kern_sig.c revision 1.153 1 /* $NetBSD: kern_sig.c,v 1.153 2003/09/14 17:39:03 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.153 2003/09/14 17:39:03 christos Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd32.h"
45
46 #define SIGPROP /* include signal properties table */
47 #include <sys/param.h>
48 #include <sys/signalvar.h>
49 #include <sys/resourcevar.h>
50 #include <sys/namei.h>
51 #include <sys/vnode.h>
52 #include <sys/proc.h>
53 #include <sys/systm.h>
54 #include <sys/timeb.h>
55 #include <sys/times.h>
56 #include <sys/buf.h>
57 #include <sys/acct.h>
58 #include <sys/file.h>
59 #include <sys/kernel.h>
60 #include <sys/wait.h>
61 #include <sys/ktrace.h>
62 #include <sys/syslog.h>
63 #include <sys/stat.h>
64 #include <sys/core.h>
65 #include <sys/filedesc.h>
66 #include <sys/malloc.h>
67 #include <sys/pool.h>
68 #include <sys/ucontext.h>
69 #include <sys/sa.h>
70 #include <sys/savar.h>
71 #include <sys/exec.h>
72
73 #include <sys/mount.h>
74 #include <sys/syscallargs.h>
75
76 #include <machine/cpu.h>
77
78 #include <sys/user.h> /* for coredump */
79
80 #include <uvm/uvm_extern.h>
81
82 static void child_psignal(struct proc *, int);
83 static void proc_stop(struct proc *);
84 static int build_corename(struct proc *, char [MAXPATHLEN]);
85 static void ksiginfo_exithook(struct proc *, void *);
86 static void ksiginfo_save(struct proc *, ksiginfo_t *);
87 static void ksiginfo_del(struct proc *p, ksiginfo_t *);
88 static void ksiginfo_put(struct proc *, ksiginfo_t *);
89 static ksiginfo_t *ksiginfo_get(struct proc *, int);
90
91 sigset_t contsigmask, stopsigmask, sigcantmask;
92
93 struct pool sigacts_pool; /* memory pool for sigacts structures */
94 struct pool siginfo_pool; /* memory pool for siginfo structures */
95 struct pool ksiginfo_pool; /* memory pool for ksiginfo structures */
96
97 /*
98 * Can process p, with pcred pc, send the signal signum to process q?
99 */
100 #define CANSIGNAL(p, pc, q, signum) \
101 ((pc)->pc_ucred->cr_uid == 0 || \
102 (pc)->p_ruid == (q)->p_cred->p_ruid || \
103 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
104 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
105 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
106 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
107
108 /*
109 * return the first ksiginfo struct from our hash table
110 */
111 static ksiginfo_t *
112 ksiginfo_get(struct proc *p, int signo)
113 {
114 ksiginfo_t *ksi, *hp = p->p_sigctx.ps_siginfo;
115
116 if ((ksi = hp) == NULL)
117 return NULL;
118
119 for (;;) {
120 if (ksi->ksi_signo == signo)
121 return ksi;
122 if ((ksi = ksi->ksi_next) == hp)
123 return NULL;
124 }
125 }
126
127 static void
128 ksiginfo_put(struct proc *p, ksiginfo_t *ksi)
129 {
130 ksiginfo_t *hp = p->p_sigctx.ps_siginfo;
131
132 if (hp == NULL)
133 p->p_sigctx.ps_siginfo = ksi->ksi_next = ksi->ksi_prev = ksi;
134 else {
135 ksi->ksi_prev = hp->ksi_prev;
136 hp->ksi_prev->ksi_next = ksi;
137 hp->ksi_prev = ksi;
138 ksi->ksi_next = hp;
139 }
140 }
141
142 static void
143 ksiginfo_del(struct proc *p, ksiginfo_t *ksi)
144 {
145 if (ksi->ksi_next == ksi)
146 p->p_sigctx.ps_siginfo = NULL;
147 else {
148 ksi->ksi_prev->ksi_next = ksi->ksi_next;
149 ksi->ksi_next->ksi_prev = ksi->ksi_prev;
150 }
151 }
152
153 static void
154 ksiginfo_save(struct proc *p, ksiginfo_t *ksi)
155 {
156 ksiginfo_t *kpool = NULL;
157 if ((SIGACTION_PS(p->p_sigacts, ksi->ksi_signo).sa_flags & SA_SIGINFO)
158 == 0)
159 return;
160 if (
161 #ifdef notyet /* XXX: QUEUING */
162 ksi->ksi_signo >= SIGRTMIN ||
163 #endif
164 (kpool = ksiginfo_get(p, ksi->ksi_signo)) == NULL) {
165 if ((kpool = pool_get(&ksiginfo_pool, PR_NOWAIT)) == NULL)
166 return;
167 *kpool = *ksi;
168 ksiginfo_put(p, kpool);
169 } else {
170 ksiginfo_t *next = ksi->ksi_next, *prev = ksi->ksi_prev;
171 *kpool = *ksi;
172 kpool->ksi_next = next;
173 kpool->ksi_prev = prev;
174 }
175 }
176
177 /*
178 * free all pending ksiginfo on exit
179 */
180 static void
181 ksiginfo_exithook(struct proc *p, void *v)
182 {
183 ksiginfo_t *ksi, *hp = p->p_sigctx.ps_siginfo;
184
185 if ((ksi = hp) == NULL)
186 return;
187 for (;;) {
188 pool_put(&ksiginfo_pool, ksi);
189 if ((ksi = ksi->ksi_next) == hp)
190 break;
191 }
192 }
193
194 /*
195 * Initialize signal-related data structures.
196 */
197 void
198 signal_init(void)
199 {
200 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
201 &pool_allocator_nointr);
202 pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
203 &pool_allocator_nointr);
204 pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
205 NULL);
206 exithook_establish(ksiginfo_exithook, NULL);
207 exechook_establish(ksiginfo_exithook, NULL);
208 }
209
210 /*
211 * Create an initial sigctx structure, using the same signal state
212 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
213 * copy it from parent.
214 */
215 void
216 sigactsinit(struct proc *np, struct proc *pp, int share)
217 {
218 struct sigacts *ps;
219
220 if (share) {
221 np->p_sigacts = pp->p_sigacts;
222 pp->p_sigacts->sa_refcnt++;
223 } else {
224 ps = pool_get(&sigacts_pool, PR_WAITOK);
225 if (pp)
226 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
227 else
228 memset(ps, '\0', sizeof(struct sigacts));
229 ps->sa_refcnt = 1;
230 np->p_sigacts = ps;
231 }
232 }
233
234 /*
235 * Make this process not share its sigctx, maintaining all
236 * signal state.
237 */
238 void
239 sigactsunshare(struct proc *p)
240 {
241 struct sigacts *oldps;
242
243 if (p->p_sigacts->sa_refcnt == 1)
244 return;
245
246 oldps = p->p_sigacts;
247 sigactsinit(p, NULL, 0);
248
249 if (--oldps->sa_refcnt == 0)
250 pool_put(&sigacts_pool, oldps);
251 }
252
253 /*
254 * Release a sigctx structure.
255 */
256 void
257 sigactsfree(struct proc *p)
258 {
259 struct sigacts *ps;
260
261 ps = p->p_sigacts;
262 if (--ps->sa_refcnt > 0)
263 return;
264
265 pool_put(&sigacts_pool, ps);
266 }
267
268 int
269 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
270 struct sigaction *osa, void *tramp, int vers)
271 {
272 struct sigacts *ps;
273 int prop;
274
275 ps = p->p_sigacts;
276 if (signum <= 0 || signum >= NSIG)
277 return (EINVAL);
278
279 /*
280 * Trampoline ABI version 0 is reserved for the legacy
281 * kernel-provided on-stack trampoline. Conversely, if
282 * we are using a non-0 ABI version, we must have a
283 * trampoline.
284 */
285 if ((vers != 0 && tramp == NULL) ||
286 (vers == 0 && tramp != NULL))
287 return (EINVAL);
288
289 if (osa)
290 *osa = SIGACTION_PS(ps, signum);
291
292 if (nsa) {
293 if (nsa->sa_flags & ~SA_ALLBITS)
294 return (EINVAL);
295
296 #ifndef __HAVE_SIGINFO
297 if (nsa->sa_flags & SA_SIGINFO)
298 return (EINVAL);
299 #endif
300
301 prop = sigprop[signum];
302 if (prop & SA_CANTMASK)
303 return (EINVAL);
304
305 (void) splsched(); /* XXXSMP */
306 SIGACTION_PS(ps, signum) = *nsa;
307 ps->sa_sigdesc[signum].sd_tramp = tramp;
308 ps->sa_sigdesc[signum].sd_vers = vers;
309 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
310 if ((prop & SA_NORESET) != 0)
311 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
312 if (signum == SIGCHLD) {
313 if (nsa->sa_flags & SA_NOCLDSTOP)
314 p->p_flag |= P_NOCLDSTOP;
315 else
316 p->p_flag &= ~P_NOCLDSTOP;
317 if (nsa->sa_flags & SA_NOCLDWAIT) {
318 /*
319 * Paranoia: since SA_NOCLDWAIT is implemented
320 * by reparenting the dying child to PID 1 (and
321 * trust it to reap the zombie), PID 1 itself
322 * is forbidden to set SA_NOCLDWAIT.
323 */
324 if (p->p_pid == 1)
325 p->p_flag &= ~P_NOCLDWAIT;
326 else
327 p->p_flag |= P_NOCLDWAIT;
328 } else
329 p->p_flag &= ~P_NOCLDWAIT;
330 }
331 if ((nsa->sa_flags & SA_NODEFER) == 0)
332 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
333 else
334 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
335 /*
336 * Set bit in p_sigctx.ps_sigignore for signals that are set to
337 * SIG_IGN, and for signals set to SIG_DFL where the default is
338 * to ignore. However, don't put SIGCONT in
339 * p_sigctx.ps_sigignore, as we have to restart the process.
340 */
341 if (nsa->sa_handler == SIG_IGN ||
342 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
343 /* never to be seen again */
344 sigdelset(&p->p_sigctx.ps_siglist, signum);
345 if (signum != SIGCONT) {
346 /* easier in psignal */
347 sigaddset(&p->p_sigctx.ps_sigignore, signum);
348 }
349 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
350 } else {
351 sigdelset(&p->p_sigctx.ps_sigignore, signum);
352 if (nsa->sa_handler == SIG_DFL)
353 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
354 else
355 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
356 }
357 (void) spl0();
358 }
359
360 return (0);
361 }
362
363 /* ARGSUSED */
364 int
365 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
366 {
367 struct sys___sigaction14_args /* {
368 syscallarg(int) signum;
369 syscallarg(const struct sigaction *) nsa;
370 syscallarg(struct sigaction *) osa;
371 } */ *uap = v;
372 struct proc *p;
373 struct sigaction nsa, osa;
374 int error;
375
376 if (SCARG(uap, nsa)) {
377 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
378 if (error)
379 return (error);
380 }
381 p = l->l_proc;
382 error = sigaction1(p, SCARG(uap, signum),
383 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
384 NULL, 0);
385 if (error)
386 return (error);
387 if (SCARG(uap, osa)) {
388 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
389 if (error)
390 return (error);
391 }
392 return (0);
393 }
394
395 /* ARGSUSED */
396 int
397 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
398 {
399 struct sys___sigaction_sigtramp_args /* {
400 syscallarg(int) signum;
401 syscallarg(const struct sigaction *) nsa;
402 syscallarg(struct sigaction *) osa;
403 syscallarg(void *) tramp;
404 syscallarg(int) vers;
405 } */ *uap = v;
406 struct proc *p = l->l_proc;
407 struct sigaction nsa, osa;
408 int error;
409
410 if (SCARG(uap, nsa)) {
411 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
412 if (error)
413 return (error);
414 }
415 error = sigaction1(p, SCARG(uap, signum),
416 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
417 SCARG(uap, tramp), SCARG(uap, vers));
418 if (error)
419 return (error);
420 if (SCARG(uap, osa)) {
421 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
422 if (error)
423 return (error);
424 }
425 return (0);
426 }
427
428 /*
429 * Initialize signal state for process 0;
430 * set to ignore signals that are ignored by default and disable the signal
431 * stack.
432 */
433 void
434 siginit(struct proc *p)
435 {
436 struct sigacts *ps;
437 int signum, prop;
438
439 ps = p->p_sigacts;
440 sigemptyset(&contsigmask);
441 sigemptyset(&stopsigmask);
442 sigemptyset(&sigcantmask);
443 for (signum = 1; signum < NSIG; signum++) {
444 prop = sigprop[signum];
445 if (prop & SA_CONT)
446 sigaddset(&contsigmask, signum);
447 if (prop & SA_STOP)
448 sigaddset(&stopsigmask, signum);
449 if (prop & SA_CANTMASK)
450 sigaddset(&sigcantmask, signum);
451 if (prop & SA_IGNORE && signum != SIGCONT)
452 sigaddset(&p->p_sigctx.ps_sigignore, signum);
453 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
454 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
455 }
456 sigemptyset(&p->p_sigctx.ps_sigcatch);
457 p->p_sigctx.ps_sigwaited = 0;
458 p->p_flag &= ~P_NOCLDSTOP;
459
460 /*
461 * Reset stack state to the user stack.
462 */
463 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
464 p->p_sigctx.ps_sigstk.ss_size = 0;
465 p->p_sigctx.ps_sigstk.ss_sp = 0;
466
467 /* One reference. */
468 ps->sa_refcnt = 1;
469 }
470
471 /*
472 * Reset signals for an exec of the specified process.
473 */
474 void
475 execsigs(struct proc *p)
476 {
477 struct sigacts *ps;
478 int signum, prop;
479
480 sigactsunshare(p);
481
482 ps = p->p_sigacts;
483
484 /*
485 * Reset caught signals. Held signals remain held
486 * through p_sigctx.ps_sigmask (unless they were caught,
487 * and are now ignored by default).
488 */
489 for (signum = 1; signum < NSIG; signum++) {
490 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
491 prop = sigprop[signum];
492 if (prop & SA_IGNORE) {
493 if ((prop & SA_CONT) == 0)
494 sigaddset(&p->p_sigctx.ps_sigignore,
495 signum);
496 sigdelset(&p->p_sigctx.ps_siglist, signum);
497 }
498 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
499 }
500 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
501 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
502 }
503 sigemptyset(&p->p_sigctx.ps_sigcatch);
504 p->p_sigctx.ps_sigwaited = 0;
505 p->p_flag &= ~P_NOCLDSTOP;
506
507 /*
508 * Reset stack state to the user stack.
509 */
510 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
511 p->p_sigctx.ps_sigstk.ss_size = 0;
512 p->p_sigctx.ps_sigstk.ss_sp = 0;
513 }
514
515 int
516 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
517 {
518
519 if (oss)
520 *oss = p->p_sigctx.ps_sigmask;
521
522 if (nss) {
523 (void)splsched(); /* XXXSMP */
524 switch (how) {
525 case SIG_BLOCK:
526 sigplusset(nss, &p->p_sigctx.ps_sigmask);
527 break;
528 case SIG_UNBLOCK:
529 sigminusset(nss, &p->p_sigctx.ps_sigmask);
530 CHECKSIGS(p);
531 break;
532 case SIG_SETMASK:
533 p->p_sigctx.ps_sigmask = *nss;
534 CHECKSIGS(p);
535 break;
536 default:
537 (void)spl0(); /* XXXSMP */
538 return (EINVAL);
539 }
540 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
541 (void)spl0(); /* XXXSMP */
542 }
543
544 return (0);
545 }
546
547 /*
548 * Manipulate signal mask.
549 * Note that we receive new mask, not pointer,
550 * and return old mask as return value;
551 * the library stub does the rest.
552 */
553 int
554 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
555 {
556 struct sys___sigprocmask14_args /* {
557 syscallarg(int) how;
558 syscallarg(const sigset_t *) set;
559 syscallarg(sigset_t *) oset;
560 } */ *uap = v;
561 struct proc *p;
562 sigset_t nss, oss;
563 int error;
564
565 if (SCARG(uap, set)) {
566 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
567 if (error)
568 return (error);
569 }
570 p = l->l_proc;
571 error = sigprocmask1(p, SCARG(uap, how),
572 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
573 if (error)
574 return (error);
575 if (SCARG(uap, oset)) {
576 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
577 if (error)
578 return (error);
579 }
580 return (0);
581 }
582
583 void
584 sigpending1(struct proc *p, sigset_t *ss)
585 {
586
587 *ss = p->p_sigctx.ps_siglist;
588 sigminusset(&p->p_sigctx.ps_sigmask, ss);
589 }
590
591 /* ARGSUSED */
592 int
593 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
594 {
595 struct sys___sigpending14_args /* {
596 syscallarg(sigset_t *) set;
597 } */ *uap = v;
598 struct proc *p;
599 sigset_t ss;
600
601 p = l->l_proc;
602 sigpending1(p, &ss);
603 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
604 }
605
606 int
607 sigsuspend1(struct proc *p, const sigset_t *ss)
608 {
609 struct sigacts *ps;
610
611 ps = p->p_sigacts;
612 if (ss) {
613 /*
614 * When returning from sigpause, we want
615 * the old mask to be restored after the
616 * signal handler has finished. Thus, we
617 * save it here and mark the sigctx structure
618 * to indicate this.
619 */
620 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
621 p->p_sigctx.ps_flags |= SAS_OLDMASK;
622 (void) splsched(); /* XXXSMP */
623 p->p_sigctx.ps_sigmask = *ss;
624 CHECKSIGS(p);
625 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
626 (void) spl0(); /* XXXSMP */
627 }
628
629 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
630 /* void */;
631
632 /* always return EINTR rather than ERESTART... */
633 return (EINTR);
634 }
635
636 /*
637 * Suspend process until signal, providing mask to be set
638 * in the meantime. Note nonstandard calling convention:
639 * libc stub passes mask, not pointer, to save a copyin.
640 */
641 /* ARGSUSED */
642 int
643 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
644 {
645 struct sys___sigsuspend14_args /* {
646 syscallarg(const sigset_t *) set;
647 } */ *uap = v;
648 struct proc *p;
649 sigset_t ss;
650 int error;
651
652 if (SCARG(uap, set)) {
653 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
654 if (error)
655 return (error);
656 }
657
658 p = l->l_proc;
659 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
660 }
661
662 int
663 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
664 struct sigaltstack *oss)
665 {
666
667 if (oss)
668 *oss = p->p_sigctx.ps_sigstk;
669
670 if (nss) {
671 if (nss->ss_flags & ~SS_ALLBITS)
672 return (EINVAL);
673
674 if (nss->ss_flags & SS_DISABLE) {
675 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
676 return (EINVAL);
677 } else {
678 if (nss->ss_size < MINSIGSTKSZ)
679 return (ENOMEM);
680 }
681 p->p_sigctx.ps_sigstk = *nss;
682 }
683
684 return (0);
685 }
686
687 /* ARGSUSED */
688 int
689 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
690 {
691 struct sys___sigaltstack14_args /* {
692 syscallarg(const struct sigaltstack *) nss;
693 syscallarg(struct sigaltstack *) oss;
694 } */ *uap = v;
695 struct proc *p;
696 struct sigaltstack nss, oss;
697 int error;
698
699 if (SCARG(uap, nss)) {
700 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
701 if (error)
702 return (error);
703 }
704 p = l->l_proc;
705 error = sigaltstack1(p,
706 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
707 if (error)
708 return (error);
709 if (SCARG(uap, oss)) {
710 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
711 if (error)
712 return (error);
713 }
714 return (0);
715 }
716
717 /* ARGSUSED */
718 int
719 sys_kill(struct lwp *l, void *v, register_t *retval)
720 {
721 struct sys_kill_args /* {
722 syscallarg(int) pid;
723 syscallarg(int) signum;
724 } */ *uap = v;
725 struct proc *cp, *p;
726 struct pcred *pc;
727 ksiginfo_t ksi;
728
729 cp = l->l_proc;
730 pc = cp->p_cred;
731 if ((u_int)SCARG(uap, signum) >= NSIG)
732 return (EINVAL);
733 memset(&ksi, 0, sizeof(ksi));
734 ksi.ksi_signo = SCARG(uap, signum);
735 ksi.ksi_code = SI_USER;
736 ksi.ksi_pid = cp->p_pid;
737 ksi.ksi_uid = cp->p_ucred->cr_uid;
738 if (SCARG(uap, pid) > 0) {
739 /* kill single process */
740 if ((p = pfind(SCARG(uap, pid))) == NULL)
741 return (ESRCH);
742 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
743 return (EPERM);
744 if (SCARG(uap, signum))
745 kpsignal(p, &ksi, NULL);
746 return (0);
747 }
748 switch (SCARG(uap, pid)) {
749 case -1: /* broadcast signal */
750 return (killpg1(cp, &ksi, 0, 1));
751 case 0: /* signal own process group */
752 return (killpg1(cp, &ksi, 0, 0));
753 default: /* negative explicit process group */
754 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
755 }
756 /* NOTREACHED */
757 }
758
759 /*
760 * Common code for kill process group/broadcast kill.
761 * cp is calling process.
762 */
763 int
764 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
765 {
766 struct proc *p;
767 struct pcred *pc;
768 struct pgrp *pgrp;
769 int nfound;
770 int signum = ksi->ksi_signo;
771
772 pc = cp->p_cred;
773 nfound = 0;
774 if (all) {
775 /*
776 * broadcast
777 */
778 proclist_lock_read();
779 LIST_FOREACH(p, &allproc, p_list) {
780 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
781 p == cp || !CANSIGNAL(cp, pc, p, signum))
782 continue;
783 nfound++;
784 if (signum)
785 kpsignal(p, ksi, NULL);
786 }
787 proclist_unlock_read();
788 } else {
789 if (pgid == 0)
790 /*
791 * zero pgid means send to my process group.
792 */
793 pgrp = cp->p_pgrp;
794 else {
795 pgrp = pgfind(pgid);
796 if (pgrp == NULL)
797 return (ESRCH);
798 }
799 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
800 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
801 !CANSIGNAL(cp, pc, p, signum))
802 continue;
803 nfound++;
804 if (signum && P_ZOMBIE(p) == 0)
805 kpsignal(p, ksi, NULL);
806 }
807 }
808 return (nfound ? 0 : ESRCH);
809 }
810
811 /*
812 * Send a signal to a process group.
813 */
814 void
815 gsignal(int pgid, int signum)
816 {
817 ksiginfo_t ksi;
818 memset(&ksi, 0, sizeof(ksi));
819 ksi.ksi_signo = signum;
820 kgsignal(pgid, &ksi, NULL);
821 }
822
823 void
824 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
825 {
826 struct pgrp *pgrp;
827
828 if (pgid && (pgrp = pgfind(pgid)))
829 kpgsignal(pgrp, ksi, data, 0);
830 }
831
832 /*
833 * Send a signal to a process group. If checktty is 1,
834 * limit to members which have a controlling terminal.
835 */
836 void
837 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
838 {
839 ksiginfo_t ksi;
840 memset(&ksi, 0, sizeof(ksi));
841 ksi.ksi_signo = sig;
842 kpgsignal(pgrp, &ksi, NULL, checkctty);
843 }
844
845 void
846 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
847 {
848 struct proc *p;
849
850 if (pgrp)
851 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
852 if (checkctty == 0 || p->p_flag & P_CONTROLT)
853 kpsignal(p, ksi, data);
854 }
855
856 /*
857 * Send a signal caused by a trap to the current process.
858 * If it will be caught immediately, deliver it with correct code.
859 * Otherwise, post it normally.
860 */
861 #ifndef __HAVE_SIGINFO
862 void _trapsignal(struct lwp *, ksiginfo_t *);
863 void
864 trapsignal(struct lwp *l, int signum, u_long code)
865 {
866 #define trapsignal _trapsignal
867 ksiginfo_t ksi;
868 memset(&ksi, 0, sizeof(ksi));
869 ksi.ksi_signo = signum;
870 ksi.ksi_trap = (int)code;
871 trapsignal(l, &ksi);
872 }
873 #endif
874
875 void
876 trapsignal(struct lwp *l, ksiginfo_t *ksi)
877 {
878 struct proc *p;
879 struct sigacts *ps;
880 int signum = ksi->ksi_signo;
881
882 p = l->l_proc;
883 ps = p->p_sigacts;
884 if ((p->p_flag & P_TRACED) == 0 &&
885 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
886 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
887 p->p_stats->p_ru.ru_nsignals++;
888 #ifdef KTRACE
889 #ifdef notyet
890 if (KTRPOINT(p, KTR_PSIGINFO))
891 ktrpsiginfo(p, ksi, SIGACTION_PS(ps, signum).sa_handler,
892 &p->p_sigctx.ps_sigmask);
893 #else
894 if (KTRPOINT(p, KTR_PSIG))
895 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
896 &p->p_sigctx.ps_sigmask, 0);
897 #endif
898 #endif
899 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
900 (void) splsched(); /* XXXSMP */
901 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
902 &p->p_sigctx.ps_sigmask);
903 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
904 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
905 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
906 sigaddset(&p->p_sigctx.ps_sigignore, signum);
907 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
908 }
909 (void) spl0(); /* XXXSMP */
910 } else {
911 p->p_sigctx.ps_lwp = l->l_lid;
912 /* XXX for core dump/debugger */
913 p->p_sigctx.ps_signo = ksi->ksi_signo;
914 p->p_sigctx.ps_code = ksi->ksi_trap;
915 kpsignal(p, ksi, NULL);
916 }
917 }
918
919 /*
920 * Fill in signal information and signal the parent for a child status change.
921 */
922 static void
923 child_psignal(struct proc *p, int dolock)
924 {
925 ksiginfo_t ksi;
926
927 (void)memset(&ksi, 0, sizeof(ksi));
928 ksi.ksi_signo = SIGCHLD;
929 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
930 ksi.ksi_pid = p->p_pid;
931 ksi.ksi_uid = p->p_ucred->cr_uid;
932 ksi.ksi_status = p->p_xstat;
933 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
934 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
935 kpsignal1(p->p_pptr, &ksi, NULL, dolock);
936 }
937
938 /*
939 * Send the signal to the process. If the signal has an action, the action
940 * is usually performed by the target process rather than the caller; we add
941 * the signal to the set of pending signals for the process.
942 *
943 * Exceptions:
944 * o When a stop signal is sent to a sleeping process that takes the
945 * default action, the process is stopped without awakening it.
946 * o SIGCONT restarts stopped processes (or puts them back to sleep)
947 * regardless of the signal action (eg, blocked or ignored).
948 *
949 * Other ignored signals are discarded immediately.
950 *
951 * XXXSMP: Invoked as psignal() or sched_psignal().
952 */
953 void
954 psignal1(struct proc *p, int signum, int dolock)
955 {
956 ksiginfo_t ksi;
957 memset(&ksi, 0, sizeof(ksi));
958 ksi.ksi_signo = signum;
959 kpsignal1(p, &ksi, NULL, dolock);
960 }
961
962 void
963 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data,
964 int dolock) /* XXXSMP: works, but icky */
965 {
966 struct lwp *l, *suspended;
967 int s = 0, prop, allsusp;
968 sig_t action;
969 int signum = ksi->ksi_signo;
970
971 #ifdef DIAGNOSTIC
972 if (signum <= 0 || signum >= NSIG)
973 panic("psignal signal number %d", signum);
974
975
976 /* XXXSMP: works, but icky */
977 if (dolock)
978 SCHED_ASSERT_UNLOCKED();
979 else
980 SCHED_ASSERT_LOCKED();
981 #endif
982
983 if (data) {
984 size_t fd;
985 struct filedesc *fdp = p->p_fd;
986 ksi->ksi_fd = -1;
987 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
988 struct file *fp = fdp->fd_ofiles[fd];
989 /* XXX: lock? */
990 if (fp && fp->f_data == data) {
991 ksi->ksi_fd = fd;
992 break;
993 }
994 }
995 }
996
997 /*
998 * Notify any interested parties in the signal.
999 */
1000 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1001
1002 prop = sigprop[signum];
1003
1004 /*
1005 * If proc is traced, always give parent a chance.
1006 */
1007 if (p->p_flag & P_TRACED)
1008 action = SIG_DFL;
1009 else {
1010 /*
1011 * If the signal is being ignored,
1012 * then we forget about it immediately.
1013 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1014 * and if it is set to SIG_IGN,
1015 * action will be SIG_DFL here.)
1016 */
1017 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1018 return;
1019 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1020 action = SIG_HOLD;
1021 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1022 action = SIG_CATCH;
1023 else {
1024 action = SIG_DFL;
1025
1026 if (prop & SA_KILL && p->p_nice > NZERO)
1027 p->p_nice = NZERO;
1028
1029 /*
1030 * If sending a tty stop signal to a member of an
1031 * orphaned process group, discard the signal here if
1032 * the action is default; don't stop the process below
1033 * if sleeping, and don't clear any pending SIGCONT.
1034 */
1035 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1036 return;
1037 }
1038 }
1039
1040 if (prop & SA_CONT)
1041 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1042
1043 if (prop & SA_STOP)
1044 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1045
1046 sigaddset(&p->p_sigctx.ps_siglist, signum);
1047
1048 /* CHECKSIGS() is "inlined" here. */
1049 p->p_sigctx.ps_sigcheck = 1;
1050
1051 /*
1052 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1053 * please!), check if anything waits on it. If yes, clear the
1054 * pending signal from siglist set, save it to ps_sigwaited,
1055 * clear sigwait list, and wakeup any sigwaiters.
1056 * The signal won't be processed further here.
1057 */
1058 if ((prop & SA_CANTMASK) == 0
1059 && p->p_sigctx.ps_sigwaited < 0
1060 && sigismember(&p->p_sigctx.ps_sigwait, signum)
1061 && p->p_stat != SSTOP) {
1062 if (action == SIG_CATCH)
1063 ksiginfo_save(p, ksi);
1064 sigdelset(&p->p_sigctx.ps_siglist, signum);
1065 p->p_sigctx.ps_sigwaited = signum;
1066 sigemptyset(&p->p_sigctx.ps_sigwait);
1067 if (dolock)
1068 wakeup_one(&p->p_sigctx.ps_sigwait);
1069 else
1070 sched_wakeup(&p->p_sigctx.ps_sigwait);
1071 return;
1072 }
1073
1074 /*
1075 * Defer further processing for signals which are held,
1076 * except that stopped processes must be continued by SIGCONT.
1077 */
1078 if (action == SIG_HOLD &&
1079 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1080 ksiginfo_save(p, ksi);
1081 return;
1082 }
1083 /* XXXSMP: works, but icky */
1084 if (dolock)
1085 SCHED_LOCK(s);
1086
1087 /* XXXUPSXXX LWPs might go to sleep without passing signal handling */
1088 if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
1089 && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
1090 /*
1091 * At least one LWP is running or on a run queue.
1092 * The signal will be noticed when one of them returns
1093 * to userspace.
1094 */
1095 signotify(p);
1096 /*
1097 * The signal will be noticed very soon.
1098 */
1099 goto out;
1100 } else {
1101 /* Process is sleeping or stopped */
1102 if (p->p_flag & P_SA) {
1103 struct lwp *l2 = p->p_sa->sa_vp;
1104 l = NULL;
1105 allsusp = 1;
1106
1107 if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
1108 l = l2;
1109 else if (l2->l_stat == LSSUSPENDED)
1110 suspended = l2;
1111 else if ((l2->l_stat != LSZOMB) &&
1112 (l2->l_stat != LSDEAD))
1113 allsusp = 0;
1114 } else {
1115 /*
1116 * Find out if any of the sleeps are interruptable,
1117 * and if all the live LWPs remaining are suspended.
1118 */
1119 allsusp = 1;
1120 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1121 if (l->l_stat == LSSLEEP &&
1122 l->l_flag & L_SINTR)
1123 break;
1124 if (l->l_stat == LSSUSPENDED)
1125 suspended = l;
1126 else if ((l->l_stat != LSZOMB) &&
1127 (l->l_stat != LSDEAD))
1128 allsusp = 0;
1129 }
1130 }
1131 if (p->p_stat == SACTIVE) {
1132
1133
1134 if (l != NULL && (p->p_flag & P_TRACED))
1135 goto run;
1136
1137 /*
1138 * If SIGCONT is default (or ignored) and process is
1139 * asleep, we are finished; the process should not
1140 * be awakened.
1141 */
1142 if ((prop & SA_CONT) && action == SIG_DFL) {
1143 sigdelset(&p->p_sigctx.ps_siglist, signum);
1144 goto done;
1145 }
1146
1147 /*
1148 * When a sleeping process receives a stop
1149 * signal, process immediately if possible.
1150 */
1151 if ((prop & SA_STOP) && action == SIG_DFL) {
1152 /*
1153 * If a child holding parent blocked,
1154 * stopping could cause deadlock.
1155 */
1156 if (p->p_flag & P_PPWAIT) {
1157 goto out;
1158 }
1159 sigdelset(&p->p_sigctx.ps_siglist, signum);
1160 p->p_xstat = signum;
1161 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1162 /*
1163 * XXXSMP: recursive call; don't lock
1164 * the second time around.
1165 */
1166 child_psignal(p, 0);
1167 }
1168 proc_stop(p); /* XXXSMP: recurse? */
1169 goto done;
1170 }
1171
1172 if (l == NULL) {
1173 /*
1174 * Special case: SIGKILL of a process
1175 * which is entirely composed of
1176 * suspended LWPs should succeed. We
1177 * make this happen by unsuspending one of
1178 * them.
1179 */
1180 if (allsusp && (signum == SIGKILL))
1181 lwp_continue(suspended);
1182 goto done;
1183 }
1184 /*
1185 * All other (caught or default) signals
1186 * cause the process to run.
1187 */
1188 goto runfast;
1189 /*NOTREACHED*/
1190 } else if (p->p_stat == SSTOP) {
1191 /* Process is stopped */
1192 /*
1193 * If traced process is already stopped,
1194 * then no further action is necessary.
1195 */
1196 if (p->p_flag & P_TRACED)
1197 goto done;
1198
1199 /*
1200 * Kill signal always sets processes running,
1201 * if possible.
1202 */
1203 if (signum == SIGKILL) {
1204 l = proc_unstop(p);
1205 if (l)
1206 goto runfast;
1207 goto done;
1208 }
1209
1210 if (prop & SA_CONT) {
1211 /*
1212 * If SIGCONT is default (or ignored),
1213 * we continue the process but don't
1214 * leave the signal in ps_siglist, as
1215 * it has no further action. If
1216 * SIGCONT is held, we continue the
1217 * process and leave the signal in
1218 * ps_siglist. If the process catches
1219 * SIGCONT, let it handle the signal
1220 * itself. If it isn't waiting on an
1221 * event, then it goes back to run
1222 * state. Otherwise, process goes
1223 * back to sleep state.
1224 */
1225 if (action == SIG_DFL)
1226 sigdelset(&p->p_sigctx.ps_siglist,
1227 signum);
1228 l = proc_unstop(p);
1229 if (l && (action == SIG_CATCH))
1230 goto runfast;
1231 goto out;
1232 }
1233
1234 if (prop & SA_STOP) {
1235 /*
1236 * Already stopped, don't need to stop again.
1237 * (If we did the shell could get confused.)
1238 */
1239 sigdelset(&p->p_sigctx.ps_siglist, signum);
1240 goto done;
1241 }
1242
1243 /*
1244 * If a lwp is sleeping interruptibly, then
1245 * wake it up; it will run until the kernel
1246 * boundary, where it will stop in issignal(),
1247 * since p->p_stat is still SSTOP. When the
1248 * process is continued, it will be made
1249 * runnable and can look at the signal.
1250 */
1251 if (l)
1252 goto run;
1253 goto out;
1254 } else {
1255 /* Else what? */
1256 panic("psignal: Invalid process state %d.",
1257 p->p_stat);
1258 }
1259 }
1260 /*NOTREACHED*/
1261
1262 runfast:
1263 if (action == SIG_CATCH) {
1264 ksiginfo_save(p, ksi);
1265 action = SIG_HOLD;
1266 }
1267 /*
1268 * Raise priority to at least PUSER.
1269 */
1270 if (l->l_priority > PUSER)
1271 l->l_priority = PUSER;
1272 run:
1273 if (action == SIG_CATCH) {
1274 ksiginfo_save(p, ksi);
1275 action = SIG_HOLD;
1276 }
1277
1278 setrunnable(l); /* XXXSMP: recurse? */
1279 out:
1280 if (action == SIG_CATCH)
1281 ksiginfo_save(p, ksi);
1282 done:
1283 /* XXXSMP: works, but icky */
1284 if (dolock)
1285 SCHED_UNLOCK(s);
1286 }
1287
1288 void
1289 kpsendsig(struct lwp *l, ksiginfo_t *ksi, sigset_t *mask)
1290 {
1291 struct proc *p = l->l_proc;
1292 struct lwp *le, *li;
1293 siginfo_t *si;
1294 int f;
1295
1296 if (p->p_flag & P_SA) {
1297
1298 /* XXXUPSXXX What if not on sa_vp ? */
1299
1300 f = l->l_flag & L_SA;
1301 l->l_flag &= ~L_SA;
1302 si = pool_get(&siginfo_pool, PR_WAITOK);
1303 si->_info = *ksi;
1304 le = li = NULL;
1305 if (ksi->ksi_trap)
1306 le = l;
1307 else
1308 li = l;
1309
1310 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1311 sizeof(siginfo_t), si);
1312 l->l_flag |= f;
1313 return;
1314 }
1315
1316 #ifdef __HAVE_SIGINFO
1317 (*p->p_emul->e_sendsig)(ksi, mask);
1318 #else
1319 (*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, ksi->ksi_trap);
1320 #endif
1321 }
1322
1323 static __inline int firstsig(const sigset_t *);
1324
1325 static __inline int
1326 firstsig(const sigset_t *ss)
1327 {
1328 int sig;
1329
1330 sig = ffs(ss->__bits[0]);
1331 if (sig != 0)
1332 return (sig);
1333 #if NSIG > 33
1334 sig = ffs(ss->__bits[1]);
1335 if (sig != 0)
1336 return (sig + 32);
1337 #endif
1338 #if NSIG > 65
1339 sig = ffs(ss->__bits[2]);
1340 if (sig != 0)
1341 return (sig + 64);
1342 #endif
1343 #if NSIG > 97
1344 sig = ffs(ss->__bits[3]);
1345 if (sig != 0)
1346 return (sig + 96);
1347 #endif
1348 return (0);
1349 }
1350
1351 /*
1352 * If the current process has received a signal (should be caught or cause
1353 * termination, should interrupt current syscall), return the signal number.
1354 * Stop signals with default action are processed immediately, then cleared;
1355 * they aren't returned. This is checked after each entry to the system for
1356 * a syscall or trap (though this can usually be done without calling issignal
1357 * by checking the pending signal masks in the CURSIG macro.) The normal call
1358 * sequence is
1359 *
1360 * while (signum = CURSIG(curlwp))
1361 * postsig(signum);
1362 */
1363 int
1364 issignal(struct lwp *l)
1365 {
1366 struct proc *p = l->l_proc;
1367 int s = 0, signum, prop;
1368 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1369 sigset_t ss;
1370
1371 if (l->l_flag & L_SA) {
1372 struct sadata *sa = p->p_sa;
1373
1374 /* Bail out if we do not own the virtual processor */
1375 if (sa->sa_vp != l)
1376 return 0;
1377 }
1378
1379 if (p->p_stat == SSTOP) {
1380 /*
1381 * The process is stopped/stopping. Stop ourselves now that
1382 * we're on the kernel/userspace boundary.
1383 */
1384 if (dolock)
1385 SCHED_LOCK(s);
1386 l->l_stat = LSSTOP;
1387 p->p_nrlwps--;
1388 if (p->p_flag & P_TRACED)
1389 goto sigtraceswitch;
1390 else
1391 goto sigswitch;
1392 }
1393 for (;;) {
1394 sigpending1(p, &ss);
1395 if (p->p_flag & P_PPWAIT)
1396 sigminusset(&stopsigmask, &ss);
1397 signum = firstsig(&ss);
1398 if (signum == 0) { /* no signal to send */
1399 p->p_sigctx.ps_sigcheck = 0;
1400 if (locked && dolock)
1401 SCHED_LOCK(s);
1402 return (0);
1403 }
1404 /* take the signal! */
1405 sigdelset(&p->p_sigctx.ps_siglist, signum);
1406
1407 /*
1408 * We should see pending but ignored signals
1409 * only if P_TRACED was on when they were posted.
1410 */
1411 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1412 (p->p_flag & P_TRACED) == 0)
1413 continue;
1414
1415 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1416 /*
1417 * If traced, always stop, and stay
1418 * stopped until released by the debugger.
1419 */
1420 p->p_xstat = signum;
1421 if ((p->p_flag & P_FSTRACE) == 0)
1422 child_psignal(p, dolock);
1423 if (dolock)
1424 SCHED_LOCK(s);
1425 proc_stop(p);
1426 sigtraceswitch:
1427 mi_switch(l, NULL);
1428 SCHED_ASSERT_UNLOCKED();
1429 if (dolock)
1430 splx(s);
1431 else
1432 dolock = 1;
1433
1434 /*
1435 * If we are no longer being traced, or the parent
1436 * didn't give us a signal, look for more signals.
1437 */
1438 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1439 continue;
1440
1441 /*
1442 * If the new signal is being masked, look for other
1443 * signals.
1444 */
1445 signum = p->p_xstat;
1446 p->p_xstat = 0;
1447 /*
1448 * `p->p_sigctx.ps_siglist |= mask' is done
1449 * in setrunnable().
1450 */
1451 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1452 continue;
1453 /* take the signal! */
1454 sigdelset(&p->p_sigctx.ps_siglist, signum);
1455 }
1456
1457 prop = sigprop[signum];
1458
1459 /*
1460 * Decide whether the signal should be returned.
1461 * Return the signal's number, or fall through
1462 * to clear it from the pending mask.
1463 */
1464 switch ((long)SIGACTION(p, signum).sa_handler) {
1465
1466 case (long)SIG_DFL:
1467 /*
1468 * Don't take default actions on system processes.
1469 */
1470 if (p->p_pid <= 1) {
1471 #ifdef DIAGNOSTIC
1472 /*
1473 * Are you sure you want to ignore SIGSEGV
1474 * in init? XXX
1475 */
1476 printf("Process (pid %d) got signal %d\n",
1477 p->p_pid, signum);
1478 #endif
1479 break; /* == ignore */
1480 }
1481 /*
1482 * If there is a pending stop signal to process
1483 * with default action, stop here,
1484 * then clear the signal. However,
1485 * if process is member of an orphaned
1486 * process group, ignore tty stop signals.
1487 */
1488 if (prop & SA_STOP) {
1489 if (p->p_flag & P_TRACED ||
1490 (p->p_pgrp->pg_jobc == 0 &&
1491 prop & SA_TTYSTOP))
1492 break; /* == ignore */
1493 p->p_xstat = signum;
1494 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1495 child_psignal(p, dolock);
1496 if (dolock)
1497 SCHED_LOCK(s);
1498 proc_stop(p);
1499 sigswitch:
1500 mi_switch(l, NULL);
1501 SCHED_ASSERT_UNLOCKED();
1502 if (dolock)
1503 splx(s);
1504 else
1505 dolock = 1;
1506 break;
1507 } else if (prop & SA_IGNORE) {
1508 /*
1509 * Except for SIGCONT, shouldn't get here.
1510 * Default action is to ignore; drop it.
1511 */
1512 break; /* == ignore */
1513 } else
1514 goto keep;
1515 /*NOTREACHED*/
1516
1517 case (long)SIG_IGN:
1518 /*
1519 * Masking above should prevent us ever trying
1520 * to take action on an ignored signal other
1521 * than SIGCONT, unless process is traced.
1522 */
1523 #ifdef DEBUG_ISSIGNAL
1524 if ((prop & SA_CONT) == 0 &&
1525 (p->p_flag & P_TRACED) == 0)
1526 printf("issignal\n");
1527 #endif
1528 break; /* == ignore */
1529
1530 default:
1531 /*
1532 * This signal has an action, let
1533 * postsig() process it.
1534 */
1535 goto keep;
1536 }
1537 }
1538 /* NOTREACHED */
1539
1540 keep:
1541 /* leave the signal for later */
1542 sigaddset(&p->p_sigctx.ps_siglist, signum);
1543 CHECKSIGS(p);
1544 if (locked && dolock)
1545 SCHED_LOCK(s);
1546 return (signum);
1547 }
1548
1549 /*
1550 * Put the argument process into the stopped state and notify the parent
1551 * via wakeup. Signals are handled elsewhere. The process must not be
1552 * on the run queue.
1553 */
1554 static void
1555 proc_stop(struct proc *p)
1556 {
1557 struct lwp *l;
1558
1559 SCHED_ASSERT_LOCKED();
1560
1561 /* XXX lock process LWP state */
1562 p->p_stat = SSTOP;
1563 p->p_flag &= ~P_WAITED;
1564
1565 /*
1566 * Put as many LWP's as possible in stopped state.
1567 * Sleeping ones will notice the stopped state as they try to
1568 * return to userspace.
1569 */
1570
1571 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1572 if ((l->l_stat == LSONPROC) && (l == curlwp)) {
1573 /* XXX SMP this assumes that a LWP that is LSONPROC
1574 * is curlwp and hence is about to be mi_switched
1575 * away; the only callers of proc_stop() are:
1576 * - psignal
1577 * - issignal()
1578 * For the former, proc_stop() is only called when
1579 * no processes are running, so we don't worry.
1580 * For the latter, proc_stop() is called right
1581 * before mi_switch().
1582 */
1583 l->l_stat = LSSTOP;
1584 p->p_nrlwps--;
1585 }
1586 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
1587 setrunnable(l);
1588 }
1589
1590 /* !!!UPS!!! FIX ME */
1591 #if 0
1592 else if (l->l_stat == LSRUN) {
1593 /* Remove LWP from the run queue */
1594 remrunqueue(l);
1595 l->l_stat = LSSTOP;
1596 p->p_nrlwps--;
1597 } else if ((l->l_stat == LSSLEEP) ||
1598 (l->l_stat == LSSUSPENDED) ||
1599 (l->l_stat == LSZOMB) ||
1600 (l->l_stat == LSDEAD)) {
1601 /*
1602 * Don't do anything; let sleeping LWPs
1603 * discover the stopped state of the process
1604 * on their way out of the kernel; otherwise,
1605 * things like NFS threads that sleep with
1606 * locks will block the rest of the system
1607 * from getting any work done.
1608 *
1609 * Suspended/dead/zombie LWPs aren't going
1610 * anywhere, so we don't need to touch them.
1611 */
1612 }
1613 #ifdef DIAGNOSTIC
1614 else {
1615 panic("proc_stop: process %d lwp %d "
1616 "in unstoppable state %d.\n",
1617 p->p_pid, l->l_lid, l->l_stat);
1618 }
1619 #endif
1620 #endif
1621 }
1622 /* XXX unlock process LWP state */
1623
1624 sched_wakeup((caddr_t)p->p_pptr);
1625 }
1626
1627 /*
1628 * Given a process in state SSTOP, set the state back to SACTIVE and
1629 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1630 *
1631 * If no LWPs ended up runnable (and therefore able to take a signal),
1632 * return a LWP that is sleeping interruptably. The caller can wake
1633 * that LWP up to take a signal.
1634 */
1635 struct lwp *
1636 proc_unstop(struct proc *p)
1637 {
1638 struct lwp *l, *lr = NULL;
1639 int cantake = 0;
1640
1641 SCHED_ASSERT_LOCKED();
1642
1643 /*
1644 * Our caller wants to be informed if there are only sleeping
1645 * and interruptable LWPs left after we have run so that it
1646 * can invoke setrunnable() if required - return one of the
1647 * interruptable LWPs if this is the case.
1648 */
1649
1650 p->p_stat = SACTIVE;
1651 if (p->p_flag & P_SA) {
1652 /*
1653 * Preferentially select the idle LWP as the interruptable
1654 * LWP to return if it exists.
1655 */
1656 lr = p->p_sa->sa_idle;
1657 if (lr != NULL)
1658 cantake = 1;
1659 }
1660 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1661 if (l->l_stat == LSRUN) {
1662 lr = NULL;
1663 cantake = 1;
1664 }
1665 if (l->l_stat != LSSTOP)
1666 continue;
1667
1668 if (l->l_wchan != NULL) {
1669 l->l_stat = LSSLEEP;
1670 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1671 lr = l;
1672 cantake = 1;
1673 }
1674 } else {
1675 setrunnable(l);
1676 lr = NULL;
1677 cantake = 1;
1678 }
1679 }
1680
1681 return lr;
1682 }
1683
1684 /*
1685 * Take the action for the specified signal
1686 * from the current set of pending signals.
1687 */
1688 void
1689 postsig(int signum)
1690 {
1691 struct lwp *l;
1692 struct proc *p;
1693 struct sigacts *ps;
1694 sig_t action;
1695 sigset_t *returnmask;
1696
1697 l = curlwp;
1698 p = l->l_proc;
1699 ps = p->p_sigacts;
1700 #ifdef DIAGNOSTIC
1701 if (signum == 0)
1702 panic("postsig");
1703 #endif
1704
1705 KERNEL_PROC_LOCK(l);
1706
1707 sigdelset(&p->p_sigctx.ps_siglist, signum);
1708 action = SIGACTION_PS(ps, signum).sa_handler;
1709 #ifdef KTRACE
1710 if (KTRPOINT(p, KTR_PSIG))
1711 ktrpsig(p,
1712 signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
1713 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
1714 #endif
1715 if (action == SIG_DFL) {
1716 /*
1717 * Default action, where the default is to kill
1718 * the process. (Other cases were ignored above.)
1719 */
1720 sigexit(l, signum);
1721 /* NOTREACHED */
1722 } else {
1723 ksiginfo_t *ksi;
1724 /*
1725 * If we get here, the signal must be caught.
1726 */
1727 #ifdef DIAGNOSTIC
1728 if (action == SIG_IGN ||
1729 sigismember(&p->p_sigctx.ps_sigmask, signum))
1730 panic("postsig action");
1731 #endif
1732 /*
1733 * Set the new mask value and also defer further
1734 * occurrences of this signal.
1735 *
1736 * Special case: user has done a sigpause. Here the
1737 * current mask is not of interest, but rather the
1738 * mask from before the sigpause is what we want
1739 * restored after the signal processing is completed.
1740 */
1741 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1742 returnmask = &p->p_sigctx.ps_oldmask;
1743 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1744 } else
1745 returnmask = &p->p_sigctx.ps_sigmask;
1746 p->p_stats->p_ru.ru_nsignals++;
1747 ksi = ksiginfo_get(p, signum);
1748 if (ksi == NULL) {
1749 ksiginfo_t ksi1;
1750 /*
1751 * we did not save any siginfo for this, either
1752 * because the signal was not caught, or because the
1753 * user did not request SA_SIGINFO
1754 */
1755 (void)memset(&ksi1, 0, sizeof(ksi1));
1756 ksi1.ksi_signo = signum;
1757 kpsendsig(l, &ksi1, returnmask);
1758 } else {
1759 kpsendsig(l, ksi, returnmask);
1760 ksiginfo_del(p, ksi);
1761 pool_put(&ksiginfo_pool, ksi);
1762 }
1763 p->p_sigctx.ps_lwp = 0;
1764 p->p_sigctx.ps_code = 0;
1765 p->p_sigctx.ps_signo = 0;
1766 (void) splsched(); /* XXXSMP */
1767 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1768 &p->p_sigctx.ps_sigmask);
1769 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1770 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1771 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1772 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1773 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1774 }
1775 (void) spl0(); /* XXXSMP */
1776 }
1777
1778 KERNEL_PROC_UNLOCK(l);
1779 }
1780
1781 /*
1782 * Kill the current process for stated reason.
1783 */
1784 void
1785 killproc(struct proc *p, const char *why)
1786 {
1787 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1788 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1789 psignal(p, SIGKILL);
1790 }
1791
1792 /*
1793 * Force the current process to exit with the specified signal, dumping core
1794 * if appropriate. We bypass the normal tests for masked and caught signals,
1795 * allowing unrecoverable failures to terminate the process without changing
1796 * signal state. Mark the accounting record with the signal termination.
1797 * If dumping core, save the signal number for the debugger. Calls exit and
1798 * does not return.
1799 */
1800
1801 #if defined(DEBUG)
1802 int kern_logsigexit = 1; /* not static to make public for sysctl */
1803 #else
1804 int kern_logsigexit = 0; /* not static to make public for sysctl */
1805 #endif
1806
1807 static const char logcoredump[] =
1808 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1809 static const char lognocoredump[] =
1810 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1811
1812 /* Wrapper function for use in p_userret */
1813 static void
1814 lwp_coredump_hook(struct lwp *l, void *arg)
1815 {
1816 int s;
1817
1818 /*
1819 * Suspend ourselves, so that the kernel stack and therefore
1820 * the userland registers saved in the trapframe are around
1821 * for coredump() to write them out.
1822 */
1823 KERNEL_PROC_LOCK(l);
1824 l->l_flag &= ~L_DETACHED;
1825 SCHED_LOCK(s);
1826 l->l_stat = LSSUSPENDED;
1827 l->l_proc->p_nrlwps--;
1828 /* XXX NJWLWP check if this makes sense here: */
1829 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1830 mi_switch(l, NULL);
1831 SCHED_ASSERT_UNLOCKED();
1832 splx(s);
1833
1834 lwp_exit(l);
1835 }
1836
1837 void
1838 sigexit(struct lwp *l, int signum)
1839 {
1840 struct proc *p;
1841 #if 0
1842 struct lwp *l2;
1843 #endif
1844 int error, exitsig;
1845
1846 p = l->l_proc;
1847
1848 /*
1849 * Don't permit coredump() or exit1() multiple times
1850 * in the same process.
1851 */
1852 if (p->p_flag & P_WEXIT) {
1853 KERNEL_PROC_UNLOCK(l);
1854 (*p->p_userret)(l, p->p_userret_arg);
1855 }
1856 p->p_flag |= P_WEXIT;
1857 /* We don't want to switch away from exiting. */
1858 /* XXX multiprocessor: stop LWPs on other processors. */
1859 #if 0
1860 if (p->p_flag & P_SA) {
1861 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1862 l2->l_flag &= ~L_SA;
1863 p->p_flag &= ~P_SA;
1864 }
1865 #endif
1866
1867 /* Make other LWPs stick around long enough to be dumped */
1868 p->p_userret = lwp_coredump_hook;
1869 p->p_userret_arg = NULL;
1870
1871 exitsig = signum;
1872 p->p_acflag |= AXSIG;
1873 if (sigprop[signum] & SA_CORE) {
1874 p->p_sigctx.ps_signo = signum;
1875 if ((error = coredump(l)) == 0)
1876 exitsig |= WCOREFLAG;
1877
1878 if (kern_logsigexit) {
1879 /* XXX What if we ever have really large UIDs? */
1880 int uid = p->p_cred && p->p_ucred ?
1881 (int) p->p_ucred->cr_uid : -1;
1882
1883 if (error)
1884 log(LOG_INFO, lognocoredump, p->p_pid,
1885 p->p_comm, uid, signum, error);
1886 else
1887 log(LOG_INFO, logcoredump, p->p_pid,
1888 p->p_comm, uid, signum);
1889 }
1890
1891 }
1892
1893 exit1(l, W_EXITCODE(0, exitsig));
1894 /* NOTREACHED */
1895 }
1896
1897 /*
1898 * Dump core, into a file named "progname.core" or "core" (depending on the
1899 * value of shortcorename), unless the process was setuid/setgid.
1900 */
1901 int
1902 coredump(struct lwp *l)
1903 {
1904 struct vnode *vp;
1905 struct proc *p;
1906 struct vmspace *vm;
1907 struct ucred *cred;
1908 struct nameidata nd;
1909 struct vattr vattr;
1910 int error, error1;
1911 char name[MAXPATHLEN];
1912
1913 p = l->l_proc;
1914 vm = p->p_vmspace;
1915 cred = p->p_cred->pc_ucred;
1916
1917 /*
1918 * Make sure the process has not set-id, to prevent data leaks.
1919 */
1920 if (p->p_flag & P_SUGID)
1921 return (EPERM);
1922
1923 /*
1924 * Refuse to core if the data + stack + user size is larger than
1925 * the core dump limit. XXX THIS IS WRONG, because of mapped
1926 * data.
1927 */
1928 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
1929 p->p_rlimit[RLIMIT_CORE].rlim_cur)
1930 return (EFBIG); /* better error code? */
1931
1932 /*
1933 * The core dump will go in the current working directory. Make
1934 * sure that the directory is still there and that the mount flags
1935 * allow us to write core dumps there.
1936 */
1937 vp = p->p_cwdi->cwdi_cdir;
1938 if (vp->v_mount == NULL ||
1939 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
1940 return (EPERM);
1941
1942 error = build_corename(p, name);
1943 if (error)
1944 return error;
1945
1946 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1947 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
1948 if (error)
1949 return (error);
1950 vp = nd.ni_vp;
1951
1952 /* Don't dump to non-regular files or files with links. */
1953 if (vp->v_type != VREG ||
1954 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
1955 error = EINVAL;
1956 goto out;
1957 }
1958 VATTR_NULL(&vattr);
1959 vattr.va_size = 0;
1960 VOP_LEASE(vp, p, cred, LEASE_WRITE);
1961 VOP_SETATTR(vp, &vattr, cred, p);
1962 p->p_acflag |= ACORE;
1963
1964 /* Now dump the actual core file. */
1965 error = (*p->p_execsw->es_coredump)(l, vp, cred);
1966 out:
1967 VOP_UNLOCK(vp, 0);
1968 error1 = vn_close(vp, FWRITE, cred, p);
1969 if (error == 0)
1970 error = error1;
1971 return (error);
1972 }
1973
1974 /*
1975 * Nonexistent system call-- signal process (may want to handle it).
1976 * Flag error in case process won't see signal immediately (blocked or ignored).
1977 */
1978 /* ARGSUSED */
1979 int
1980 sys_nosys(struct lwp *l, void *v, register_t *retval)
1981 {
1982 struct proc *p;
1983
1984 p = l->l_proc;
1985 psignal(p, SIGSYS);
1986 return (ENOSYS);
1987 }
1988
1989 static int
1990 build_corename(struct proc *p, char dst[MAXPATHLEN])
1991 {
1992 const char *s;
1993 char *d, *end;
1994 int i;
1995
1996 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
1997 *s != '\0'; s++) {
1998 if (*s == '%') {
1999 switch (*(s + 1)) {
2000 case 'n':
2001 i = snprintf(d, end - d, "%s", p->p_comm);
2002 break;
2003 case 'p':
2004 i = snprintf(d, end - d, "%d", p->p_pid);
2005 break;
2006 case 'u':
2007 i = snprintf(d, end - d, "%.*s",
2008 (int)sizeof p->p_pgrp->pg_session->s_login,
2009 p->p_pgrp->pg_session->s_login);
2010 break;
2011 case 't':
2012 i = snprintf(d, end - d, "%ld",
2013 p->p_stats->p_start.tv_sec);
2014 break;
2015 default:
2016 goto copy;
2017 }
2018 d += i;
2019 s++;
2020 } else {
2021 copy: *d = *s;
2022 d++;
2023 }
2024 if (d >= end)
2025 return (ENAMETOOLONG);
2026 }
2027 *d = '\0';
2028 return 0;
2029 }
2030
2031 void
2032 getucontext(struct lwp *l, ucontext_t *ucp)
2033 {
2034 struct proc *p;
2035
2036 p = l->l_proc;
2037
2038 ucp->uc_flags = 0;
2039 ucp->uc_link = l->l_ctxlink;
2040
2041 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2042 ucp->uc_flags |= _UC_SIGMASK;
2043
2044 /*
2045 * The (unsupplied) definition of the `current execution stack'
2046 * in the System V Interface Definition appears to allow returning
2047 * the main context stack.
2048 */
2049 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2050 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2051 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2052 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2053 } else {
2054 /* Simply copy alternate signal execution stack. */
2055 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2056 }
2057 ucp->uc_flags |= _UC_STACK;
2058
2059 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2060 }
2061
2062 /* ARGSUSED */
2063 int
2064 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2065 {
2066 struct sys_getcontext_args /* {
2067 syscallarg(struct __ucontext *) ucp;
2068 } */ *uap = v;
2069 ucontext_t uc;
2070
2071 getucontext(l, &uc);
2072
2073 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2074 }
2075
2076 int
2077 setucontext(struct lwp *l, const ucontext_t *ucp)
2078 {
2079 struct proc *p;
2080 int error;
2081
2082 p = l->l_proc;
2083 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2084 return (error);
2085 l->l_ctxlink = ucp->uc_link;
2086 /*
2087 * We might want to take care of the stack portion here but currently
2088 * don't; see the comment in getucontext().
2089 */
2090 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2091 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2092
2093 return 0;
2094 }
2095
2096 /* ARGSUSED */
2097 int
2098 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2099 {
2100 struct sys_setcontext_args /* {
2101 syscallarg(const ucontext_t *) ucp;
2102 } */ *uap = v;
2103 ucontext_t uc;
2104 int error;
2105
2106 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2107 exit1(l, W_EXITCODE(0, 0));
2108 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2109 (error = setucontext(l, &uc)) != 0)
2110 return (error);
2111
2112 return (EJUSTRETURN);
2113 }
2114
2115 /*
2116 * sigtimedwait(2) system call, used also for implementation
2117 * of sigwaitinfo() and sigwait().
2118 *
2119 * This only handles single LWP in signal wait. libpthread provides
2120 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2121 *
2122 * XXX no support for queued signals, si_code is always SI_USER.
2123 */
2124 int
2125 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2126 {
2127 struct sys___sigtimedwait_args /* {
2128 syscallarg(const sigset_t *) set;
2129 syscallarg(siginfo_t *) info;
2130 syscallarg(struct timespec *) timeout;
2131 } */ *uap = v;
2132 sigset_t waitset, twaitset;
2133 struct proc *p = l->l_proc;
2134 int error, signum, s;
2135 int timo = 0;
2136 struct timeval tvstart;
2137 struct timespec ts;
2138
2139 if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
2140 return (error);
2141
2142 /*
2143 * Silently ignore SA_CANTMASK signals. psignal1() would
2144 * ignore SA_CANTMASK signals in waitset, we do this
2145 * only for the below siglist check.
2146 */
2147 sigminusset(&sigcantmask, &waitset);
2148
2149 /*
2150 * First scan siglist and check if there is signal from
2151 * our waitset already pending.
2152 */
2153 twaitset = waitset;
2154 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2155 if ((signum = firstsig(&twaitset))) {
2156 /* found pending signal */
2157 sigdelset(&p->p_sigctx.ps_siglist, signum);
2158 goto sig;
2159 }
2160
2161 /*
2162 * Calculate timeout, if it was specified.
2163 */
2164 if (SCARG(uap, timeout)) {
2165 uint64_t ms;
2166
2167 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2168 return (error);
2169
2170 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2171 timo = mstohz(ms);
2172 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2173 timo = 1;
2174 if (timo <= 0)
2175 return (EAGAIN);
2176
2177 /*
2178 * Remember current mono_time, it would be used in
2179 * ECANCELED/ERESTART case.
2180 */
2181 s = splclock();
2182 tvstart = mono_time;
2183 splx(s);
2184 }
2185
2186 /*
2187 * Setup ps_sigwait list.
2188 */
2189 p->p_sigctx.ps_sigwaited = -1;
2190 p->p_sigctx.ps_sigwait = waitset;
2191
2192 /*
2193 * Wait for signal to arrive. We can either be woken up or
2194 * time out.
2195 */
2196 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2197
2198 /*
2199 * Check if a signal from our wait set has arrived, or if it
2200 * was mere wakeup.
2201 */
2202 if (!error) {
2203 if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
2204 /* wakeup via _lwp_wakeup() */
2205 error = ECANCELED;
2206 }
2207 }
2208
2209 /*
2210 * On error, clear sigwait indication. psignal1() sets it
2211 * in !error case.
2212 */
2213 if (error) {
2214 p->p_sigctx.ps_sigwaited = 0;
2215
2216 /*
2217 * If the sleep was interrupted (either by signal or wakeup),
2218 * update the timeout and copyout new value back.
2219 * It would be used when the syscall would be restarted
2220 * or called again.
2221 */
2222 if (timo && (error == ERESTART || error == ECANCELED)) {
2223 struct timeval tvnow, tvtimo;
2224 int err;
2225
2226 s = splclock();
2227 tvnow = mono_time;
2228 splx(s);
2229
2230 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2231
2232 /* compute how much time has passed since start */
2233 timersub(&tvnow, &tvstart, &tvnow);
2234 /* substract passed time from timeout */
2235 timersub(&tvtimo, &tvnow, &tvtimo);
2236
2237 if (tvtimo.tv_sec < 0)
2238 return (EAGAIN);
2239
2240 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2241
2242 /* copy updated timeout to userland */
2243 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
2244 return (err);
2245 }
2246
2247 return (error);
2248 }
2249
2250 /*
2251 * If a signal from the wait set arrived, copy it to userland.
2252 * XXX no queued signals for now
2253 */
2254 if (signum > 0) {
2255 siginfo_t si;
2256
2257 sig:
2258 memset(&si, 0, sizeof(si));
2259 si.si_signo = signum;
2260 si.si_code = SI_USER;
2261
2262 error = copyout(&si, SCARG(uap, info), sizeof(si));
2263 if (error)
2264 return (error);
2265 }
2266
2267 return (0);
2268 }
2269
2270 /*
2271 * Returns true if signal is ignored or masked for passed process.
2272 */
2273 int
2274 sigismasked(struct proc *p, int sig)
2275 {
2276
2277 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2278 sigismember(&p->p_sigctx.ps_sigmask, sig));
2279 }
2280
2281 static int
2282 filt_sigattach(struct knote *kn)
2283 {
2284 struct proc *p = curproc;
2285
2286 kn->kn_ptr.p_proc = p;
2287 kn->kn_flags |= EV_CLEAR; /* automatically set */
2288
2289 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2290
2291 return (0);
2292 }
2293
2294 static void
2295 filt_sigdetach(struct knote *kn)
2296 {
2297 struct proc *p = kn->kn_ptr.p_proc;
2298
2299 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2300 }
2301
2302 /*
2303 * signal knotes are shared with proc knotes, so we apply a mask to
2304 * the hint in order to differentiate them from process hints. This
2305 * could be avoided by using a signal-specific knote list, but probably
2306 * isn't worth the trouble.
2307 */
2308 static int
2309 filt_signal(struct knote *kn, long hint)
2310 {
2311
2312 if (hint & NOTE_SIGNAL) {
2313 hint &= ~NOTE_SIGNAL;
2314
2315 if (kn->kn_id == hint)
2316 kn->kn_data++;
2317 }
2318 return (kn->kn_data != 0);
2319 }
2320
2321 const struct filterops sig_filtops = {
2322 0, filt_sigattach, filt_sigdetach, filt_signal
2323 };
2324