kern_sig.c revision 1.159 1 /* $NetBSD: kern_sig.c,v 1.159 2003/09/23 17:59:48 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.159 2003/09/23 17:59:48 nathanw Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm_extern.h>
82
83 static void child_psignal(struct proc *, int);
84 static void proc_stop(struct proc *);
85 static int build_corename(struct proc *, char [MAXPATHLEN]);
86 static void ksiginfo_exithook(struct proc *, void *);
87 static void ksiginfo_put(struct proc *, ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89
90 sigset_t contsigmask, stopsigmask, sigcantmask;
91
92 struct pool sigacts_pool; /* memory pool for sigacts structures */
93 struct pool siginfo_pool; /* memory pool for siginfo structures */
94 struct pool ksiginfo_pool; /* memory pool for ksiginfo structures */
95
96 /*
97 * Can process p, with pcred pc, send the signal signum to process q?
98 */
99 #define CANSIGNAL(p, pc, q, signum) \
100 ((pc)->pc_ucred->cr_uid == 0 || \
101 (pc)->p_ruid == (q)->p_cred->p_ruid || \
102 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
103 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
104 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
105 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
106
107 /*
108 * Remove and return the first ksiginfo element that matches our requested
109 * signal, or return NULL if one not found.
110 */
111 static ksiginfo_t *
112 ksiginfo_get(struct proc *p, int signo)
113 {
114 ksiginfo_t *ksi;
115
116 simple_lock(&p->p_sigctx.ps_silock);
117 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
118 if (ksi->ksi_signo == signo) {
119 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
120 simple_unlock(&p->p_sigctx.ps_silock);
121 return ksi;
122 }
123 }
124 simple_unlock(&p->p_sigctx.ps_silock);
125 return NULL;
126 }
127
128 /*
129 * Append a new ksiginfo element to the list of pending ksiginfo's, if
130 * we need to (SA_SIGINFO was requested). We replace non RT signals if
131 * they already existed in the queue and we add new entries for RT signals,
132 * or for non RT signals with non-existing entries.
133 */
134 static void
135 ksiginfo_put(struct proc *p, ksiginfo_t *ksi)
136 {
137 ksiginfo_t *kp;
138 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
139
140 if ((sa->sa_flags & SA_SIGINFO) == 0)
141 return;
142
143 simple_lock(&p->p_sigctx.ps_silock);
144 #ifdef notyet /* XXX: QUEUING */
145 if (ksi->ksi_signo < SIGRTMIN)
146 #endif
147 {
148 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
149 if (kp->ksi_signo == ksi->ksi_signo) {
150 CIRCLEQ_ENTRY(ksiginfo) sv;
151 (void)memcpy(&sv, &kp->ksi_list, sizeof(sv));
152 *kp = *ksi;
153 (void)memcpy(&kp->ksi_list, &sv, sizeof(sv));
154 simple_unlock(&p->p_sigctx.ps_silock);
155 return;
156 }
157 }
158 }
159 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
160 if (kp == NULL) {
161 #ifdef DIAGNOSTIC
162 printf("Out of memory allocating siginfo for pid %d\n",
163 p->p_pid);
164 #endif
165 return;
166 }
167 *kp = *ksi;
168 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
169 simple_unlock(&p->p_sigctx.ps_silock);
170 }
171
172 /*
173 * free all pending ksiginfo on exit
174 */
175 static void
176 ksiginfo_exithook(struct proc *p, void *v)
177 {
178
179 simple_lock(&p->p_sigctx.ps_silock);
180 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
181 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
182 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
183 pool_put(&ksiginfo_pool, ksi);
184 }
185 simple_unlock(&p->p_sigctx.ps_silock);
186 }
187
188 /*
189 * Initialize signal-related data structures.
190 */
191 void
192 signal_init(void)
193 {
194 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
195 &pool_allocator_nointr);
196 pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
197 &pool_allocator_nointr);
198 pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
199 NULL);
200 exithook_establish(ksiginfo_exithook, NULL);
201 exechook_establish(ksiginfo_exithook, NULL);
202 }
203
204 /*
205 * Create an initial sigctx structure, using the same signal state
206 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
207 * copy it from parent.
208 */
209 void
210 sigactsinit(struct proc *np, struct proc *pp, int share)
211 {
212 struct sigacts *ps;
213
214 if (share) {
215 np->p_sigacts = pp->p_sigacts;
216 pp->p_sigacts->sa_refcnt++;
217 } else {
218 ps = pool_get(&sigacts_pool, PR_WAITOK);
219 if (pp)
220 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
221 else
222 memset(ps, '\0', sizeof(struct sigacts));
223 ps->sa_refcnt = 1;
224 np->p_sigacts = ps;
225 }
226 }
227
228 /*
229 * Make this process not share its sigctx, maintaining all
230 * signal state.
231 */
232 void
233 sigactsunshare(struct proc *p)
234 {
235 struct sigacts *oldps;
236
237 if (p->p_sigacts->sa_refcnt == 1)
238 return;
239
240 oldps = p->p_sigacts;
241 sigactsinit(p, NULL, 0);
242
243 if (--oldps->sa_refcnt == 0)
244 pool_put(&sigacts_pool, oldps);
245 }
246
247 /*
248 * Release a sigctx structure.
249 */
250 void
251 sigactsfree(struct proc *p)
252 {
253 struct sigacts *ps;
254
255 ps = p->p_sigacts;
256 if (--ps->sa_refcnt > 0)
257 return;
258
259 pool_put(&sigacts_pool, ps);
260 }
261
262 int
263 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
264 struct sigaction *osa, void *tramp, int vers)
265 {
266 struct sigacts *ps;
267 int prop;
268
269 ps = p->p_sigacts;
270 if (signum <= 0 || signum >= NSIG)
271 return (EINVAL);
272
273 /*
274 * Trampoline ABI version 0 is reserved for the legacy
275 * kernel-provided on-stack trampoline. Conversely, if
276 * we are using a non-0 ABI version, we must have a
277 * trampoline.
278 */
279 if ((vers != 0 && tramp == NULL) ||
280 (vers == 0 && tramp != NULL))
281 return (EINVAL);
282
283 if (osa)
284 *osa = SIGACTION_PS(ps, signum);
285
286 if (nsa) {
287 if (nsa->sa_flags & ~SA_ALLBITS)
288 return (EINVAL);
289
290 #ifndef __HAVE_SIGINFO
291 if (nsa->sa_flags & SA_SIGINFO)
292 return (EINVAL);
293 #endif
294
295 prop = sigprop[signum];
296 if (prop & SA_CANTMASK)
297 return (EINVAL);
298
299 (void) splsched(); /* XXXSMP */
300 SIGACTION_PS(ps, signum) = *nsa;
301 ps->sa_sigdesc[signum].sd_tramp = tramp;
302 ps->sa_sigdesc[signum].sd_vers = vers;
303 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
304 if ((prop & SA_NORESET) != 0)
305 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
306 if (signum == SIGCHLD) {
307 if (nsa->sa_flags & SA_NOCLDSTOP)
308 p->p_flag |= P_NOCLDSTOP;
309 else
310 p->p_flag &= ~P_NOCLDSTOP;
311 if (nsa->sa_flags & SA_NOCLDWAIT) {
312 /*
313 * Paranoia: since SA_NOCLDWAIT is implemented
314 * by reparenting the dying child to PID 1 (and
315 * trust it to reap the zombie), PID 1 itself
316 * is forbidden to set SA_NOCLDWAIT.
317 */
318 if (p->p_pid == 1)
319 p->p_flag &= ~P_NOCLDWAIT;
320 else
321 p->p_flag |= P_NOCLDWAIT;
322 } else
323 p->p_flag &= ~P_NOCLDWAIT;
324 }
325 if ((nsa->sa_flags & SA_NODEFER) == 0)
326 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
327 else
328 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
329 /*
330 * Set bit in p_sigctx.ps_sigignore for signals that are set to
331 * SIG_IGN, and for signals set to SIG_DFL where the default is
332 * to ignore. However, don't put SIGCONT in
333 * p_sigctx.ps_sigignore, as we have to restart the process.
334 */
335 if (nsa->sa_handler == SIG_IGN ||
336 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
337 /* never to be seen again */
338 sigdelset(&p->p_sigctx.ps_siglist, signum);
339 if (signum != SIGCONT) {
340 /* easier in psignal */
341 sigaddset(&p->p_sigctx.ps_sigignore, signum);
342 }
343 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
344 } else {
345 sigdelset(&p->p_sigctx.ps_sigignore, signum);
346 if (nsa->sa_handler == SIG_DFL)
347 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
348 else
349 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
350 }
351 (void) spl0();
352 }
353
354 return (0);
355 }
356
357 #ifdef COMPAT_16
358 /* ARGSUSED */
359 int
360 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
361 {
362 struct compat_16_sys___sigaction14_args /* {
363 syscallarg(int) signum;
364 syscallarg(const struct sigaction *) nsa;
365 syscallarg(struct sigaction *) osa;
366 } */ *uap = v;
367 struct proc *p;
368 struct sigaction nsa, osa;
369 int error;
370
371 if (SCARG(uap, nsa)) {
372 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
373 if (error)
374 return (error);
375 }
376 p = l->l_proc;
377 error = sigaction1(p, SCARG(uap, signum),
378 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
379 NULL, 0);
380 if (error)
381 return (error);
382 if (SCARG(uap, osa)) {
383 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
384 if (error)
385 return (error);
386 }
387 return (0);
388 }
389 #endif
390
391 /* ARGSUSED */
392 int
393 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
394 {
395 struct sys___sigaction_sigtramp_args /* {
396 syscallarg(int) signum;
397 syscallarg(const struct sigaction *) nsa;
398 syscallarg(struct sigaction *) osa;
399 syscallarg(void *) tramp;
400 syscallarg(int) vers;
401 } */ *uap = v;
402 struct proc *p = l->l_proc;
403 struct sigaction nsa, osa;
404 int error;
405
406 if (SCARG(uap, nsa)) {
407 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
408 if (error)
409 return (error);
410 }
411 error = sigaction1(p, SCARG(uap, signum),
412 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
413 SCARG(uap, tramp), SCARG(uap, vers));
414 if (error)
415 return (error);
416 if (SCARG(uap, osa)) {
417 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
418 if (error)
419 return (error);
420 }
421 return (0);
422 }
423
424 /*
425 * Initialize signal state for process 0;
426 * set to ignore signals that are ignored by default and disable the signal
427 * stack.
428 */
429 void
430 siginit(struct proc *p)
431 {
432 struct sigacts *ps;
433 int signum, prop;
434
435 ps = p->p_sigacts;
436 sigemptyset(&contsigmask);
437 sigemptyset(&stopsigmask);
438 sigemptyset(&sigcantmask);
439 for (signum = 1; signum < NSIG; signum++) {
440 prop = sigprop[signum];
441 if (prop & SA_CONT)
442 sigaddset(&contsigmask, signum);
443 if (prop & SA_STOP)
444 sigaddset(&stopsigmask, signum);
445 if (prop & SA_CANTMASK)
446 sigaddset(&sigcantmask, signum);
447 if (prop & SA_IGNORE && signum != SIGCONT)
448 sigaddset(&p->p_sigctx.ps_sigignore, signum);
449 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
450 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
451 }
452 sigemptyset(&p->p_sigctx.ps_sigcatch);
453 p->p_sigctx.ps_sigwaited = 0;
454 p->p_flag &= ~P_NOCLDSTOP;
455
456 /*
457 * Reset stack state to the user stack.
458 */
459 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
460 p->p_sigctx.ps_sigstk.ss_size = 0;
461 p->p_sigctx.ps_sigstk.ss_sp = 0;
462
463 /* One reference. */
464 ps->sa_refcnt = 1;
465 }
466
467 /*
468 * Reset signals for an exec of the specified process.
469 */
470 void
471 execsigs(struct proc *p)
472 {
473 struct sigacts *ps;
474 int signum, prop;
475
476 sigactsunshare(p);
477
478 ps = p->p_sigacts;
479
480 /*
481 * Reset caught signals. Held signals remain held
482 * through p_sigctx.ps_sigmask (unless they were caught,
483 * and are now ignored by default).
484 */
485 for (signum = 1; signum < NSIG; signum++) {
486 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
487 prop = sigprop[signum];
488 if (prop & SA_IGNORE) {
489 if ((prop & SA_CONT) == 0)
490 sigaddset(&p->p_sigctx.ps_sigignore,
491 signum);
492 sigdelset(&p->p_sigctx.ps_siglist, signum);
493 }
494 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
495 }
496 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
497 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
498 }
499 sigemptyset(&p->p_sigctx.ps_sigcatch);
500 p->p_sigctx.ps_sigwaited = 0;
501 p->p_flag &= ~P_NOCLDSTOP;
502
503 /*
504 * Reset stack state to the user stack.
505 */
506 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
507 p->p_sigctx.ps_sigstk.ss_size = 0;
508 p->p_sigctx.ps_sigstk.ss_sp = 0;
509 }
510
511 int
512 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
513 {
514
515 if (oss)
516 *oss = p->p_sigctx.ps_sigmask;
517
518 if (nss) {
519 (void)splsched(); /* XXXSMP */
520 switch (how) {
521 case SIG_BLOCK:
522 sigplusset(nss, &p->p_sigctx.ps_sigmask);
523 break;
524 case SIG_UNBLOCK:
525 sigminusset(nss, &p->p_sigctx.ps_sigmask);
526 CHECKSIGS(p);
527 break;
528 case SIG_SETMASK:
529 p->p_sigctx.ps_sigmask = *nss;
530 CHECKSIGS(p);
531 break;
532 default:
533 (void)spl0(); /* XXXSMP */
534 return (EINVAL);
535 }
536 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
537 (void)spl0(); /* XXXSMP */
538 }
539
540 return (0);
541 }
542
543 /*
544 * Manipulate signal mask.
545 * Note that we receive new mask, not pointer,
546 * and return old mask as return value;
547 * the library stub does the rest.
548 */
549 int
550 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
551 {
552 struct sys___sigprocmask14_args /* {
553 syscallarg(int) how;
554 syscallarg(const sigset_t *) set;
555 syscallarg(sigset_t *) oset;
556 } */ *uap = v;
557 struct proc *p;
558 sigset_t nss, oss;
559 int error;
560
561 if (SCARG(uap, set)) {
562 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
563 if (error)
564 return (error);
565 }
566 p = l->l_proc;
567 error = sigprocmask1(p, SCARG(uap, how),
568 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
569 if (error)
570 return (error);
571 if (SCARG(uap, oset)) {
572 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
573 if (error)
574 return (error);
575 }
576 return (0);
577 }
578
579 void
580 sigpending1(struct proc *p, sigset_t *ss)
581 {
582
583 *ss = p->p_sigctx.ps_siglist;
584 sigminusset(&p->p_sigctx.ps_sigmask, ss);
585 }
586
587 /* ARGSUSED */
588 int
589 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
590 {
591 struct sys___sigpending14_args /* {
592 syscallarg(sigset_t *) set;
593 } */ *uap = v;
594 struct proc *p;
595 sigset_t ss;
596
597 p = l->l_proc;
598 sigpending1(p, &ss);
599 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
600 }
601
602 int
603 sigsuspend1(struct proc *p, const sigset_t *ss)
604 {
605 struct sigacts *ps;
606
607 ps = p->p_sigacts;
608 if (ss) {
609 /*
610 * When returning from sigpause, we want
611 * the old mask to be restored after the
612 * signal handler has finished. Thus, we
613 * save it here and mark the sigctx structure
614 * to indicate this.
615 */
616 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
617 p->p_sigctx.ps_flags |= SAS_OLDMASK;
618 (void) splsched(); /* XXXSMP */
619 p->p_sigctx.ps_sigmask = *ss;
620 CHECKSIGS(p);
621 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
622 (void) spl0(); /* XXXSMP */
623 }
624
625 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
626 /* void */;
627
628 /* always return EINTR rather than ERESTART... */
629 return (EINTR);
630 }
631
632 /*
633 * Suspend process until signal, providing mask to be set
634 * in the meantime. Note nonstandard calling convention:
635 * libc stub passes mask, not pointer, to save a copyin.
636 */
637 /* ARGSUSED */
638 int
639 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
640 {
641 struct sys___sigsuspend14_args /* {
642 syscallarg(const sigset_t *) set;
643 } */ *uap = v;
644 struct proc *p;
645 sigset_t ss;
646 int error;
647
648 if (SCARG(uap, set)) {
649 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
650 if (error)
651 return (error);
652 }
653
654 p = l->l_proc;
655 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
656 }
657
658 int
659 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
660 struct sigaltstack *oss)
661 {
662
663 if (oss)
664 *oss = p->p_sigctx.ps_sigstk;
665
666 if (nss) {
667 if (nss->ss_flags & ~SS_ALLBITS)
668 return (EINVAL);
669
670 if (nss->ss_flags & SS_DISABLE) {
671 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
672 return (EINVAL);
673 } else {
674 if (nss->ss_size < MINSIGSTKSZ)
675 return (ENOMEM);
676 }
677 p->p_sigctx.ps_sigstk = *nss;
678 }
679
680 return (0);
681 }
682
683 /* ARGSUSED */
684 int
685 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
686 {
687 struct sys___sigaltstack14_args /* {
688 syscallarg(const struct sigaltstack *) nss;
689 syscallarg(struct sigaltstack *) oss;
690 } */ *uap = v;
691 struct proc *p;
692 struct sigaltstack nss, oss;
693 int error;
694
695 if (SCARG(uap, nss)) {
696 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
697 if (error)
698 return (error);
699 }
700 p = l->l_proc;
701 error = sigaltstack1(p,
702 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
703 if (error)
704 return (error);
705 if (SCARG(uap, oss)) {
706 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
707 if (error)
708 return (error);
709 }
710 return (0);
711 }
712
713 /* ARGSUSED */
714 int
715 sys_kill(struct lwp *l, void *v, register_t *retval)
716 {
717 struct sys_kill_args /* {
718 syscallarg(int) pid;
719 syscallarg(int) signum;
720 } */ *uap = v;
721 struct proc *cp, *p;
722 struct pcred *pc;
723 ksiginfo_t ksi;
724
725 cp = l->l_proc;
726 pc = cp->p_cred;
727 if ((u_int)SCARG(uap, signum) >= NSIG)
728 return (EINVAL);
729 memset(&ksi, 0, sizeof(ksi));
730 ksi.ksi_signo = SCARG(uap, signum);
731 ksi.ksi_code = SI_USER;
732 ksi.ksi_pid = cp->p_pid;
733 ksi.ksi_uid = cp->p_ucred->cr_uid;
734 if (SCARG(uap, pid) > 0) {
735 /* kill single process */
736 if ((p = pfind(SCARG(uap, pid))) == NULL)
737 return (ESRCH);
738 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
739 return (EPERM);
740 if (SCARG(uap, signum))
741 kpsignal(p, &ksi, NULL);
742 return (0);
743 }
744 switch (SCARG(uap, pid)) {
745 case -1: /* broadcast signal */
746 return (killpg1(cp, &ksi, 0, 1));
747 case 0: /* signal own process group */
748 return (killpg1(cp, &ksi, 0, 0));
749 default: /* negative explicit process group */
750 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
751 }
752 /* NOTREACHED */
753 }
754
755 /*
756 * Common code for kill process group/broadcast kill.
757 * cp is calling process.
758 */
759 int
760 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
761 {
762 struct proc *p;
763 struct pcred *pc;
764 struct pgrp *pgrp;
765 int nfound;
766 int signum = ksi->ksi_signo;
767
768 pc = cp->p_cred;
769 nfound = 0;
770 if (all) {
771 /*
772 * broadcast
773 */
774 proclist_lock_read();
775 LIST_FOREACH(p, &allproc, p_list) {
776 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
777 p == cp || !CANSIGNAL(cp, pc, p, signum))
778 continue;
779 nfound++;
780 if (signum)
781 kpsignal(p, ksi, NULL);
782 }
783 proclist_unlock_read();
784 } else {
785 if (pgid == 0)
786 /*
787 * zero pgid means send to my process group.
788 */
789 pgrp = cp->p_pgrp;
790 else {
791 pgrp = pgfind(pgid);
792 if (pgrp == NULL)
793 return (ESRCH);
794 }
795 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
796 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
797 !CANSIGNAL(cp, pc, p, signum))
798 continue;
799 nfound++;
800 if (signum && P_ZOMBIE(p) == 0)
801 kpsignal(p, ksi, NULL);
802 }
803 }
804 return (nfound ? 0 : ESRCH);
805 }
806
807 /*
808 * Send a signal to a process group.
809 */
810 void
811 gsignal(int pgid, int signum)
812 {
813 ksiginfo_t ksi;
814 memset(&ksi, 0, sizeof(ksi));
815 ksi.ksi_signo = signum;
816 kgsignal(pgid, &ksi, NULL);
817 }
818
819 void
820 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
821 {
822 struct pgrp *pgrp;
823
824 if (pgid && (pgrp = pgfind(pgid)))
825 kpgsignal(pgrp, ksi, data, 0);
826 }
827
828 /*
829 * Send a signal to a process group. If checktty is 1,
830 * limit to members which have a controlling terminal.
831 */
832 void
833 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
834 {
835 ksiginfo_t ksi;
836 memset(&ksi, 0, sizeof(ksi));
837 ksi.ksi_signo = sig;
838 kpgsignal(pgrp, &ksi, NULL, checkctty);
839 }
840
841 void
842 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
843 {
844 struct proc *p;
845
846 if (pgrp)
847 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
848 if (checkctty == 0 || p->p_flag & P_CONTROLT)
849 kpsignal(p, ksi, data);
850 }
851
852 /*
853 * Send a signal caused by a trap to the current process.
854 * If it will be caught immediately, deliver it with correct code.
855 * Otherwise, post it normally.
856 */
857 #ifndef __HAVE_SIGINFO
858 void _trapsignal(struct lwp *, ksiginfo_t *);
859 void
860 trapsignal(struct lwp *l, int signum, u_long code)
861 {
862 #define trapsignal _trapsignal
863 ksiginfo_t ksi;
864 memset(&ksi, 0, sizeof(ksi));
865 ksi.ksi_signo = signum;
866 ksi.ksi_trap = (int)code;
867 trapsignal(l, &ksi);
868 }
869 #endif
870
871 void
872 trapsignal(struct lwp *l, ksiginfo_t *ksi)
873 {
874 struct proc *p;
875 struct sigacts *ps;
876 int signum = ksi->ksi_signo;
877
878 p = l->l_proc;
879 ps = p->p_sigacts;
880 if ((p->p_flag & P_TRACED) == 0 &&
881 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
882 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
883 p->p_stats->p_ru.ru_nsignals++;
884 #ifdef KTRACE
885 if (KTRPOINT(p, KTR_PSIG))
886 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
887 &p->p_sigctx.ps_sigmask, ksi);
888 #endif
889 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
890 (void) splsched(); /* XXXSMP */
891 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
892 &p->p_sigctx.ps_sigmask);
893 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
894 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
895 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
896 sigaddset(&p->p_sigctx.ps_sigignore, signum);
897 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
898 }
899 (void) spl0(); /* XXXSMP */
900 } else {
901 p->p_sigctx.ps_lwp = l->l_lid;
902 /* XXX for core dump/debugger */
903 p->p_sigctx.ps_signo = ksi->ksi_signo;
904 p->p_sigctx.ps_code = ksi->ksi_trap;
905 kpsignal(p, ksi, NULL);
906 }
907 }
908
909 /*
910 * Fill in signal information and signal the parent for a child status change.
911 */
912 static void
913 child_psignal(struct proc *p, int dolock)
914 {
915 ksiginfo_t ksi;
916
917 (void)memset(&ksi, 0, sizeof(ksi));
918 ksi.ksi_signo = SIGCHLD;
919 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
920 ksi.ksi_pid = p->p_pid;
921 ksi.ksi_uid = p->p_ucred->cr_uid;
922 ksi.ksi_status = p->p_xstat;
923 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
924 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
925 kpsignal1(p->p_pptr, &ksi, NULL, dolock);
926 }
927
928 /*
929 * Send the signal to the process. If the signal has an action, the action
930 * is usually performed by the target process rather than the caller; we add
931 * the signal to the set of pending signals for the process.
932 *
933 * Exceptions:
934 * o When a stop signal is sent to a sleeping process that takes the
935 * default action, the process is stopped without awakening it.
936 * o SIGCONT restarts stopped processes (or puts them back to sleep)
937 * regardless of the signal action (eg, blocked or ignored).
938 *
939 * Other ignored signals are discarded immediately.
940 *
941 * XXXSMP: Invoked as psignal() or sched_psignal().
942 */
943 void
944 psignal1(struct proc *p, int signum, int dolock)
945 {
946 ksiginfo_t ksi;
947 memset(&ksi, 0, sizeof(ksi));
948 ksi.ksi_signo = signum;
949 kpsignal1(p, &ksi, NULL, dolock);
950 }
951
952 void
953 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data,
954 int dolock) /* XXXSMP: works, but icky */
955 {
956 struct lwp *l, *suspended;
957 int s = 0, prop, allsusp;
958 sig_t action;
959 int signum = ksi->ksi_signo;
960
961 #ifdef DIAGNOSTIC
962 if (signum <= 0 || signum >= NSIG)
963 panic("psignal signal number %d", signum);
964
965
966 /* XXXSMP: works, but icky */
967 if (dolock)
968 SCHED_ASSERT_UNLOCKED();
969 else
970 SCHED_ASSERT_LOCKED();
971 #endif
972
973 if (data) {
974 size_t fd;
975 struct filedesc *fdp = p->p_fd;
976 ksi->ksi_fd = -1;
977 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
978 struct file *fp = fdp->fd_ofiles[fd];
979 /* XXX: lock? */
980 if (fp && fp->f_data == data) {
981 ksi->ksi_fd = fd;
982 break;
983 }
984 }
985 }
986
987 /*
988 * Notify any interested parties in the signal.
989 */
990 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
991
992 prop = sigprop[signum];
993
994 /*
995 * If proc is traced, always give parent a chance.
996 */
997 if (p->p_flag & P_TRACED)
998 action = SIG_DFL;
999 else {
1000 /*
1001 * If the signal is being ignored,
1002 * then we forget about it immediately.
1003 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1004 * and if it is set to SIG_IGN,
1005 * action will be SIG_DFL here.)
1006 */
1007 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1008 return;
1009 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1010 action = SIG_HOLD;
1011 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1012 action = SIG_CATCH;
1013 else {
1014 action = SIG_DFL;
1015
1016 if (prop & SA_KILL && p->p_nice > NZERO)
1017 p->p_nice = NZERO;
1018
1019 /*
1020 * If sending a tty stop signal to a member of an
1021 * orphaned process group, discard the signal here if
1022 * the action is default; don't stop the process below
1023 * if sleeping, and don't clear any pending SIGCONT.
1024 */
1025 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1026 return;
1027 }
1028 }
1029
1030 if (prop & SA_CONT)
1031 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1032
1033 if (prop & SA_STOP)
1034 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1035
1036 sigaddset(&p->p_sigctx.ps_siglist, signum);
1037
1038 /* CHECKSIGS() is "inlined" here. */
1039 p->p_sigctx.ps_sigcheck = 1;
1040
1041 /*
1042 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1043 * please!), check if anything waits on it. If yes, clear the
1044 * pending signal from siglist set, save it to ps_sigwaited,
1045 * clear sigwait list, and wakeup any sigwaiters.
1046 * The signal won't be processed further here.
1047 */
1048 if ((prop & SA_CANTMASK) == 0
1049 && p->p_sigctx.ps_sigwaited < 0
1050 && sigismember(&p->p_sigctx.ps_sigwait, signum)
1051 && p->p_stat != SSTOP) {
1052 if (action == SIG_CATCH)
1053 ksiginfo_put(p, ksi);
1054 sigdelset(&p->p_sigctx.ps_siglist, signum);
1055 p->p_sigctx.ps_sigwaited = signum;
1056 sigemptyset(&p->p_sigctx.ps_sigwait);
1057 if (dolock)
1058 wakeup_one(&p->p_sigctx.ps_sigwait);
1059 else
1060 sched_wakeup(&p->p_sigctx.ps_sigwait);
1061 return;
1062 }
1063
1064 /*
1065 * Defer further processing for signals which are held,
1066 * except that stopped processes must be continued by SIGCONT.
1067 */
1068 if (action == SIG_HOLD &&
1069 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1070 ksiginfo_put(p, ksi);
1071 return;
1072 }
1073 /* XXXSMP: works, but icky */
1074 if (dolock)
1075 SCHED_LOCK(s);
1076
1077 /* XXXUPSXXX LWPs might go to sleep without passing signal handling */
1078 if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
1079 && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
1080 /*
1081 * At least one LWP is running or on a run queue.
1082 * The signal will be noticed when one of them returns
1083 * to userspace.
1084 */
1085 signotify(p);
1086 /*
1087 * The signal will be noticed very soon.
1088 */
1089 goto out;
1090 } else {
1091 /* Process is sleeping or stopped */
1092 if (p->p_flag & P_SA) {
1093 struct lwp *l2 = p->p_sa->sa_vp;
1094 l = NULL;
1095 allsusp = 1;
1096
1097 if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
1098 l = l2;
1099 else if (l2->l_stat == LSSUSPENDED)
1100 suspended = l2;
1101 else if ((l2->l_stat != LSZOMB) &&
1102 (l2->l_stat != LSDEAD))
1103 allsusp = 0;
1104 } else {
1105 /*
1106 * Find out if any of the sleeps are interruptable,
1107 * and if all the live LWPs remaining are suspended.
1108 */
1109 allsusp = 1;
1110 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1111 if (l->l_stat == LSSLEEP &&
1112 l->l_flag & L_SINTR)
1113 break;
1114 if (l->l_stat == LSSUSPENDED)
1115 suspended = l;
1116 else if ((l->l_stat != LSZOMB) &&
1117 (l->l_stat != LSDEAD))
1118 allsusp = 0;
1119 }
1120 }
1121 if (p->p_stat == SACTIVE) {
1122
1123
1124 if (l != NULL && (p->p_flag & P_TRACED))
1125 goto run;
1126
1127 /*
1128 * If SIGCONT is default (or ignored) and process is
1129 * asleep, we are finished; the process should not
1130 * be awakened.
1131 */
1132 if ((prop & SA_CONT) && action == SIG_DFL) {
1133 sigdelset(&p->p_sigctx.ps_siglist, signum);
1134 goto done;
1135 }
1136
1137 /*
1138 * When a sleeping process receives a stop
1139 * signal, process immediately if possible.
1140 */
1141 if ((prop & SA_STOP) && action == SIG_DFL) {
1142 /*
1143 * If a child holding parent blocked,
1144 * stopping could cause deadlock.
1145 */
1146 if (p->p_flag & P_PPWAIT) {
1147 goto out;
1148 }
1149 sigdelset(&p->p_sigctx.ps_siglist, signum);
1150 p->p_xstat = signum;
1151 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1152 /*
1153 * XXXSMP: recursive call; don't lock
1154 * the second time around.
1155 */
1156 child_psignal(p, 0);
1157 }
1158 proc_stop(p); /* XXXSMP: recurse? */
1159 goto done;
1160 }
1161
1162 if (l == NULL) {
1163 /*
1164 * Special case: SIGKILL of a process
1165 * which is entirely composed of
1166 * suspended LWPs should succeed. We
1167 * make this happen by unsuspending one of
1168 * them.
1169 */
1170 if (allsusp && (signum == SIGKILL))
1171 lwp_continue(suspended);
1172 goto done;
1173 }
1174 /*
1175 * All other (caught or default) signals
1176 * cause the process to run.
1177 */
1178 goto runfast;
1179 /*NOTREACHED*/
1180 } else if (p->p_stat == SSTOP) {
1181 /* Process is stopped */
1182 /*
1183 * If traced process is already stopped,
1184 * then no further action is necessary.
1185 */
1186 if (p->p_flag & P_TRACED)
1187 goto done;
1188
1189 /*
1190 * Kill signal always sets processes running,
1191 * if possible.
1192 */
1193 if (signum == SIGKILL) {
1194 l = proc_unstop(p);
1195 if (l)
1196 goto runfast;
1197 goto done;
1198 }
1199
1200 if (prop & SA_CONT) {
1201 /*
1202 * If SIGCONT is default (or ignored),
1203 * we continue the process but don't
1204 * leave the signal in ps_siglist, as
1205 * it has no further action. If
1206 * SIGCONT is held, we continue the
1207 * process and leave the signal in
1208 * ps_siglist. If the process catches
1209 * SIGCONT, let it handle the signal
1210 * itself. If it isn't waiting on an
1211 * event, then it goes back to run
1212 * state. Otherwise, process goes
1213 * back to sleep state.
1214 */
1215 if (action == SIG_DFL)
1216 sigdelset(&p->p_sigctx.ps_siglist,
1217 signum);
1218 l = proc_unstop(p);
1219 if (l && (action == SIG_CATCH))
1220 goto runfast;
1221 goto out;
1222 }
1223
1224 if (prop & SA_STOP) {
1225 /*
1226 * Already stopped, don't need to stop again.
1227 * (If we did the shell could get confused.)
1228 */
1229 sigdelset(&p->p_sigctx.ps_siglist, signum);
1230 goto done;
1231 }
1232
1233 /*
1234 * If a lwp is sleeping interruptibly, then
1235 * wake it up; it will run until the kernel
1236 * boundary, where it will stop in issignal(),
1237 * since p->p_stat is still SSTOP. When the
1238 * process is continued, it will be made
1239 * runnable and can look at the signal.
1240 */
1241 if (l)
1242 goto run;
1243 goto out;
1244 } else {
1245 /* Else what? */
1246 panic("psignal: Invalid process state %d.",
1247 p->p_stat);
1248 }
1249 }
1250 /*NOTREACHED*/
1251
1252 runfast:
1253 if (action == SIG_CATCH) {
1254 ksiginfo_put(p, ksi);
1255 action = SIG_HOLD;
1256 }
1257 /*
1258 * Raise priority to at least PUSER.
1259 */
1260 if (l->l_priority > PUSER)
1261 l->l_priority = PUSER;
1262 run:
1263 if (action == SIG_CATCH) {
1264 ksiginfo_put(p, ksi);
1265 action = SIG_HOLD;
1266 }
1267
1268 setrunnable(l); /* XXXSMP: recurse? */
1269 out:
1270 if (action == SIG_CATCH)
1271 ksiginfo_put(p, ksi);
1272 done:
1273 /* XXXSMP: works, but icky */
1274 if (dolock)
1275 SCHED_UNLOCK(s);
1276 }
1277
1278 void
1279 kpsendsig(struct lwp *l, ksiginfo_t *ksi, sigset_t *mask)
1280 {
1281 struct proc *p = l->l_proc;
1282 struct lwp *le, *li;
1283 siginfo_t *si;
1284 int f;
1285
1286 if (p->p_flag & P_SA) {
1287
1288 /* XXXUPSXXX What if not on sa_vp ? */
1289
1290 f = l->l_flag & L_SA;
1291 l->l_flag &= ~L_SA;
1292 si = pool_get(&siginfo_pool, PR_WAITOK);
1293 si->_info = *ksi;
1294 le = li = NULL;
1295 if (ksi->ksi_trap)
1296 le = l;
1297 else
1298 li = l;
1299
1300 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1301 sizeof(siginfo_t), si);
1302 l->l_flag |= f;
1303 return;
1304 }
1305
1306 #ifdef __HAVE_SIGINFO
1307 (*p->p_emul->e_sendsig)(ksi, mask);
1308 #else
1309 (*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, ksi->ksi_trap);
1310 #endif
1311 }
1312
1313 static __inline int firstsig(const sigset_t *);
1314
1315 static __inline int
1316 firstsig(const sigset_t *ss)
1317 {
1318 int sig;
1319
1320 sig = ffs(ss->__bits[0]);
1321 if (sig != 0)
1322 return (sig);
1323 #if NSIG > 33
1324 sig = ffs(ss->__bits[1]);
1325 if (sig != 0)
1326 return (sig + 32);
1327 #endif
1328 #if NSIG > 65
1329 sig = ffs(ss->__bits[2]);
1330 if (sig != 0)
1331 return (sig + 64);
1332 #endif
1333 #if NSIG > 97
1334 sig = ffs(ss->__bits[3]);
1335 if (sig != 0)
1336 return (sig + 96);
1337 #endif
1338 return (0);
1339 }
1340
1341 /*
1342 * If the current process has received a signal (should be caught or cause
1343 * termination, should interrupt current syscall), return the signal number.
1344 * Stop signals with default action are processed immediately, then cleared;
1345 * they aren't returned. This is checked after each entry to the system for
1346 * a syscall or trap (though this can usually be done without calling issignal
1347 * by checking the pending signal masks in the CURSIG macro.) The normal call
1348 * sequence is
1349 *
1350 * while (signum = CURSIG(curlwp))
1351 * postsig(signum);
1352 */
1353 int
1354 issignal(struct lwp *l)
1355 {
1356 struct proc *p = l->l_proc;
1357 int s = 0, signum, prop;
1358 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1359 sigset_t ss;
1360
1361 if (l->l_flag & L_SA) {
1362 struct sadata *sa = p->p_sa;
1363
1364 /* Bail out if we do not own the virtual processor */
1365 if (sa->sa_vp != l)
1366 return 0;
1367 }
1368
1369 if (p->p_stat == SSTOP) {
1370 /*
1371 * The process is stopped/stopping. Stop ourselves now that
1372 * we're on the kernel/userspace boundary.
1373 */
1374 if (dolock)
1375 SCHED_LOCK(s);
1376 l->l_stat = LSSTOP;
1377 p->p_nrlwps--;
1378 if (p->p_flag & P_TRACED)
1379 goto sigtraceswitch;
1380 else
1381 goto sigswitch;
1382 }
1383 for (;;) {
1384 sigpending1(p, &ss);
1385 if (p->p_flag & P_PPWAIT)
1386 sigminusset(&stopsigmask, &ss);
1387 signum = firstsig(&ss);
1388 if (signum == 0) { /* no signal to send */
1389 p->p_sigctx.ps_sigcheck = 0;
1390 if (locked && dolock)
1391 SCHED_LOCK(s);
1392 return (0);
1393 }
1394 /* take the signal! */
1395 sigdelset(&p->p_sigctx.ps_siglist, signum);
1396
1397 /*
1398 * We should see pending but ignored signals
1399 * only if P_TRACED was on when they were posted.
1400 */
1401 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1402 (p->p_flag & P_TRACED) == 0)
1403 continue;
1404
1405 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1406 /*
1407 * If traced, always stop, and stay
1408 * stopped until released by the debugger.
1409 */
1410 p->p_xstat = signum;
1411 if ((p->p_flag & P_FSTRACE) == 0)
1412 child_psignal(p, dolock);
1413 if (dolock)
1414 SCHED_LOCK(s);
1415 proc_stop(p);
1416 sigtraceswitch:
1417 mi_switch(l, NULL);
1418 SCHED_ASSERT_UNLOCKED();
1419 if (dolock)
1420 splx(s);
1421 else
1422 dolock = 1;
1423
1424 /*
1425 * If we are no longer being traced, or the parent
1426 * didn't give us a signal, look for more signals.
1427 */
1428 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1429 continue;
1430
1431 /*
1432 * If the new signal is being masked, look for other
1433 * signals.
1434 */
1435 signum = p->p_xstat;
1436 p->p_xstat = 0;
1437 /*
1438 * `p->p_sigctx.ps_siglist |= mask' is done
1439 * in setrunnable().
1440 */
1441 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1442 continue;
1443 /* take the signal! */
1444 sigdelset(&p->p_sigctx.ps_siglist, signum);
1445 }
1446
1447 prop = sigprop[signum];
1448
1449 /*
1450 * Decide whether the signal should be returned.
1451 * Return the signal's number, or fall through
1452 * to clear it from the pending mask.
1453 */
1454 switch ((long)SIGACTION(p, signum).sa_handler) {
1455
1456 case (long)SIG_DFL:
1457 /*
1458 * Don't take default actions on system processes.
1459 */
1460 if (p->p_pid <= 1) {
1461 #ifdef DIAGNOSTIC
1462 /*
1463 * Are you sure you want to ignore SIGSEGV
1464 * in init? XXX
1465 */
1466 printf("Process (pid %d) got signal %d\n",
1467 p->p_pid, signum);
1468 #endif
1469 break; /* == ignore */
1470 }
1471 /*
1472 * If there is a pending stop signal to process
1473 * with default action, stop here,
1474 * then clear the signal. However,
1475 * if process is member of an orphaned
1476 * process group, ignore tty stop signals.
1477 */
1478 if (prop & SA_STOP) {
1479 if (p->p_flag & P_TRACED ||
1480 (p->p_pgrp->pg_jobc == 0 &&
1481 prop & SA_TTYSTOP))
1482 break; /* == ignore */
1483 p->p_xstat = signum;
1484 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1485 child_psignal(p, dolock);
1486 if (dolock)
1487 SCHED_LOCK(s);
1488 proc_stop(p);
1489 sigswitch:
1490 mi_switch(l, NULL);
1491 SCHED_ASSERT_UNLOCKED();
1492 if (dolock)
1493 splx(s);
1494 else
1495 dolock = 1;
1496 break;
1497 } else if (prop & SA_IGNORE) {
1498 /*
1499 * Except for SIGCONT, shouldn't get here.
1500 * Default action is to ignore; drop it.
1501 */
1502 break; /* == ignore */
1503 } else
1504 goto keep;
1505 /*NOTREACHED*/
1506
1507 case (long)SIG_IGN:
1508 /*
1509 * Masking above should prevent us ever trying
1510 * to take action on an ignored signal other
1511 * than SIGCONT, unless process is traced.
1512 */
1513 #ifdef DEBUG_ISSIGNAL
1514 if ((prop & SA_CONT) == 0 &&
1515 (p->p_flag & P_TRACED) == 0)
1516 printf("issignal\n");
1517 #endif
1518 break; /* == ignore */
1519
1520 default:
1521 /*
1522 * This signal has an action, let
1523 * postsig() process it.
1524 */
1525 goto keep;
1526 }
1527 }
1528 /* NOTREACHED */
1529
1530 keep:
1531 /* leave the signal for later */
1532 sigaddset(&p->p_sigctx.ps_siglist, signum);
1533 CHECKSIGS(p);
1534 if (locked && dolock)
1535 SCHED_LOCK(s);
1536 return (signum);
1537 }
1538
1539 /*
1540 * Put the argument process into the stopped state and notify the parent
1541 * via wakeup. Signals are handled elsewhere. The process must not be
1542 * on the run queue.
1543 */
1544 static void
1545 proc_stop(struct proc *p)
1546 {
1547 struct lwp *l;
1548
1549 SCHED_ASSERT_LOCKED();
1550
1551 /* XXX lock process LWP state */
1552 p->p_stat = SSTOP;
1553 p->p_flag &= ~P_WAITED;
1554
1555 /*
1556 * Put as many LWP's as possible in stopped state.
1557 * Sleeping ones will notice the stopped state as they try to
1558 * return to userspace.
1559 */
1560
1561 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1562 if ((l->l_stat == LSONPROC) && (l == curlwp)) {
1563 /* XXX SMP this assumes that a LWP that is LSONPROC
1564 * is curlwp and hence is about to be mi_switched
1565 * away; the only callers of proc_stop() are:
1566 * - psignal
1567 * - issignal()
1568 * For the former, proc_stop() is only called when
1569 * no processes are running, so we don't worry.
1570 * For the latter, proc_stop() is called right
1571 * before mi_switch().
1572 */
1573 l->l_stat = LSSTOP;
1574 p->p_nrlwps--;
1575 }
1576 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
1577 setrunnable(l);
1578 }
1579
1580 /* !!!UPS!!! FIX ME */
1581 #if 0
1582 else if (l->l_stat == LSRUN) {
1583 /* Remove LWP from the run queue */
1584 remrunqueue(l);
1585 l->l_stat = LSSTOP;
1586 p->p_nrlwps--;
1587 } else if ((l->l_stat == LSSLEEP) ||
1588 (l->l_stat == LSSUSPENDED) ||
1589 (l->l_stat == LSZOMB) ||
1590 (l->l_stat == LSDEAD)) {
1591 /*
1592 * Don't do anything; let sleeping LWPs
1593 * discover the stopped state of the process
1594 * on their way out of the kernel; otherwise,
1595 * things like NFS threads that sleep with
1596 * locks will block the rest of the system
1597 * from getting any work done.
1598 *
1599 * Suspended/dead/zombie LWPs aren't going
1600 * anywhere, so we don't need to touch them.
1601 */
1602 }
1603 #ifdef DIAGNOSTIC
1604 else {
1605 panic("proc_stop: process %d lwp %d "
1606 "in unstoppable state %d.\n",
1607 p->p_pid, l->l_lid, l->l_stat);
1608 }
1609 #endif
1610 #endif
1611 }
1612 /* XXX unlock process LWP state */
1613
1614 sched_wakeup((caddr_t)p->p_pptr);
1615 }
1616
1617 /*
1618 * Given a process in state SSTOP, set the state back to SACTIVE and
1619 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1620 *
1621 * If no LWPs ended up runnable (and therefore able to take a signal),
1622 * return a LWP that is sleeping interruptably. The caller can wake
1623 * that LWP up to take a signal.
1624 */
1625 struct lwp *
1626 proc_unstop(struct proc *p)
1627 {
1628 struct lwp *l, *lr = NULL;
1629 int cantake = 0;
1630
1631 SCHED_ASSERT_LOCKED();
1632
1633 /*
1634 * Our caller wants to be informed if there are only sleeping
1635 * and interruptable LWPs left after we have run so that it
1636 * can invoke setrunnable() if required - return one of the
1637 * interruptable LWPs if this is the case.
1638 */
1639
1640 p->p_stat = SACTIVE;
1641 if (p->p_flag & P_SA) {
1642 /*
1643 * Preferentially select the idle LWP as the interruptable
1644 * LWP to return if it exists.
1645 */
1646 lr = p->p_sa->sa_idle;
1647 if (lr != NULL)
1648 cantake = 1;
1649 }
1650 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1651 if (l->l_stat == LSRUN) {
1652 lr = NULL;
1653 cantake = 1;
1654 }
1655 if (l->l_stat != LSSTOP)
1656 continue;
1657
1658 if (l->l_wchan != NULL) {
1659 l->l_stat = LSSLEEP;
1660 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1661 lr = l;
1662 cantake = 1;
1663 }
1664 } else {
1665 setrunnable(l);
1666 lr = NULL;
1667 cantake = 1;
1668 }
1669 }
1670
1671 return lr;
1672 }
1673
1674 /*
1675 * Take the action for the specified signal
1676 * from the current set of pending signals.
1677 */
1678 void
1679 postsig(int signum)
1680 {
1681 struct lwp *l;
1682 struct proc *p;
1683 struct sigacts *ps;
1684 sig_t action;
1685 sigset_t *returnmask;
1686
1687 l = curlwp;
1688 p = l->l_proc;
1689 ps = p->p_sigacts;
1690 #ifdef DIAGNOSTIC
1691 if (signum == 0)
1692 panic("postsig");
1693 #endif
1694
1695 KERNEL_PROC_LOCK(l);
1696
1697 sigdelset(&p->p_sigctx.ps_siglist, signum);
1698 action = SIGACTION_PS(ps, signum).sa_handler;
1699 if (action == SIG_DFL) {
1700 #ifdef KTRACE
1701 if (KTRPOINT(p, KTR_PSIG))
1702 ktrpsig(p, signum, action,
1703 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1704 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1705 NULL);
1706 #endif
1707 /*
1708 * Default action, where the default is to kill
1709 * the process. (Other cases were ignored above.)
1710 */
1711 sigexit(l, signum);
1712 /* NOTREACHED */
1713 } else {
1714 ksiginfo_t *ksi;
1715 /*
1716 * If we get here, the signal must be caught.
1717 */
1718 #ifdef DIAGNOSTIC
1719 if (action == SIG_IGN ||
1720 sigismember(&p->p_sigctx.ps_sigmask, signum))
1721 panic("postsig action");
1722 #endif
1723 /*
1724 * Set the new mask value and also defer further
1725 * occurrences of this signal.
1726 *
1727 * Special case: user has done a sigpause. Here the
1728 * current mask is not of interest, but rather the
1729 * mask from before the sigpause is what we want
1730 * restored after the signal processing is completed.
1731 */
1732 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1733 returnmask = &p->p_sigctx.ps_oldmask;
1734 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1735 } else
1736 returnmask = &p->p_sigctx.ps_sigmask;
1737 p->p_stats->p_ru.ru_nsignals++;
1738 ksi = ksiginfo_get(p, signum);
1739 #ifdef KTRACE
1740 if (KTRPOINT(p, KTR_PSIG))
1741 ktrpsig(p, signum, action,
1742 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1743 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1744 ksi);
1745 #endif
1746 if (ksi == NULL) {
1747 ksiginfo_t ksi1;
1748 /*
1749 * we did not save any siginfo for this, either
1750 * because the signal was not caught, or because the
1751 * user did not request SA_SIGINFO
1752 */
1753 (void)memset(&ksi1, 0, sizeof(ksi1));
1754 ksi1.ksi_signo = signum;
1755 kpsendsig(l, &ksi1, returnmask);
1756 } else {
1757 kpsendsig(l, ksi, returnmask);
1758 pool_put(&ksiginfo_pool, ksi);
1759 }
1760 p->p_sigctx.ps_lwp = 0;
1761 p->p_sigctx.ps_code = 0;
1762 p->p_sigctx.ps_signo = 0;
1763 (void) splsched(); /* XXXSMP */
1764 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1765 &p->p_sigctx.ps_sigmask);
1766 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1767 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1768 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1769 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1770 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1771 }
1772 (void) spl0(); /* XXXSMP */
1773 }
1774
1775 KERNEL_PROC_UNLOCK(l);
1776 }
1777
1778 /*
1779 * Kill the current process for stated reason.
1780 */
1781 void
1782 killproc(struct proc *p, const char *why)
1783 {
1784 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1785 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1786 psignal(p, SIGKILL);
1787 }
1788
1789 /*
1790 * Force the current process to exit with the specified signal, dumping core
1791 * if appropriate. We bypass the normal tests for masked and caught signals,
1792 * allowing unrecoverable failures to terminate the process without changing
1793 * signal state. Mark the accounting record with the signal termination.
1794 * If dumping core, save the signal number for the debugger. Calls exit and
1795 * does not return.
1796 */
1797
1798 #if defined(DEBUG)
1799 int kern_logsigexit = 1; /* not static to make public for sysctl */
1800 #else
1801 int kern_logsigexit = 0; /* not static to make public for sysctl */
1802 #endif
1803
1804 static const char logcoredump[] =
1805 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1806 static const char lognocoredump[] =
1807 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1808
1809 /* Wrapper function for use in p_userret */
1810 static void
1811 lwp_coredump_hook(struct lwp *l, void *arg)
1812 {
1813 int s;
1814
1815 /*
1816 * Suspend ourselves, so that the kernel stack and therefore
1817 * the userland registers saved in the trapframe are around
1818 * for coredump() to write them out.
1819 */
1820 KERNEL_PROC_LOCK(l);
1821 l->l_flag &= ~L_DETACHED;
1822 SCHED_LOCK(s);
1823 l->l_stat = LSSUSPENDED;
1824 l->l_proc->p_nrlwps--;
1825 /* XXX NJWLWP check if this makes sense here: */
1826 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1827 mi_switch(l, NULL);
1828 SCHED_ASSERT_UNLOCKED();
1829 splx(s);
1830
1831 lwp_exit(l);
1832 }
1833
1834 void
1835 sigexit(struct lwp *l, int signum)
1836 {
1837 struct proc *p;
1838 #if 0
1839 struct lwp *l2;
1840 #endif
1841 int error, exitsig;
1842
1843 p = l->l_proc;
1844
1845 /*
1846 * Don't permit coredump() or exit1() multiple times
1847 * in the same process.
1848 */
1849 if (p->p_flag & P_WEXIT) {
1850 KERNEL_PROC_UNLOCK(l);
1851 (*p->p_userret)(l, p->p_userret_arg);
1852 }
1853 p->p_flag |= P_WEXIT;
1854 /* We don't want to switch away from exiting. */
1855 /* XXX multiprocessor: stop LWPs on other processors. */
1856 #if 0
1857 if (p->p_flag & P_SA) {
1858 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1859 l2->l_flag &= ~L_SA;
1860 p->p_flag &= ~P_SA;
1861 }
1862 #endif
1863
1864 /* Make other LWPs stick around long enough to be dumped */
1865 p->p_userret = lwp_coredump_hook;
1866 p->p_userret_arg = NULL;
1867
1868 exitsig = signum;
1869 p->p_acflag |= AXSIG;
1870 if (sigprop[signum] & SA_CORE) {
1871 p->p_sigctx.ps_signo = signum;
1872 if ((error = coredump(l)) == 0)
1873 exitsig |= WCOREFLAG;
1874
1875 if (kern_logsigexit) {
1876 /* XXX What if we ever have really large UIDs? */
1877 int uid = p->p_cred && p->p_ucred ?
1878 (int) p->p_ucred->cr_uid : -1;
1879
1880 if (error)
1881 log(LOG_INFO, lognocoredump, p->p_pid,
1882 p->p_comm, uid, signum, error);
1883 else
1884 log(LOG_INFO, logcoredump, p->p_pid,
1885 p->p_comm, uid, signum);
1886 }
1887
1888 }
1889
1890 exit1(l, W_EXITCODE(0, exitsig));
1891 /* NOTREACHED */
1892 }
1893
1894 /*
1895 * Dump core, into a file named "progname.core" or "core" (depending on the
1896 * value of shortcorename), unless the process was setuid/setgid.
1897 */
1898 int
1899 coredump(struct lwp *l)
1900 {
1901 struct vnode *vp;
1902 struct proc *p;
1903 struct vmspace *vm;
1904 struct ucred *cred;
1905 struct nameidata nd;
1906 struct vattr vattr;
1907 int error, error1;
1908 char name[MAXPATHLEN];
1909
1910 p = l->l_proc;
1911 vm = p->p_vmspace;
1912 cred = p->p_cred->pc_ucred;
1913
1914 /*
1915 * Make sure the process has not set-id, to prevent data leaks.
1916 */
1917 if (p->p_flag & P_SUGID)
1918 return (EPERM);
1919
1920 /*
1921 * Refuse to core if the data + stack + user size is larger than
1922 * the core dump limit. XXX THIS IS WRONG, because of mapped
1923 * data.
1924 */
1925 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
1926 p->p_rlimit[RLIMIT_CORE].rlim_cur)
1927 return (EFBIG); /* better error code? */
1928
1929 /*
1930 * The core dump will go in the current working directory. Make
1931 * sure that the directory is still there and that the mount flags
1932 * allow us to write core dumps there.
1933 */
1934 vp = p->p_cwdi->cwdi_cdir;
1935 if (vp->v_mount == NULL ||
1936 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
1937 return (EPERM);
1938
1939 error = build_corename(p, name);
1940 if (error)
1941 return error;
1942
1943 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1944 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
1945 if (error)
1946 return (error);
1947 vp = nd.ni_vp;
1948
1949 /* Don't dump to non-regular files or files with links. */
1950 if (vp->v_type != VREG ||
1951 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
1952 error = EINVAL;
1953 goto out;
1954 }
1955 VATTR_NULL(&vattr);
1956 vattr.va_size = 0;
1957 VOP_LEASE(vp, p, cred, LEASE_WRITE);
1958 VOP_SETATTR(vp, &vattr, cred, p);
1959 p->p_acflag |= ACORE;
1960
1961 /* Now dump the actual core file. */
1962 error = (*p->p_execsw->es_coredump)(l, vp, cred);
1963 out:
1964 VOP_UNLOCK(vp, 0);
1965 error1 = vn_close(vp, FWRITE, cred, p);
1966 if (error == 0)
1967 error = error1;
1968 return (error);
1969 }
1970
1971 /*
1972 * Nonexistent system call-- signal process (may want to handle it).
1973 * Flag error in case process won't see signal immediately (blocked or ignored).
1974 */
1975 /* ARGSUSED */
1976 int
1977 sys_nosys(struct lwp *l, void *v, register_t *retval)
1978 {
1979 struct proc *p;
1980
1981 p = l->l_proc;
1982 psignal(p, SIGSYS);
1983 return (ENOSYS);
1984 }
1985
1986 static int
1987 build_corename(struct proc *p, char dst[MAXPATHLEN])
1988 {
1989 const char *s;
1990 char *d, *end;
1991 int i;
1992
1993 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
1994 *s != '\0'; s++) {
1995 if (*s == '%') {
1996 switch (*(s + 1)) {
1997 case 'n':
1998 i = snprintf(d, end - d, "%s", p->p_comm);
1999 break;
2000 case 'p':
2001 i = snprintf(d, end - d, "%d", p->p_pid);
2002 break;
2003 case 'u':
2004 i = snprintf(d, end - d, "%.*s",
2005 (int)sizeof p->p_pgrp->pg_session->s_login,
2006 p->p_pgrp->pg_session->s_login);
2007 break;
2008 case 't':
2009 i = snprintf(d, end - d, "%ld",
2010 p->p_stats->p_start.tv_sec);
2011 break;
2012 default:
2013 goto copy;
2014 }
2015 d += i;
2016 s++;
2017 } else {
2018 copy: *d = *s;
2019 d++;
2020 }
2021 if (d >= end)
2022 return (ENAMETOOLONG);
2023 }
2024 *d = '\0';
2025 return 0;
2026 }
2027
2028 void
2029 getucontext(struct lwp *l, ucontext_t *ucp)
2030 {
2031 struct proc *p;
2032
2033 p = l->l_proc;
2034
2035 ucp->uc_flags = 0;
2036 ucp->uc_link = l->l_ctxlink;
2037
2038 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2039 ucp->uc_flags |= _UC_SIGMASK;
2040
2041 /*
2042 * The (unsupplied) definition of the `current execution stack'
2043 * in the System V Interface Definition appears to allow returning
2044 * the main context stack.
2045 */
2046 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2047 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2048 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2049 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2050 } else {
2051 /* Simply copy alternate signal execution stack. */
2052 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2053 }
2054 ucp->uc_flags |= _UC_STACK;
2055
2056 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2057 }
2058
2059 /* ARGSUSED */
2060 int
2061 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2062 {
2063 struct sys_getcontext_args /* {
2064 syscallarg(struct __ucontext *) ucp;
2065 } */ *uap = v;
2066 ucontext_t uc;
2067
2068 getucontext(l, &uc);
2069
2070 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2071 }
2072
2073 int
2074 setucontext(struct lwp *l, const ucontext_t *ucp)
2075 {
2076 struct proc *p;
2077 int error;
2078
2079 p = l->l_proc;
2080 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2081 return (error);
2082 l->l_ctxlink = ucp->uc_link;
2083 /*
2084 * We might want to take care of the stack portion here but currently
2085 * don't; see the comment in getucontext().
2086 */
2087 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2088 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2089
2090 return 0;
2091 }
2092
2093 /* ARGSUSED */
2094 int
2095 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2096 {
2097 struct sys_setcontext_args /* {
2098 syscallarg(const ucontext_t *) ucp;
2099 } */ *uap = v;
2100 ucontext_t uc;
2101 int error;
2102
2103 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2104 exit1(l, W_EXITCODE(0, 0));
2105 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2106 (error = setucontext(l, &uc)) != 0)
2107 return (error);
2108
2109 return (EJUSTRETURN);
2110 }
2111
2112 /*
2113 * sigtimedwait(2) system call, used also for implementation
2114 * of sigwaitinfo() and sigwait().
2115 *
2116 * This only handles single LWP in signal wait. libpthread provides
2117 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2118 *
2119 * XXX no support for queued signals, si_code is always SI_USER.
2120 */
2121 int
2122 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2123 {
2124 struct sys___sigtimedwait_args /* {
2125 syscallarg(const sigset_t *) set;
2126 syscallarg(siginfo_t *) info;
2127 syscallarg(struct timespec *) timeout;
2128 } */ *uap = v;
2129 sigset_t waitset, twaitset;
2130 struct proc *p = l->l_proc;
2131 int error, signum, s;
2132 int timo = 0;
2133 struct timeval tvstart;
2134 struct timespec ts;
2135
2136 if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
2137 return (error);
2138
2139 /*
2140 * Silently ignore SA_CANTMASK signals. psignal1() would
2141 * ignore SA_CANTMASK signals in waitset, we do this
2142 * only for the below siglist check.
2143 */
2144 sigminusset(&sigcantmask, &waitset);
2145
2146 /*
2147 * First scan siglist and check if there is signal from
2148 * our waitset already pending.
2149 */
2150 twaitset = waitset;
2151 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2152 if ((signum = firstsig(&twaitset))) {
2153 /* found pending signal */
2154 sigdelset(&p->p_sigctx.ps_siglist, signum);
2155 goto sig;
2156 }
2157
2158 /*
2159 * Calculate timeout, if it was specified.
2160 */
2161 if (SCARG(uap, timeout)) {
2162 uint64_t ms;
2163
2164 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2165 return (error);
2166
2167 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2168 timo = mstohz(ms);
2169 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2170 timo = 1;
2171 if (timo <= 0)
2172 return (EAGAIN);
2173
2174 /*
2175 * Remember current mono_time, it would be used in
2176 * ECANCELED/ERESTART case.
2177 */
2178 s = splclock();
2179 tvstart = mono_time;
2180 splx(s);
2181 }
2182
2183 /*
2184 * Setup ps_sigwait list.
2185 */
2186 p->p_sigctx.ps_sigwaited = -1;
2187 p->p_sigctx.ps_sigwait = waitset;
2188
2189 /*
2190 * Wait for signal to arrive. We can either be woken up or
2191 * time out.
2192 */
2193 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2194
2195 /*
2196 * Check if a signal from our wait set has arrived, or if it
2197 * was mere wakeup.
2198 */
2199 if (!error) {
2200 if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
2201 /* wakeup via _lwp_wakeup() */
2202 error = ECANCELED;
2203 }
2204 }
2205
2206 /*
2207 * On error, clear sigwait indication. psignal1() sets it
2208 * in !error case.
2209 */
2210 if (error) {
2211 p->p_sigctx.ps_sigwaited = 0;
2212
2213 /*
2214 * If the sleep was interrupted (either by signal or wakeup),
2215 * update the timeout and copyout new value back.
2216 * It would be used when the syscall would be restarted
2217 * or called again.
2218 */
2219 if (timo && (error == ERESTART || error == ECANCELED)) {
2220 struct timeval tvnow, tvtimo;
2221 int err;
2222
2223 s = splclock();
2224 tvnow = mono_time;
2225 splx(s);
2226
2227 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2228
2229 /* compute how much time has passed since start */
2230 timersub(&tvnow, &tvstart, &tvnow);
2231 /* substract passed time from timeout */
2232 timersub(&tvtimo, &tvnow, &tvtimo);
2233
2234 if (tvtimo.tv_sec < 0)
2235 return (EAGAIN);
2236
2237 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2238
2239 /* copy updated timeout to userland */
2240 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
2241 return (err);
2242 }
2243
2244 return (error);
2245 }
2246
2247 /*
2248 * If a signal from the wait set arrived, copy it to userland.
2249 * XXX no queued signals for now
2250 */
2251 if (signum > 0) {
2252 siginfo_t si;
2253
2254 sig:
2255 memset(&si, 0, sizeof(si));
2256 si.si_signo = signum;
2257 si.si_code = SI_USER;
2258
2259 error = copyout(&si, SCARG(uap, info), sizeof(si));
2260 if (error)
2261 return (error);
2262 }
2263
2264 return (0);
2265 }
2266
2267 /*
2268 * Returns true if signal is ignored or masked for passed process.
2269 */
2270 int
2271 sigismasked(struct proc *p, int sig)
2272 {
2273
2274 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2275 sigismember(&p->p_sigctx.ps_sigmask, sig));
2276 }
2277
2278 static int
2279 filt_sigattach(struct knote *kn)
2280 {
2281 struct proc *p = curproc;
2282
2283 kn->kn_ptr.p_proc = p;
2284 kn->kn_flags |= EV_CLEAR; /* automatically set */
2285
2286 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2287
2288 return (0);
2289 }
2290
2291 static void
2292 filt_sigdetach(struct knote *kn)
2293 {
2294 struct proc *p = kn->kn_ptr.p_proc;
2295
2296 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2297 }
2298
2299 /*
2300 * signal knotes are shared with proc knotes, so we apply a mask to
2301 * the hint in order to differentiate them from process hints. This
2302 * could be avoided by using a signal-specific knote list, but probably
2303 * isn't worth the trouble.
2304 */
2305 static int
2306 filt_signal(struct knote *kn, long hint)
2307 {
2308
2309 if (hint & NOTE_SIGNAL) {
2310 hint &= ~NOTE_SIGNAL;
2311
2312 if (kn->kn_id == hint)
2313 kn->kn_data++;
2314 }
2315 return (kn->kn_data != 0);
2316 }
2317
2318 const struct filterops sig_filtops = {
2319 0, filt_sigattach, filt_sigdetach, filt_signal
2320 };
2321