ps = p->p_sigacts;
272 if (signum <= 0 || signum >= NSIG)
273 return (EINVAL);
274
275 /*
276 * Trampoline ABI version 0 is reserved for the legacy
277 * kernel-provided on-stack trampoline. Conversely, if
278 * we are using a non-0 ABI version, we must have a
279 * trampoline.
280 */
281 if ((vers != 0 && tramp == NULL) ||
282 (vers == 0 && tramp != NULL))
283 return (EINVAL);
284
285 if (osa)
286 *osa = SIGACTION_PS(ps, signum);
287
288 if (nsa) {
289 if (nsa->sa_flags & ~SA_ALLBITS)
290 return (EINVAL);
291
292 #ifndef __HAVE_SIGINFO
293 if (nsa->sa_flags & SA_SIGINFO)
294 return (EINVAL);
295 #endif
296
297 prop = sigprop[signum];
298 if (prop & SA_CANTMASK)
299 return (EINVAL);
300
301 (void) splsched(); /* XXXSMP */
302 SIGACTION_PS(ps, signum) = *nsa;
303 ps->sa_sigdesc[signum].sd_tramp = tramp;
304 ps->sa_sigdesc[signum].sd_vers = vers;
305 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
306 if ((prop & SA_NORESET) != 0)
307 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
308 if (signum == SIGCHLD) {
309 if (nsa->sa_flags & SA_NOCLDSTOP)
310 p->p_flag |= P_NOCLDSTOP;
311 else
312 p->p_flag &= ~P_NOCLDSTOP;
313 if (nsa->sa_flags & SA_NOCLDWAIT) {
314 /*
315 * Paranoia: since SA_NOCLDWAIT is implemented
316 * by reparenting the dying child to PID 1 (and
317 * trust it to reap the zombie), PID 1 itself
318 * is forbidden to set SA_NOCLDWAIT.
319 */
320 if (p->p_pid == 1)
321 p->p_flag &= ~P_NOCLDWAIT;
322 else
323 p->p_flag |= P_NOCLDWAIT;
324 } else
325 p->p_flag &= ~P_NOCLDWAIT;
326 }
327 if ((nsa->sa_flags & SA_NODEFER) == 0)
328 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
329 else
330 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
331 /*
332 * Set bit in p_sigctx.ps_sigignore for signals that are set to
333 * SIG_IGN, and for signals set to SIG_DFL where the default is
334 * to ignore. However, don't put SIGCONT in
335 * p_sigctx.ps_sigignore, as we have to restart the process.
336 */
337 if (nsa->sa_handler == SIG_IGN ||
338 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
339 /* never to be seen again */
340 sigdelset(&p->p_sigctx.ps_siglist, signum);
341 if (signum != SIGCONT) {
342 /* easier in psignal */
343 sigaddset(&p->p_sigctx.ps_sigignore, signum);
344 }
345 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
346 } else {
347 sigdelset(&p->p_sigctx.ps_sigignore, signum);
348 if (nsa->sa_handler == SIG_DFL)
349 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
350 else
351 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
352 }
353 (void) spl0();
354 }
355
356 return (0);
357 }
358
359 /* ARGSUSED */
360 int
361 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
362 {
363 struct sys___sigaction14_args /* {
364 syscallarg(int) signum;
365 syscallarg(const struct sigaction *) nsa;
366 syscallarg(struct sigaction *) osa;
367 } */ *uap = v;
368 struct proc *p;
369 struct sigaction nsa, osa;
370 int error;
371
372 if (SCARG(uap, nsa)) {
373 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
374 if (error)
375 return (error);
376 }
377 p = l->l_proc;
378 error = sigaction1(p, SCARG(uap, signum),
379 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
380 NULL, 0);
381 if (error)
382 return (error);
383 if (SCARG(uap, osa)) {
384 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
385 if (error)
386 return (error);
387 }
388 return (0);
389 }
390
391 /* ARGSUSED */
392 int
393 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
394 {
395 struct sys___sigaction_sigtramp_args /* {
396 syscallarg(int) signum;
397 syscallarg(const struct sigaction *) nsa;
398 syscallarg(struct sigaction *) osa;
399 syscallarg(void *) tramp;
400 syscallarg(int) vers;
401 } */ *uap = v;
402 struct proc *p = l->l_proc;
403 struct sigaction nsa, osa;
404 int error;
405
406 if (SCARG(uap, nsa)) {
407 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
408 if (error)
409 return (error);
410 }
411 error = sigaction1(p, SCARG(uap, signum),
412 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
413 SCARG(uap, tramp), SCARG(uap, vers));
414 if (error)
415 return (error);
416 if (SCARG(uap, osa)) {
417 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
418 if (error)
419 return (error);
420 }
421 return (0);
422 }
423
424 /*
425 * Initialize signal state for process 0;
426 * set to ignore signals that are ignored by default and disable the signal
427 * stack.
428 */
429 void
430 siginit(struct proc *p)
431 {
432 struct sigacts *ps;
433 int signum, prop;
434
435 ps = p->p_sigacts;
436 sigemptyset(&contsigmask);
437 sigemptyset(&stopsigmask);
438 sigemptyset(&sigcantmask);
439 for (signum = 1; signum < NSIG; signum++) {
440 prop = sigprop[signum];
441 if (prop & SA_CONT)
442 sigaddset(&contsigmask, signum);
443 if (prop & SA_STOP)
444 sigaddset(&stopsigmask, signum);
445 if (prop & SA_CANTMASK)
446 sigaddset(&sigcantmask, signum);
447 if (prop & SA_IGNORE && signum != SIGCONT)
448 sigaddset(&p->p_sigctx.ps_sigignore, signum);
449 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
450 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
451 }
452 sigemptyset(&p->p_sigctx.ps_sigcatch);
453 p->p_sigctx.ps_sigwaited = 0;
454 p->p_flag &= ~P_NOCLDSTOP;
455
456 /*
457 * Reset stack state to the user stack.
458 */
459 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
460 p->p_sigctx.ps_sigstk.ss_size = 0;
461 p->p_sigctx.ps_sigstk.ss_sp = 0;
462
463 /* One reference. */
464 ps->sa_refcnt = 1;
465 }
466
467 /*
468 * Reset signals for an exec of the specified process.
469 */
470 void
471 execsigs(struct proc *p)
472 {
473 struct sigacts *ps;
474 int signum, prop;
475
476 sigactsunshare(p);
477
478 ps = p->p_sigacts;
479
480 /*
481 * Reset caught signals. Held signals remain held
482 * through p_sigctx.ps_sigmask (unless they were caught,
483 * and are now ignored by default).
484 */
485 for (signum = 1; signum < NSIG; signum++) {
486 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
487 prop = sigprop[signum];
488 if (prop & SA_IGNORE) {
489 if ((prop & SA_CONT) == 0)
490 sigaddset(&p->p_sigctx.ps_sigignore,
491 signum);
492 sigdelset(&p->p_sigctx.ps_siglist, signum);
493 }
494 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
495 }
496 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
497 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
498 }
499 sigemptyset(&p->p_sigctx.ps_sigcatch);
500 p->p_sigctx.ps_sigwaited = 0;
501 p->p_flag &= ~P_NOCLDSTOP;
502
503 /*
504 * Reset stack state to the user stack.
505 */
506 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
507 p->p_sigctx.ps_sigstk.ss_size = 0;
508 p->p_sigctx.ps_sigstk.ss_sp = 0;
509 }
510
511 int
512 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
513 {
514
515 if (oss)
516 *oss = p->p_sigctx.ps_sigmask;
517
518 if (nss) {
519 (void)splsched(); /* XXXSMP */
520 switch (how) {
521 case SIG_BLOCK:
522 sigplusset(nss, &p->p_sigctx.ps_sigmask);
523 break;
524 case SIG_UNBLOCK:
525 sigminusset(nss, &p->p_sigctx.ps_sigmask);
526 CHECKSIGS(p);
527 break;
528 case SIG_SETMASK:
529 p->p_sigctx.ps_sigmask = *nss;
530 CHECKSIGS(p);
531 break;
532 default:
533 (void)spl0(); /* XXXSMP */
534 return (EINVAL);
535 }
536 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
537 (void)spl0(); /* XXXSMP */
538 }
539
540 return (0);
541 }
542
543 /*
544 * Manipulate signal mask.
545 * Note that we receive new mask, not pointer,
546 * and return old mask as return value;
547 * the library stub does the rest.
548 */
549 int
550 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
551 {
552 struct sys___sigprocmask14_args /* {
553 syscallarg(int) how;
554 syscallarg(const sigset_t *) set;
555 syscallarg(sigset_t *) oset;
556 } */ *uap = v;
557 struct proc *p;
558 sigset_t nss, oss;
559 int error;
560
561 if (SCARG(uap, set)) {
562 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
563 if (error)
564 return (error);
565 }
566 p = l->l_proc;
567 error = sigprocmask1(p, SCARG(uap, how),
568 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
569 if (error)
570 return (error);
571 if (SCARG(uap, oset)) {
572 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
573 if (error)
574 return (error);
575 }
576 return (0);
577 }
578
579 void
580 sigpending1(struct proc *p, sigset_t *ss)
581 {
582
583 *ss = p->p_sigctx.ps_siglist;
584 sigminusset(&p->p_sigctx.ps_sigmask, ss);
585 }
586
587 /* ARGSUSED */
588 int
589 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
590 {
591 struct sys___sigpending14_args /* {
592 syscallarg(sigset_t *) set;
593 } */ *uap = v;
594 struct proc *p;
595 sigset_t ss;
596
597 p = l->l_proc;
598 sigpending1(p, &ss);
599 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
600 }
601
602 int
603 sigsuspend1(struct proc *p, const sigset_t *ss)
604 {
605 struct sigacts *ps;
606
607 ps = p->p_sigacts;
608 if (ss) {
609 /*
610 * When returning from sigpause, we want
611 * the old mask to be restored after the
612 * signal handler has finished. Thus, we
613 * save it here and mark the sigctx structure
614 * to indicate this.
615 */
616 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
617 p->p_sigctx.ps_flags |= SAS_OLDMASK;
618 (void) splsched(); /* XXXSMP */
619 p->p_sigctx.ps_sigmask = *ss;
620 CHECKSIGS(p);
621 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
622 (void) spl0(); /* XXXSMP */
623 }
624
625 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
626 /* void */;
627
628 /* always return EINTR rather than ERESTART... */
629 return (EINTR);
630 }
631
632 /*
633 * Suspend process until signal, providing mask to be set
634 * in the meantime. Note nonstandard calling convention:
635 * libc stub passes mask, not pointer, to save a copyin.
636 */
637 /* ARGSUSED */
638 int
639 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
640 {
641 struct sys___sigsuspend14_args /* {
642 syscallarg(const sigset_t *) set;
643 } */ *uap = v;
644 struct proc *p;
645 sigset_t ss;
646 int error;
647
648 if (SCARG(uap, set)) {
649 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
650 if (error)
651 return (error);
652 }
653
654 p = l->l_proc;
655 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
656 }
657
658 int
659 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
660 struct sigaltstack *oss)
661 {
662
663 if (oss)
664 *oss = p->p_sigctx.ps_sigstk;
665
666 if (nss) {
667 if (nss->ss_flags & ~SS_ALLBITS)
668 return (EINVAL);
669
670 if (nss->ss_flags & SS_DISABLE) {
671 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
672 return (EINVAL);
673 } else {
674 if (nss->ss_size < MINSIGSTKSZ)
675 return (ENOMEM);
676 }
677 p->p_sigctx.ps_sigstk = *nss;
678 }
679
680 return (0);
681 }
682
683 /* ARGSUSED */
684 int
685 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
686 {
687 struct sys___sigaltstack14_args /* {
688 syscallarg(const struct sigaltstack *) nss;
689 syscallarg(struct sigaltstack *) oss;
690 } */ *uap = v;
691 struct proc *p;
692 struct sigaltstack nss, oss;
693 int error;
694
695 if (SCARG(uap, nss)) {
696 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
697 if (error)
698 return (error);
699 }
700 p = l->l_proc;
701 error = sigaltstack1(p,
702 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
703 if (error)
704 return (error);
705 if (SCARG(uap, oss)) {
706 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
707 if (error)
708 return (error);
709 }
710 return (0);
711 }
712
713 /* ARGSUSED */
714 int
715 sys_kill(struct lwp *l, void *v, register_t *retval)
716 {
717 struct sys_kill_args /* {
718 syscallarg(int) pid;
719 syscallarg(int) signum;
720 } */ *uap = v;
721 struct proc *cp, *p;
722 struct pcred *pc;
723 ksiginfo_t ksi;
724
725 cp = l->l_proc;
726 pc = cp->p_cred;
727 if ((u_int)SCARG(uap, signum) >= NSIG)
728 return (EINVAL);
729 memset(&ksi, 0, sizeof(ksi));
730 ksi.ksi_signo = SCARG(uap, signum);
731 ksi.ksi_code = SI_USER;
732 ksi.ksi_pid = cp->p_pid;
733 ksi.ksi_uid = cp->p_ucred->cr_uid;
734 if (SCARG(uap, pid) > 0) {
735 /* kill single process */
736 if ((p = pfind(SCARG(uap, pid))) == NULL)
737 return (ESRCH);
738 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
739 return (EPERM);
740 if (SCARG(uap, signum))
741 kpsignal(p, &ksi, NULL);
742 return (0);
743 }
744 switch (SCARG(uap, pid)) {
745 case -1: /* broadcast signal */
746 return (killpg1(cp, &ksi, 0, 1));
747 case 0: /* signal own process group */
748 return (killpg1(cp, &ksi, 0, 0));
749 default: /* negative explicit process group */
750 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
751 }
752 /* NOTREACHED */
753 }
754
755 /*
756 * Common code for kill process group/broadcast kill.
757 * cp is calling process.
758 */
759 int
760 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
761 {
762 struct proc *p;
763 struct pcred *pc;
764 struct pgrp *pgrp;
765 int nfound;
766 int signum = ksi->ksi_signo;
767
768 pc = cp->p_cred;
769 nfound = 0;
770 if (all) {
771 /*
772 * broadcast
773 */
774 proclist_lock_read();
775 LIST_FOREACH(p, &allproc, p_list) {
776 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
777 p == cp || !CANSIGNAL(cp, pc, p, signum))
778 continue;
779 nfound++;
780 if (signum)
781 kpsignal(p, ksi, NULL);
782 }
783 proclist_unlock_read();
784 } else {
785 if (pgid == 0)
786 /*
787 * zero pgid means send to my process group.
788 */
789 pgrp = cp->p_pgrp;
790 else {
791 pgrp = pgfind(pgid);
792 if (pgrp == NULL)
793 return (ESRCH);
794 }
795 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
796 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
797 !CANSIGNAL(cp, pc, p, signum))
798 continue;
799 nfound++;
800 if (signum && P_ZOMBIE(p) == 0)
801 kpsignal(p, ksi, NULL);
802 }
803 }
804 return (nfound ? 0 : ESRCH);
805 }
806
807 /*
808 * Send a signal to a process group.
809 */
810 void
811 gsignal(int pgid, int signum)
812 {
813 ksiginfo_t ksi;
814 memset(&ksi, 0, sizeof(ksi));
815 ksi.ksi_signo = signum;
816 kgsignal(pgid, &ksi, NULL);
817 }
818
819 void
820 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
821 {
822 struct pgrp *pgrp;
823
824 if (pgid && (pgrp = pgfind(pgid)))
825 kpgsignal(pgrp, ksi, data, 0);
826 }
827
828 /*
829 * Send a signal to a process group. If checktty is 1,
830 * limit to members which have a controlling terminal.
831 */
832 void
833 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
834 {
835 ksiginfo_t ksi;
836 memset(&ksi, 0, sizeof(ksi));
837 ksi.ksi_signo = sig;
838 kpgsignal(pgrp, &ksi, NULL, checkctty);
839 }
840
841 void
842 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
843 {
844 struct proc *p;
845
846 if (pgrp)
847 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
848 if (checkctty == 0 || p->p_flag & P_CONTROLT)
849 kpsignal(p, ksi, data);
850 }
851
852 /*
853 * Send a signal caused by a trap to the current process.
854 * If it will be caught immediately, deliver it with correct code.
855 * Otherwise, post it normally.
856 */
857 #ifndef __HAVE_SIGINFO
858 void _trapsignal(struct lwp *, ksiginfo_t *);
859 void
860 trapsignal(struct lwp *l, int signum, u_long code)
861 {
862 #define trapsignal _trapsignal
863 ksiginfo_t ksi;
864 memset(&ksi, 0, sizeof(ksi));
865 ksi.ksi_signo = signum;
866 ksi.ksi_trap = (int)code;
867 trapsignal(l, &ksi);
868 }
869 #endif
870
871 void
872 trapsignal(struct lwp *l, ksiginfo_t *ksi)
873 {
874 struct proc *p;
875 struct sigacts *ps;
876 int signum = ksi->ksi_signo;
877
878 p = l->l_proc;
879 ps = p->p_sigacts;
880 if ((p->p_flag & P_TRACED) == 0 &&
881 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
882 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
883 p->p_stats->p_ru.ru_nsignals++;
884 #ifdef KTRACE
885 #ifdef notyet
886 if (KTRPOINT(p, KTR_PSIGINFO))
887 ktrpsiginfo(p, ksi, SIGACTION_PS(ps, signum).sa_handler,
888 &p->p_sigctx.ps_sigmask);
889 #else
890 if (KTRPOINT(p, KTR_PSIG))
891 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
892 &p->p_sigctx.ps_sigmask, 0);
893 #endif
894 #endif
895 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
896 (void) splsched(); /* XXXSMP */
897 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
898 &p->p_sigctx.ps_sigmask);
899 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
900 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
901 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
902 sigaddset(&p->p_sigctx.ps_sigignore, signum);
903 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
904 }
905 (void) spl0(); /* XXXSMP */
906 } else {
907 p->p_sigctx.ps_lwp = l->l_lid;
908 /* XXX for core dump/debugger */
909 p->p_sigctx.ps_signo = ksi->ksi_signo;
910 p->p_sigctx.ps_code = ksi->ksi_trap;
911 kpsignal(p, ksi, NULL);
912 }
913 }
914
915 /*
916 * Fill in signal information and signal the parent for a child status change.
917 */
918 static void
919 child_psignal(struct proc *p, int dolock)
920 {
921 ksiginfo_t ksi;
922
923 (void)memset(&ksi, 0, sizeof(ksi));
924 ksi.ksi_signo = SIGCHLD;
925 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
926 ksi.ksi_pid = p->p_pid;
927 ksi.ksi_uid = p->p_ucred->cr_uid;
928 ksi.ksi_status = p->p_xstat;
929 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
930 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
931 kpsignal1(p->p_pptr, &ksi, NULL, dolock);
932 }
933
934 /*
935 * Send the signal to the process. If the signal has an action, the action
936 * is usually performed by the target process rather than the caller; we add
937 * the signal to the set of pending signals for the process.
938 *
939 * Exceptions:
940 * o When a stop signal is sent to a sleeping process that takes the
941 * default action, the process is stopped without awakening it.
942 * o SIGCONT restarts stopped processes (or puts them back to sleep)
943 * regardless of the signal action (eg, blocked or ignored).
944 *
945 * Other ignored signals are discarded immediately.
946 *
947 * XXXSMP: Invoked as psignal() or sched_psignal().
948 */
949 void
950 psignal1(struct proc *p, int signum, int dolock)
951 {
952 ksiginfo_t ksi;
953 memset(&ksi, 0, sizeof(ksi));
954 ksi.ksi_signo = signum;
955 kpsignal1(p, &ksi, NULL, dolock);
956 }
957
958 void
959 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data,
960 int dolock) /* XXXSMP: works, but icky */
961 {
962 struct lwp *l, *suspended;
963 int s = 0, prop, allsusp;
964 sig_t action;
965 int signum = ksi->ksi_signo;
966
967 #ifdef DIAGNOSTIC
968 if (signum <= 0 || signum >= NSIG)
969 panic("psignal signal number %d", signum);
970
971
972 /* XXXSMP: works, but icky */
973 if (dolock)
974 SCHED_ASSERT_UNLOCKED();
975 else
976 SCHED_ASSERT_LOCKED();
977 #endif
978
979 if (data) {
980 size_t fd;
981 struct filedesc *fdp = p->p_fd;
982 ksi->ksi_fd = -1;
983 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
984 struct file *fp = fdp->fd_ofiles[fd];
985 /* XXX: lock? */
986 if (fp && fp->f_data == data) {
987 ksi->ksi_fd = fd;
988 break;
989 }
990 }
991 }
992
993 /*
994 * Notify any interested parties in the signal.
995 */
996 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
997
998 prop = sigprop[signum];
999
1000 /*
1001 * If proc is traced, always give parent a chance.
1002 */
1003 if (p->p_flag & P_TRACED)
1004 action = SIG_DFL;
1005 else {
1006 /*
1007 * If the signal is being ignored,
1008 * then we forget about it immediately.
1009 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1010 * and if it is set to SIG_IGN,
1011 * action will be SIG_DFL here.)
1012 */
1013 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1014 return;
1015 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1016 action = SIG_HOLD;
1017 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1018 action = SIG_CATCH;
1019 else {
1020 action = SIG_DFL;
1021
1022 if (prop & SA_KILL && p->p_nice > NZERO)
1023 p->p_nice = NZERO;
1024
1025 /*
1026 * If sending a tty stop signal to a member of an
1027 * orphaned process group, discard the signal here if
1028 * the action is default; don't stop the process below
1029 * if sleeping, and don't clear any pending SIGCONT.
1030 */
1031 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1032 return;
1033 }
1034 }
1035
1036 if (prop & SA_CONT)
1037 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1038
1039 if (prop & SA_STOP)
1040 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1041
1042 sigaddset(&p->p_sigctx.ps_siglist, signum);
1043
1044 /* CHECKSIGS() is "inlined" here. */
1045 p->p_sigctx.ps_sigcheck = 1;
1046
1047 /*
1048 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1049 * please!), check if anything waits on it. If yes, clear the
1050 * pending signal from siglist set, save it to ps_sigwaited,
1051 * clear sigwait list, and wakeup any sigwaiters.
1052 * The signal won't be processed further here.
1053 */
1054 if ((prop & SA_CANTMASK) == 0
1055 && p->p_sigctx.ps_sigwaited < 0
1056 && sigismember(&p->p_sigctx.ps_sigwait, signum)
1057 && p->p_stat != SSTOP) {
1058 if (action == SIG_CATCH)
1059 ksiginfo_save(p, ksi);
1060 sigdelset(&p->p_sigctx.ps_siglist, signum);
1061 p->p_sigctx.ps_sigwaited = signum;
1062 sigemptyset(&p->p_sigctx.ps_sigwait);
1063 if (dolock)
1064 wakeup_one(&p->p_sigctx.ps_sigwait);
1065 else
1066 sched_wakeup(&p->p_sigctx.ps_sigwait);
1067 return;
1068 }
1069
1070 /*
1071 * Defer further processing for signals which are held,
1072 * except that stopped processes must be continued by SIGCONT.
1073 */
1074 if (action == SIG_HOLD &&
1075 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1076 ksiginfo_save(p, ksi);
1077 return;
1078 }
1079 /* XXXSMP: works, but icky */
1080 if (dolock)
1081 SCHED_LOCK(s);
1082
1083 /* XXXUPSXXX LWPs might go to sleep without passing signal handling */
1084 if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
1085 && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
1086 /*
1087 * At least one LWP is running or on a run queue.
1088 * The signal will be noticed when one of them returns
1089 * to userspace.
1090 */
1091 signotify(p);
1092 /*
1093 * The signal will be noticed very soon.
1094 */
1095 goto out;
1096 } else {
1097 /* Process is sleeping or stopped */
1098 if (p->p_flag & P_SA) {
1099 struct lwp *l2 = p->p_sa->sa_vp;
1100 l = NULL;
1101 allsusp = 1;
1102
1103 if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
1104 l = l2;
1105 else if (l2->l_stat == LSSUSPENDED)
1106 suspended = l2;
1107 else if ((l2->l_stat != LSZOMB) &&
1108 (l2->l_stat != LSDEAD))
1109 allsusp = 0;
1110 } else {
1111 /*
1112 * Find out if any of the sleeps are interruptable,
1113 * and if all the live LWPs remaining are suspended.
1114 */
1115 allsusp = 1;
1116 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1117 if (l->l_stat == LSSLEEP &&
1118 l->l_flag & L_SINTR)
1119 break;
1120 if (l->l_stat == LSSUSPENDED)
1121 suspended = l;
1122 else if ((l->l_stat != LSZOMB) &&
1123 (l->l_stat != LSDEAD))
1124 allsusp = 0;
1125 }
1126 }
1127 if (p->p_stat == SACTIVE) {
1128
1129
1130 if (l != NULL && (p->p_flag & P_TRACED))
1131 goto run;
1132
1133 /*
1134 * If SIGCONT is default (or ignored) and process is
1135 * asleep, we are finished; the process should not
1136 * be awakened.
1137 */
1138 if ((prop & SA_CONT) && action == SIG_DFL) {
1139 sigdelset(&p->p_sigctx.ps_siglist, signum);
1140 goto done;
1141 }
1142
1143 /*
1144 * When a sleeping process receives a stop
1145 * signal, process immediately if possible.
1146 */
1147 if ((prop & SA_STOP) && action == SIG_DFL) {
1148 /*
1149 * If a child holding parent blocked,
1150 * stopping could cause deadlock.
1151 */
1152 if (p->p_flag & P_PPWAIT) {
1153 goto out;
1154 }
1155 sigdelset(&p->p_sigctx.ps_siglist, signum);
1156 p->p_xstat = signum;
1157 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1158 /*
1159 * XXXSMP: recursive call; don't lock
1160 * the second time around.
1161 */
1162 child_psignal(p, 0);
1163 }
1164 proc_stop(p); /* XXXSMP: recurse? */
1165 goto done;
1166 }
1167
1168 if (l == NULL) {
1169 /*
1170 * Special case: SIGKILL of a process
1171 * which is entirely composed of
1172 * suspended LWPs should succeed. We
1173 * make this happen by unsuspending one of
1174 * them.
1175 */
1176 if (allsusp && (signum == SIGKILL))
1177 lwp_continue(suspended);
1178 goto done;
1179 }
1180 /*
1181 * All other (caught or default) signals
1182 * cause the process to run.
1183 */
1184 goto runfast;
1185 /*NOTREACHED*/
1186 } else if (p->p_stat == SSTOP) {
1187 /* Process is stopped */
1188 /*
1189 * If traced process is already stopped,
1190 * then no further action is necessary.
1191 */
1192 if (p->p_flag & P_TRACED)
1193 goto done;
1194
1195 /*
1196 * Kill signal always sets processes running,
1197 * if possible.
1198 */
1199 if (signum == SIGKILL) {
1200 l = proc_unstop(p);
1201 if (l)
1202 goto runfast;
1203 goto done;
1204 }
1205
1206 if (prop & SA_CONT) {
1207 /*
1208 * If SIGCONT is default (or ignored),
1209 * we continue the process but don't
1210 * leave the signal in ps_siglist, as
1211 * it has no further action. If
1212 * SIGCONT is held, we continue the
1213 * process and leave the signal in
1214 * ps_siglist. If the process catches
1215 * SIGCONT, let it handle the signal
1216 * itself. If it isn't waiting on an
1217 * event, then it goes back to run
1218 * state. Otherwise, process goes
1219 * back to sleep state.
1220 */
1221 if (action == SIG_DFL)
1222 sigdelset(&p->p_sigctx.ps_siglist,
1223 signum);
1224 l = proc_unstop(p);
1225 if (l && (action == SIG_CATCH))
1226 goto runfast;
1227 goto out;
1228 }
1229
1230 if (prop & SA_STOP) {
1231 /*
1232 * Already stopped, don't need to stop again.
1233 * (If we did the shell could get confused.)
1234 */
1235 sigdelset(&p->p_sigctx.ps_siglist, signum);
1236 goto done;
1237 }
1238
1239 /*
1240 * If a lwp is sleeping interruptibly, then
1241 * wake it up; it will run until the kernel
1242 * boundary, where it will stop in issignal(),
1243 * since p->p_stat is still SSTOP. When the
1244 * process is continued, it will be made
1245 * runnable and can look at the signal.
1246 */
1247 if (l)
1248 goto run;
1249 goto out;
1250 } else {
1251 /* Else what? */
1252 panic("psignal: Invalid process state %d.",
1253 p->p_stat);
1254 }
1255 }
1256 /*NOTREACHED*/
1257
1258 runfast:
1259 if (action == SIG_CATCH) {
1260 ksiginfo_save(p, ksi);
1261 action = SIG_HOLD;
1262 }
1263 /*
1264 * Raise priority to at least PUSER.
1265 */
1266 if (l->l_priority > PUSER)
1267 l->l_priority = PUSER;
1268 run:
1269 if (action == SIG_CATCH) {
1270 ksiginfo_save(p, ksi);
1271 action = SIG_HOLD;
1272 }
1273
1274 setrunnable(l); /* XXXSMP: recurse? */
1275 out:
1276 if (action == SIG_CATCH)
1277 ksiginfo_save(p, ksi);
1278 done:
1279 /* XXXSMP: works, but icky */
1280 if (dolock)
1281 SCHED_UNLOCK(s);
1282 }
1283
1284 void
1285 kpsendsig(struct lwp *l, ksiginfo_t *ksi, sigset_t *mask)
1286 {
1287 struct proc *p = l->l_proc;
1288 struct lwp *le, *li;
1289 siginfo_t *si;
1290 int f;
1291
1292 if (p->p_flag & P_SA) {
1293
1294 /* XXXUPSXXX What if not on sa_vp ? */
1295
1296 f = l->l_flag & L_SA;
1297 l->l_flag &= ~L_SA;
1298 si = pool_get(&siginfo_pool, PR_WAITOK);
1299 si->_info = *ksi;
1300 le = li = NULL;
1301 if (ksi->ksi_trap)
1302 le = l;
1303 else
1304 li = l;
1305
1306 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1307 sizeof(siginfo_t), si);
1308 l->l_flag |= f;
1309 return;
1310 }
1311
1312 #ifdef __HAVE_SIGINFO
1313 (*p->p_emul->e_sendsig)(ksi, mask);
1314 #else
1315 (*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, ksi->ksi_trap);
1316 #endif
1317 }
1318
1319 static __inline int firstsig(const sigset_t *);
1320
1321 static __inline int
1322 firstsig(const sigset_t *ss)
1323 {
1324 int sig;
1325
1326 sig = ffs(ss->__bits[0]);
1327 if (sig != 0)
1328 return (sig);
1329 #if NSIG > 33
1330 sig = ffs(ss->__bits[1]);
1331 if (sig != 0)
1332 return (sig + 32);
1333 #endif
1334 #if NSIG > 65
1335 sig = ffs(ss->__bits[2]);
1336 if (sig != 0)
1337 return (sig + 64);
1338 #endif
1339 #if NSIG > 97
1340 sig = ffs(ss->__bits[3]);
1341 if (sig != 0)
1342 return (sig + 96);
1343 #endif
1344 return (0);
1345 }
1346
1347 /*
1348 * If the current process has received a signal (should be caught or cause
1349 * termination, should interrupt current syscall), return the signal number.
1350 * Stop signals with default action are processed immediately, then cleared;
1351 * they aren't returned. This is checked after each entry to the system for
1352 * a syscall or trap (though this can usually be done without calling issignal
1353 * by checking the pending signal masks in the CURSIG macro.) The normal call
1354 * sequence is
1355 *
1356 * while (signum = CURSIG(curlwp))
1357 * postsig(signum);
1358 */
1359 int
1360 issignal(struct lwp *l)
1361 {
1362 struct proc *p = l->l_proc;
1363 int s = 0, signum, prop;
1364 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1365 sigset_t ss;
1366
1367 if (l->l_flag & L_SA) {
1368 struct sadata *sa = p->p_sa;
1369
1370 /* Bail out if we do not own the virtual processor */
1371 if (sa->sa_vp != l)
1372 return 0;
1373 }
1374
1375 if (p->p_stat == SSTOP) {
1376 /*
1377 * The process is stopped/stopping. Stop ourselves now that
1378 * we're on the kernel/userspace boundary.
1379 */
1380 if (dolock)
1381 SCHED_LOCK(s);
1382 l->l_stat = LSSTOP;
1383 p->p_nrlwps--;
1384 if (p->p_flag & P_TRACED)
1385 goto sigtraceswitch;
1386 else
1387 goto sigswitch;
1388 }
1389 for (;;) {
1390 sigpending1(p, &ss);
1391 if (p->p_flag & P_PPWAIT)
1392 sigminusset(&stopsigmask, &ss);
1393 signum = firstsig(&ss);
1394 if (signum == 0) { /* no signal to send */
1395 p->p_sigctx.ps_sigcheck = 0;
1396 if (locked && dolock)
1397 SCHED_LOCK(s);
1398 return (0);
1399 }
1400 /* take the signal! */
1401 sigdelset(&p->p_sigctx.ps_siglist, signum);
1402
1403 /*
1404 * We should see pending but ignored signals
1405 * only if P_TRACED was on when they were posted.
1406 */
1407 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1408 (p->p_flag & P_TRACED) == 0)
1409 continue;
1410
1411 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1412 /*
1413 * If traced, always stop, and stay
1414 * stopped until released by the debugger.
1415 */
1416 p->p_xstat = signum;
1417 if ((p->p_flag & P_FSTRACE) == 0)
1418 child_psignal(p, dolock);
1419 if (dolock)
1420 SCHED_LOCK(s);
1421 proc_stop(p);
1422 sigtraceswitch:
1423 mi_switch(l, NULL);
1424 SCHED_ASSERT_UNLOCKED();
1425 if (dolock)
1426 splx(s);
1427 else
1428 dolock = 1;
1429
1430 /*
1431 * If we are no longer being traced, or the parent
1432 * didn't give us a signal, look for more signals.
1433 */
1434 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1435 continue;
1436
1437 /*
1438 * If the new signal is being masked, look for other
1439 * signals.
1440 */
1441 signum = p->p_xstat;
1442 p->p_xstat = 0;
1443 /*
1444 * `p->p_sigctx.ps_siglist |= mask' is done
1445 * in setrunnable().
1446 */
1447 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1448 continue;
1449 /* take the signal! */
1450 sigdelset(&p->p_sigctx.ps_siglist, signum);
1451 }
1452
1453 prop = sigprop[signum];
1454
1455 /*
1456 * Decide whether the signal should be returned.
1457 * Return the signal's number, or fall through
1458 * to clear it from the pending mask.
1459 */
1460 switch ((long)SIGACTION(p, signum).sa_handler) {
1461
1462 case (long)SIG_DFL:
1463 /*
1464 * Don't take default actions on system processes.
1465 */
1466 if (p->p_pid <= 1) {
1467 #ifdef DIAGNOSTIC
1468 /*
1469 * Are you sure you want to ignore SIGSEGV
1470 * in init? XXX
1471 */
1472 printf("Process (pid %d) got signal %d\n",
1473 p->p_pid, signum);
1474 #endif
1475 break; /* == ignore */
1476 }
1477 /*
1478 * If there is a pending stop signal to process
1479 * with default action, stop here,
1480 * then clear the signal. However,
1481 * if process is member of an orphaned
1482 * process group, ignore tty stop signals.
1483 */
1484 if (prop & SA_STOP) {
1485 if (p->p_flag & P_TRACED ||
1486 (p->p_pgrp->pg_jobc == 0 &&
1487 prop & SA_TTYSTOP))
1488 break; /* == ignore */
1489 p->p_xstat = signum;
1490 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1491 child_psignal(p, dolock);
1492 if (dolock)
1493 SCHED_LOCK(s);
1494 proc_stop(p);
1495 sigswitch:
1496 mi_switch(l, NULL);
1497 SCHED_ASSERT_UNLOCKED();
1498 if (dolock)
1499 splx(s);
1500 else
1501 dolock = 1;
1502 break;
1503 } else if (prop & SA_IGNORE) {
1504 /*
1505 * Except for SIGCONT, shouldn't get here.
1506 * Default action is to ignore; drop it.
1507 */
1508 break; /* == ignore */
1509 } else
1510 goto keep;
1511 /*NOTREACHED*/
1512
1513 case (long)SIG_IGN:
1514 /*
1515 * Masking above should prevent us ever trying
1516 * to take action on an ignored signal other
1517 * than SIGCONT, unless process is traced.
1518 */
1519 #ifdef DEBUG_ISSIGNAL
1520 if ((prop & SA_CONT) == 0 &&
1521 (p->p_flag & P_TRACED) == 0)
1522 printf("issignal\n");
1523 #endif
1524 break; /* == ignore */
1525
1526 default:
1527 /*
1528 * This signal has an action, let
1529 * postsig() process it.
1530 */
1531 goto keep;
1532 }
1533 }
1534 /* NOTREACHED */
1535
1536 keep:
1537 /* leave the signal for later */
1538 sigaddset(&p->p_sigctx.ps_siglist, signum);
1539 CHECKSIGS(p);
1540 if (locked && dolock)
1541 SCHED_LOCK(s);
1542 return (signum);
1543 }
1544
1545 /*
1546 * Put the argument process into the stopped state and notify the parent
1547 * via wakeup. Signals are handled elsewhere. The process must not be
1548 * on the run queue.
1549 */
1550 static void
1551 proc_stop(struct proc *p)
1552 {
1553 struct lwp *l;
1554
1555 SCHED_ASSERT_LOCKED();
1556
1557 /* XXX lock process LWP state */
1558 p->p_stat = SSTOP;
1559 p->p_flag &= ~P_WAITED;
1560
1561 /*
1562 * Put as many LWP's as possible in stopped state.
1563 * Sleeping ones will notice the stopped state as they try to
1564 * return to userspace.
1565 */
1566
1567 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1568 if ((l->l_stat == LSONPROC) && (l == curlwp)) {
1569 /* XXX SMP this assumes that a LWP that is LSONPROC
1570 * is curlwp and hence is about to be mi_switched
1571 * away; the only callers of proc_stop() are:
1572 * - psignal
1573 * - issignal()
1574 * For the former, proc_stop() is only called when
1575 * no processes are running, so we don't worry.
1576 * For the latter, proc_stop() is called right
1577 * before mi_switch().
1578 */
1579 l->l_stat = LSSTOP;
1580 p->p_nrlwps--;
1581 }
1582 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
1583 setrunnable(l);
1584 }
1585
1586 /* !!!UPS!!! FIX ME */
1587 #if 0
1588 else if (l->l_stat == LSRUN) {
1589 /* Remove LWP from the run queue */
1590 remrunqueue(l);
1591 l->l_stat = LSSTOP;
1592 p->p_nrlwps--;
1593 } else if ((l->l_stat == LSSLEEP) ||
1594 (l->l_stat == LSSUSPENDED) ||
1595 (l->l_stat == LSZOMB) ||
1596 (l->l_stat == LSDEAD)) {
1597 /*
1598 * Don't do anything; let sleeping LWPs
1599 * discover the stopped state of the process
1600 * on their way out of the kernel; otherwise,
1601 * things like NFS threads that sleep with
1602 * locks will block the rest of the system
1603 * from getting any work done.
1604 *
1605 * Suspended/dead/zombie LWPs aren't going
1606 * anywhere, so we don't need to touch them.
1607 */
1608 }
1609 #ifdef DIAGNOSTIC
1610 else {
1611 panic("proc_stop: process %d lwp %d "
1612 "in unstoppable state %d.\n",
1613 p->p_pid, l->l_lid, l->l_stat);
1614 }
1615 #endif
1616 #endif
1617 }
1618 /* XXX unlock process LWP state */
1619
1620 sched_wakeup((caddr_t)p->p_pptr);
1621 }
1622
1623 /*
1624 * Given a process in state SSTOP, set the state back to SACTIVE and
1625 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1626 *
1627 * If no LWPs ended up runnable (and therefore able to take a signal),
1628 * return a LWP that is sleeping interruptably. The caller can wake
1629 * that LWP up to take a signal.
1630 */
1631 struct lwp *
1632 proc_unstop(struct proc *p)
1633 {
1634 struct lwp *l, *lr = NULL;
1635 int cantake = 0;
1636
1637 SCHED_ASSERT_LOCKED();
1638
1639 /*
1640 * Our caller wants to be informed if there are only sleeping
1641 * and interruptable LWPs left after we have run so that it
1642 * can invoke setrunnable() if required - return one of the
1643 * interruptable LWPs if this is the case.
1644 */
1645
1646 p->p_stat = SACTIVE;
1647 if (p->p_flag & P_SA) {
1648 /*
1649 * Preferentially select the idle LWP as the interruptable
1650 * LWP to return if it exists.
1651 */
1652 lr = p->p_sa->sa_idle;
1653 if (lr != NULL)
1654 cantake = 1;
1655 }
1656 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1657 if (l->l_stat == LSRUN) {
1658 lr = NULL;
1659 cantake = 1;
1660 }
1661 if (l->l_stat != LSSTOP)
1662 continue;
1663
1664 if (l->l_wchan != NULL) {
1665 l->l_stat = LSSLEEP;
1666 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1667 lr = l;
1668 cantake = 1;
1669 }
1670 } else {
1671 setrunnable(l);
1672 lr = NULL;
1673 cantake = 1;
1674 }
1675 }
1676
1677 return lr;
1678 }
1679
1680 /*
1681 * Take the action for the specified signal
1682 * from the current set of pending signals.
1683 */
1684 void
1685 postsig(int signum)
1686 {
1687 struct lwp *l;
1688 struct proc *p;
1689 struct sigacts *ps;
1690 sig_t action;
1691 sigset_t *returnmask;
1692
1693 l = curlwp;
1694 p = l->l_proc;
1695 ps = p->p_sigacts;
1696 #ifdef DIAGNOSTIC
1697 if (signum == 0)
1698 panic("postsig");
1699 #endif
1700
1701 KERNEL_PROC_LOCK(l);
1702
1703 sigdelset(&p->p_sigctx.ps_siglist, signum);
1704 action = SIGACTION_PS(ps, signum).sa_handler;
1705 #ifdef KTRACE
1706 if (KTRPOINT(p, KTR_PSIG))
1707 ktrpsig(p,
1708 signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
1709 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
1710 #endif
1711 if (action == SIG_DFL) {
1712 /*
1713 * Default action, where the default is to kill
1714 * the process. (Other cases were ignored above.)
1715 */
1716 sigexit(l, signum);
1717 /* NOTREACHED */
1718 } else {
1719 ksiginfo_t *ksi;
1720 /*
1721 * If we get here, the signal must be caught.
1722 */
1723 #ifdef DIAGNOSTIC
1724 if (action == SIG_IGN ||
1725 sigismember(&p->p_sigctx.ps_sigmask, signum))
1726 panic("postsig action");
1727 #endif
1728 /*
1729 * Set the new mask value and also defer further
1730 * occurrences of this signal.
1731 *
1732 * Special case: user has done a sigpause. Here the
1733 * current mask is not of interest, but rather the
1734 * mask from before the sigpause is what we want
1735 * restored after the signal processing is completed.
1736 */
1737 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1738 returnmask = &p->p_sigctx.ps_oldmask;
1739 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1740 } else
1741 returnmask = &p->p_sigctx.ps_sigmask;
1742 p->p_stats->p_ru.ru_nsignals++;
1743 ksi = ksiginfo_get(p, signum);
1744 if (ksi == NULL) {
1745 ksiginfo_t ksi1;
1746 /*
1747 * we did not save any siginfo for this, either
1748 * because the signal was not caught, or because the
1749 * user did not request SA_SIGINFO
1750 */
1751 (void)memset(&ksi1, 0, sizeof(ksi1));
1752 ksi1.ksi_signo = signum;
1753 kpsendsig(l, &ksi1, returnmask);
1754 } else {
1755 kpsendsig(l, ksi, returnmask);
1756 ksiginfo_del(p, ksi);
1757 pool_put(&ksiginfo_pool, ksi);
1758 }
1759 p->p_sigctx.ps_lwp = 0;
1760 p->p_sigctx.ps_code = 0;
1761 p->p_sigctx.ps_signo = 0;
1762 (void) splsched(); /* XXXSMP */
1763 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1764 &p->p_sigctx.ps_sigmask);
1765 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1766 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1767 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1768 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1769 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1770 }
1771 (void) spl0(); /* XXXSMP */
1772 }
1773
1774 KERNEL_PROC_UNLOCK(l);
1775 }
1776
1777 /*
1778 * Kill the current process for stated reason.
1779 */
1780 void
1781 killproc(struct proc *p, const char *why)
1782 {
1783 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1784 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1785 psignal(p, SIGKILL);
1786 }
1787
1788 /*
1789 * Force the current process to exit with the specified signal, dumping core
1790 * if appropriate. We bypass the normal tests for masked and caught signals,
1791 * allowing unrecoverable failures to terminate the process without changing
1792 * signal state. Mark the accounting record with the signal termination.
1793 * If dumping core, save the signal number for the debugger. Calls exit and
1794 * does not return.
1795 */
1796
1797 #if defined(DEBUG)
1798 int kern_logsigexit = 1; /* not static to make public for sysctl */
1799 #else
1800 int kern_logsigexit = 0; /* not static to make public for sysctl */
1801 #endif
1802
1803 static const char logcoredump[] =
1804 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1805 static const char lognocoredump[] =
1806 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1807
1808 /* Wrapper function for use in p_userret */
1809 static void
1810 lwp_coredump_hook(struct lwp *l, void *arg)
1811 {
1812 int s;
1813
1814 /*
1815 * Suspend ourselves, so that the kernel stack and therefore
1816 * the userland registers saved in the trapframe are around
1817 * for coredump() to write them out.
1818 */
1819 KERNEL_PROC_LOCK(l);
1820 l->l_flag &= ~L_DETACHED;
1821 SCHED_LOCK(s);
1822 l->l_stat = LSSUSPENDED;
1823 l->l_proc->p_nrlwps--;
1824 /* XXX NJWLWP check if this makes sense here: */
1825 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1826 mi_switch(l, NULL);
1827 SCHED_ASSERT_UNLOCKED();
1828 splx(s);
1829
1830 lwp_exit(l);
1831 }
1832
1833 void
1834 sigexit(struct lwp *l, int signum)
1835 {
1836 struct proc *p;
1837 #if 0
1838 struct lwp *l2;
1839 #endif
1840 int error, exitsig;
1841
1842 p = l->l_proc;
1843
1844 /*
1845 * Don't permit coredump() or exit1() multiple times
1846 * in the same process.
1847 */
1848 if (p->p_flag & P_WEXIT) {
1849 KERNEL_PROC_UNLOCK(l);
1850 (*p->p_userret)(l, p->p_userret_arg);
1851 }
1852 p->p_flag |= P_WEXIT;
1853 /* We don't want to switch away from exiting. */
1854 /* XXX multiprocessor: stop LWPs on other processors. */
1855 #if 0
1856 if (p->p_flag & P_SA) {
1857 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1858 l2->l_flag &= ~L_SA;
1859 p->p_flag &= ~P_SA;
1860 }
1861 #endif
1862
1863 /* Make other LWPs stick around long enough to be dumped */
1864 p->p_userret = lwp_coredump_hook;
1865 p->p_userret_arg = NULL;
1866
1867 exitsig = signum;
1868 p->p_acflag |= AXSIG;
1869 if (sigprop[signum] & SA_CORE) {
1870 p->p_sigctx.ps_signo = signum;
1871 if ((error = coredump(l)) == 0)
1872 exitsig |= WCOREFLAG;
1873
1874 if (kern_logsigexit) {
1875 /* XXX What if we ever have really large UIDs? */
1876 int uid = p->p_cred && p->p_ucred ?
1877 (int) p->p_ucred->cr_uid : -1;
1878
1879 if (error)
1880 log(LOG_INFO, lognocoredump, p->p_pid,
1881 p->p_comm, uid, signum, error);
1882 else
1883 log(LOG_INFO, logcoredump, p->p_pid,
1884 p->p_comm, uid, signum);
1885 }
1886
1887 }
1888
1889 exit1(l, W_EXITCODE(0, exitsig));
1890 /* NOTREACHED */
1891 }
1892
1893 /*
1894 * Dump core, into a file named "progname.core" or "core" (depending on the
1895 * value of shortcorename), unless the process was setuid/setgid.
1896 */
1897 int
1898 coredump(struct lwp *l)
1899 {
1900 struct vnode *vp;
1901 struct proc *p;
1902 struct vmspace *vm;
1903 struct ucred *cred;
1904 struct nameidata nd;
1905 struct vattr vattr;
1906 int error, error1;
1907 char name[MAXPATHLEN];
1908
1909 p = l->l_proc;
1910 vm = p->p_vmspace;
1911 cred = p->p_cred->pc_ucred;
1912
1913 /*
1914 * Make sure the process has not set-id, to prevent data leaks.
1915 */
1916 if (p->p_flag & P_SUGID)
1917 return (EPERM);
1918
1919 /*
1920 * Refuse to core if the data + stack + user size is larger than
1921 * the core dump limit. XXX THIS IS WRONG, because of mapped
1922 * data.
1923 */
1924 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
1925 p->p_rlimit[RLIMIT_CORE].rlim_cur)
1926 return (EFBIG); /* better error code? */
1927
1928 /*
1929 * The core dump will go in the current working directory. Make
1930 * sure that the directory is still there and that the mount flags
1931 * allow us to write core dumps there.
1932 */
1933 vp = p->p_cwdi->cwdi_cdir;
1934 if (vp->v_mount == NULL ||
1935 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
1936 return (EPERM);
1937
1938 error = build_corename(p, name);
1939 if (error)
1940 return error;
1941
1942 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1943 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
1944 if (error)
1945 return (error);
1946 vp = nd.ni_vp;
1947
1948 /* Don't dump to non-regular files or files with links. */
1949 if (vp->v_type != VREG ||
1950 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
1951 error = EINVAL;
1952 goto out;
1953 }
1954 VATTR_NULL(&vattr);
1955 vattr.va_size = 0;
1956 VOP_LEASE(vp, p, cred, LEASE_WRITE);
1957 VOP_SETATTR(vp, &vattr, cred, p);
1958 p->p_acflag |= ACORE;
1959
1960 /* Now dump the actual core file. */
1961 error = (*p->p_execsw->es_coredump)(l, vp, cred);
1962 out:
1963 VOP_UNLOCK(vp, 0);
1964 error1 = vn_close(vp, FWRITE, cred, p);
1965 if (error == 0)
1966 error = error1;
1967 return (error);
1968 }
1969
1970 /*
1971 * Nonexistent system call-- signal process (may want to handle it).
1972 * Flag error in case process won't see signal immediately (blocked or ignored).
1973 */
1974 /* ARGSUSED */
1975 int
1976 sys_nosys(struct lwp *l, void *v, register_t *retval)
1977 {
1978 struct proc *p;
1979
1980 p = l->l_proc;
1981 psignal(p, SIGSYS);
1982 return (ENOSYS);
1983 }
1984
1985 static int
1986 build_corename(struct proc *p, char dst[MAXPATHLEN])
1987 {
1988 const char *s;
1989 char *d, *end;
1990 int i;
1991
1992 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
1993 *s != '\0'; s++) {
1994 if (*s == '%') {
1995 switch (*(s + 1)) {
1996 case 'n':
1997 i = snprintf(d, end - d, "%s", p->p_comm);
1998 break;
1999 case 'p':
2000 i = snprintf(d, end - d, "%d", p->p_pid);
2001 break;
2002 case 'u':
2003 i = snprintf(d, end - d, "%.*s",
2004 (int)sizeof p->p_pgrp->pg_session->s_login,
2005 p->p_pgrp->pg_session->s_login);
2006 break;
2007 case 't':
2008 i = snprintf(d, end - d, "%ld",
2009 p->p_stats->p_start.tv_sec);
2010 break;
2011 default:
2012 goto copy;
2013 }
2014 d += i;
2015 s++;
2016 } else {
2017 copy: *d = *s;
2018 d++;
2019 }
2020 if (d >= end)
2021 return (ENAMETOOLONG);
2022 }
2023 *d = '\0';
2024 return 0;
2025 }
2026
2027 void
2028 getucontext(struct lwp *l, ucontext_t *ucp)
2029 {
2030 struct proc *p;
2031
2032 p = l->l_proc;
2033
2034 ucp->uc_flags = 0;
2035 ucp->uc_link = l->l_ctxlink;
2036
2037 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2038 ucp->uc_flags |= _UC_SIGMASK;
2039
2040 /*
2041 * The (unsupplied) definition of the `current execution stack'
2042 * in the System V Interface Definition appears to allow returning
2043 * the main context stack.
2044 */
2045 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2046 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2047 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2048 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2049 } else {
2050 /* Simply copy alternate signal execution stack. */
2051 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2052 }
2053 ucp->uc_flags |= _UC_STACK;
2054
2055 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2056 }
2057
2058 /* ARGSUSED */
2059 int
2060 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2061 {
2062 struct sys_getcontext_args /* {
2063 syscallarg(struct __ucontext *) ucp;
2064 } */ *uap = v;
2065 ucontext_t uc;
2066
2067 getucontext(l, &uc);
2068
2069 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2070 }
2071
2072 int
2073 setucontext(struct lwp *l, const ucontext_t *ucp)
2074 {
2075 struct proc *p;
2076 int error;
2077
2078 p = l->l_proc;
2079 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2080 return (error);
2081 l->l_ctxlink = ucp->uc_link;
2082 /*
2083 * We might want to take care of the stack portion here but currently
2084 * don't; see the comment in getucontext().
2085 */
2086 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2087 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2088
2089 return 0;
2090 }
2091
2092 /* ARGSUSED */
2093 int
2094 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2095 {
2096 struct sys_setcontext_args /* {
2097 syscallarg(const ucontext_t *) ucp;
2098 } */ *uap = v;
2099 ucontext_t uc;
2100 int error;
2101
2102 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2103 exit1(l, W_EXITCODE(0, 0));
2104 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2105 (error = setucontext(l, &uc)) != 0)
2106 return (error);
2107
2108 return (EJUSTRETURN);
2109 }
2110
2111 /*
2112 * sigtimedwait(2) system call, used also for implementation
2113 * of sigwaitinfo() and sigwait().
2114 *
2115 * This only handles single LWP in signal wait. libpthread provides
2116 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2117 *
2118 * XXX no support for queued signals, si_code is always SI_USER.
2119 */
2120 int
2121 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2122 {
2123 struct sys___sigtimedwait_args /* {
2124 syscallarg(const sigset_t *) set;
2125 syscallarg(siginfo_t *) info;
2126 syscallarg(struct timespec *) timeout;
2127 } */ *uap = v;
2128 sigset_t waitset, twaitset;
2129 struct proc *p = l->l_proc;
2130 int error, signum, s;
2131 int timo = 0;
2132 struct timeval tvstart;
2133 struct timespec ts;
2134
2135 if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
2136 return (error);
2137
2138 /*
2139 * Silently ignore SA_CANTMASK signals. psignal1() would
2140 * ignore SA_CANTMASK signals in waitset, we do this
2141 * only for the below siglist check.
2142 */
2143 sigminusset(&sigcantmask, &waitset);
2144
2145 /*
2146 * First scan siglist and check if there is signal from
2147 * our waitset already pending.
2148 */
2149 twaitset = waitset;
2150 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2151 if ((signum = firstsig(&twaitset))) {
2152 /* found pending signal */
2153 sigdelset(&p->p_sigctx.ps_siglist, signum);
2154 goto sig;
2155 }
2156
2157 /*
2158 * Calculate timeout, if it was specified.
2159 */
2160 if (SCARG(uap, timeout)) {
2161 uint64_t ms;
2162
2163 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2164 return (error);
2165
2166 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2167 timo = mstohz(ms);
2168 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2169 timo = 1;
2170 if (timo <= 0)
2171 return (EAGAIN);
2172
2173 /*
2174 * Remember current mono_time, it would be used in
2175 * ECANCELED/ERESTART case.
2176 */
2177 s = splclock();
2178 tvstart = mono_time;
2179 splx(s);
2180 }
2181
2182 /*
2183 * Setup ps_sigwait list.
2184 */
2185 p->p_sigctx.ps_sigwaited = -1;
2186 p->p_sigctx.ps_sigwait = waitset;
2187
2188 /*
2189 * Wait for signal to arrive. We can either be woken up or
2190 * time out.
2191 */
2192 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2193
2194 /*
2195 * Check if a signal from our wait set has arrived, or if it
2196 * was mere wakeup.
2197 */
2198 if (!error) {
2199 if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
2200 /* wakeup via _lwp_wakeup() */
2201 error = ECANCELED;
2202 }
2203 }
2204
2205 /*
2206 * On error, clear sigwait indication. psignal1() sets it
2207 * in !error case.
2208 */
2209 if (error) {
2210 p->p_sigctx.ps_sigwaited = 0;
2211
2212 /*
2213 * If the sleep was interrupted (either by signal or wakeup),
2214 * update the timeout and copyout new value back.
2215 * It would be used when the syscall would be restarted
2216 * or called again.
2217 */
2218 if (timo && (error == ERESTART || error == ECANCELED)) {
2219 struct timeval tvnow, tvtimo;
2220 int err;
2221
2222 s = splclock();
2223 tvnow = mono_time;
2224 splx(s);
2225
2226 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2227
2228 /* compute how much time has passed since start */
2229 timersub(&tvnow, &tvstart, &tvnow);
2230 /* substract passed time from timeout */
2231 timersub(&tvtimo, &tvnow, &tvtimo);
2232
2233 if (tvtimo.tv_sec < 0)
2234 return (EAGAIN);
2235
2236 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2237
2238 /* copy updated timeout to userland */
2239 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
2240 return (err);
2241 }
2242
2243 return (error);
2244 }
2245
2246 /*
2247 * If a signal from the wait set arrived, copy it to userland.
2248 * XXX no queued signals for now
2249 */
2250 if (signum > 0) {
2251 siginfo_t si;
2252
2253 sig:
2254 memset(&si, 0, sizeof(si));
2255 si.si_signo = signum;
2256 si.si_code = SI_USER;
2257
2258 error = copyout(&si, SCARG(uap, info), sizeof(si));
2259 if (error)
2260 return (error);
2261 }
2262
2263 return (0);
2264 }
2265
2266 /*
2267 * Returns true if signal is ignored or masked for passed process.
2268 */
2269 int
2270 sigismasked(struct proc *p, int sig)
2271 {
2272
2273 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2274 sigismember(&p->p_sigctx.ps_sigmask, sig));
2275 }
2276
2277 static int
2278 filt_sigattach(struct knote *kn)
2279 {
2280 struct proc *p = curproc;
2281
2282 kn->kn_ptr.p_proc = p;
2283 kn->kn_flags |= EV_CLEAR; /* automatically set */
2284
2285 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2286
2287 return (0);
2288 }
2289
2290 static void
2291 filt_sigdetach(struct knote *kn)
2292 {
2293 struct proc *p = kn->kn_ptr.p_proc;
2294
2295 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2296 }
2297
2298 /*
2299 * signal knotes are shared with proc knotes, so we apply a mask to
2300 * the hint in order to differentiate them from process hints. This
2301 * could be avoided by using a signal-specific knote list, but probably
2302 * isn't worth the trouble.
2303 */
2304 static int
2305 filt_signal(struct knote *kn, long hint)
2306 {
2307
2308 if (hint & NOTE_SIGNAL) {
2309 hint &= ~NOTE_SIGNAL;
2310
2311 if (kn->kn_id == hint)
2312 kn->kn_data++;
2313 }
2314 return (kn->kn_data != 0);
2315 }
2316
2317 const struct filterops sig_filtops = {
2318 0, filt_sigattach, filt_sigdetach, filt_signal
2319 };
2320